Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.722
Filtrar
Más filtros

Intervalo de año de publicación
1.
Bioact Mater ; 43: 376-391, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39399834

RESUMEN

Metal-organic frameworks (MOFs) hold promise as theranostic carriers for atherosclerosis. However, to further advance their therapeutic effects with higher complexity and functionality, integrating multiple components with complex synthesis procedures are usually involved. Here, we reported a facile and general strategy to prepare multifunctional anti-atherosclerosis theranostic platform in a single-step manner. A custom-designed multifunctional polymer, poly(butyl methacrylate-co-methacrylic acid) branched phosphorylated ß-glucan (PBMMA-PG), can effectively entrap different MOFs via coordination, simultaneously endow the MOF with enhanced stability, lesional macrophages selectivity and enhanced endosome escape. Sequential ex situ characterization and computational studies elaborated the potential mechanism. This facile post-synthetic modification granted the administered nanoparticles atherosclerotic tropism by targeting Dectin-1+ macrophages, enhancing in situ MR signal intensity by 72 %. Delivery of siNLRP3 effectively mitigated NLRP3 inflammasomes activation, resulting a 43 % reduction of plaque area. Overall, the current study highlights a simple and general approach for fabricating a MOF-based theranostic platform towards atherosclerosis conditioning, which may also expand to other indications targeting the lesional macrophages.

2.
Gene ; 932: 148904, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39218415

RESUMEN

BACKGROUND: Cervical cancer, primarily caused by HPV infection, remains a global health concern. Current treatments face challenges including drug resistance and toxicity. This study investigates combining E5-siRNA with chemotherapy drugs, Oxaliplatin and Ifosfamide, to enhance treatment efficacy in HPV-16 positive cervical cancer cells, targeting E5 oncoprotein to overcome limitations of existing therapies. METHODS: The CaSki cervical cancer cell line was transfected with E5-siRNA, and subsequently treated with Oxaliplatin/Ifosfamide. Quantitative real-time PCR was employed to assess the expression of related genes including p53, MMP2, Nanog, and Caspases. Cell apoptosis, cell cycle progression, and cell viability were evaluated using Annexin V/PI staining, DAPI staining, and MTT test, respectively. Furthermore, stemness ability was determined through a colony formation assay, and cell motility was assessed by wound healing assay. RESULTS: E5-siRNA transfection significantly reduced E5 mRNA expression in CaSki cells compared to the control group. The MTT assay revealed that monotherapy with E5-siRNA, Oxaliplatin, or Ifosfamide had moderate effects on cell viability. However, combination therapy showed synergistic effects, reducing the IC50 of Oxaliplatin from 11.42 × 10-8 M (45.36 µg/ml) to 6.71 × 10-8 M (26.66 µg/ml) and Ifosfamide from 12.52 × 10-5 M (32.7 µg/ml) to 8.206 × 10-5 M (21.43 µg/ml). Flow cytometry analysis demonstrated a significant increase in apoptosis for combination treatments, with apoptosis rates rising from 11.02 % (Oxaliplatin alone) and 16.98 % (Ifosfamide alone) to 24.8 % (Oxaliplatin + E5-siRNA) and 34.9 % (Ifosfamide + E5-siRNA). The sub-G1 cell population increased from 15.7 % (Oxaliplatin alone) and 18 % (Ifosfamide alone) to 21.9 % (Oxaliplatin + E5-siRNA) and 27.1 % (Ifosfamide + E5-siRNA), indicating cell cycle arrest. The colony formation assay revealed a substantial decrease in the number of colonies following combination treatment. qRT-PCR analysis showed decreased expression of stemness-related genes CD44 and Nanog, and migration-related genes MMP2 and CXCL8 in the combination groups. Apoptosis-related genes Casp-3, Casp-9, and pP53 showed increased expression following combination therapy, while BAX expression increased and BCL2 expression decreased relative to the control. CONCLUSION: The study demonstrates that combining E5-siRNA with Oxaliplatin or Ifosfamide enhances the efficacy of chemotherapy in HPV-16 positive cervical cancer cells. This synergistic approach effectively targets multiple aspects of cancer cell behavior, including proliferation, apoptosis, migration, and stemness. The findings suggest that this combination strategy could potentially allow for lower chemotherapy doses, thereby reducing toxicity while maintaining therapeutic efficacy. This research provides valuable insights into targeting HPV E5 as a complementary approach to existing therapies focused on E6 and E7 oncoproteins, opening new avenues for combination therapies in cervical cancer treatment.


Asunto(s)
Apoptosis , Papillomavirus Humano 16 , Ifosfamida , Oxaliplatino , ARN Interferente Pequeño , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/virología , Oxaliplatino/farmacología , Femenino , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Ifosfamida/farmacología , Apoptosis/efectos de los fármacos , Papillomavirus Humano 16/genética , Infecciones por Papillomavirus/tratamiento farmacológico , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/virología , Supervivencia Celular/efectos de los fármacos , Proteínas Oncogénicas Virales/genética , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
3.
Rinsho Ketsueki ; 65(9): 1087-1093, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39358264

RESUMEN

Advances in replacement therapy with clotting factor (F) VIII or FIX product have contributed greatly to reducing the incidence of hemophilic arthropathy and improving quality of life (QOL) in patients with hemophilia. However, frequent intravenous administration of clotting factor products, blood access, and development of alloantibodies (inhibitors) have been important issues. Clinical studies aimed at addressing these issues have been conducted in Japan as well, including a multicenter study to determine factors involved in inhibitor development. Drug development has also progressed: several clotting factor products with extended half-life and non-clotting factor therapies have been introduced in quick succession. Anti-FIX/FX bispecific antibody in particular has a long half-life when administered subcutaneously and controls bleeding in patients with hemophilia A. Anti-antithrombin therapy and anti-TFPI monoclonal antibody products that work by rebalancing coagulation have also been developed. In addition, gene therapy has been approved for adults in U.S. and Europe, where improved vectors and codon optimization have enabled protein expression up to the near-therapeutic hemostatic range. Recent significant developments in hemophilia treatment are expected to overcome long-standing problems and further improve QOL.


Asunto(s)
Hemofilia A , Hemofilia A/terapia , Hemofilia A/tratamiento farmacológico , Humanos , Terapia Genética , Calidad de Vida
4.
Rinsho Ketsueki ; 65(9): 1174-1178, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39358275

RESUMEN

Hematopoietic stem cell (HSC)-targeted gene therapy is curative for various genetic blood diseases, and its efficacy has been demonstrated in recent clinical trials. HSCs have self-renewal and hematopoietic multipotency; therefore, repairing pathological mutations or defects in HSCs allows for a lifelong cure with a single treatment. Autologous HSC gene therapy has been developed by lentiviral gene addition or gene editing, and is an option for most patients because it does not require a compatible donor. Current HSC gene therapy is based on ex vivo methods, in which patient HSCs are harvested, genetically modified ex vivo, and autologously transplanted into patients. However, the complexity of this process and the high cost of treatment are hindering the spread of gene therapy. Therefore, in vivo HSC gene therapy is being developed to deliver gene therapy tools directly into bone marrow HSCs by administration without ex vivo culture.


Asunto(s)
Terapia Genética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Humanos , Células Madre Hematopoyéticas/citología , Animales
5.
EMBO Mol Med ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358605

RESUMEN

Spastic paraplegia 47 (SPG47) is a neurological disorder caused by mutations in the adaptor protein complex 4 ß1 subunit (AP4B1) gene leading to AP-4 complex deficiency. SPG47 is characterised by progressive spastic paraplegia, global developmental delay, intellectual disability and epilepsy. Gene therapy aimed at restoring functional AP4B1 protein levels is a rational therapeutic strategy to ameliorate the disease phenotype. Here we report that a single delivery of adeno-associated virus serotype 9 expressing hAP4B1 (AAV9/hAP4B1) into the cisterna magna leads to widespread gene transfer and restoration of various hallmarks of disease, including AP-4 cargo (ATG9A) mislocalisation, calbindin-positive spheroids in the deep cerebellar nuclei, anatomical brain defects and motor dysfunction, in an SPG47 mouse model. Furthermore, AAV9/hAP4B1-based gene therapy demonstrated a restoration of plasma neurofilament light (NfL) levels of treated mice. Encouraged by these preclinical proof-of-concept data, we conducted IND-enabling studies, including immunogenicity and GLP non-human primate (NHP) toxicology studies. Importantly, NHP safety and biodistribution study revealed no significant adverse events associated with the therapeutic intervention. These findings provide evidence of both therapeutic efficacy and safety, establishing a robust basis for the pursuit of an IND application for clinical trials targeting SPG47 patients.

6.
Curr Gene Ther ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39360529

RESUMEN

The immune system presents significant obstacles to gene therapy, which has limited its use in treating many illnesses. New approaches are needed to overcome these problems and improve the effectiveness of gene therapy. This study explores several techniques to immune regulation within gene therapy, a cutting-edge discipline that aims to optimise results by fine-tuning the immune response. We cover new ways to control the immune system and deliver therapeutic genes just where they are needed, including influencing immunological checkpoints, causing immunotolerance, and making smart use of immunomodulatory drugs. In addition, the study provides insight into new developments in the design of less immunogenic gene delivery vectors, which allow for the extension of transgene expression with minimal adverse immune reactions. In order to maximise the efficacy of gene-based therapies, this review analyses these novel approaches and gives a thorough overview of the present state of the art by addressing obstacles and pointing the way toward future developments in immune regulation. Not only does their integration provide new opportunities for the creation of safer and more effective gene treatments, but it also contains the key to overcome current obstacles.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39361114

RESUMEN

Cell therapy, gene therapy, and tissue engineering have been explored as potential strategies to repair or regenerate damaged cardiac tissue. Despite the presence of encouraging preclinical data, clinical trials of regenerative cardiac therapies have yielded mixed results. Our study aimed to investigate the fate of all registered clinical trials within regenerative cardiac medicine, with the purpose of exploring the potential role of publication bias (or trial-completion bias), how published and unpublished research affects the field, and to draw lessons and recommendations for future clinical trials. In this analysis, we show that only a third of all registered trials has yielded results and that a significant number of trials are not completed. Furthermore, we identified significant heterogeneity in study design, study phase, funding, specific therapies used, primary outcome measures and methods of outcome assessment. These observations might hinder the successful translation of cardiac regenerative therapies into clinical practice.

9.
Skelet Muscle ; 14(1): 21, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354597

RESUMEN

BACKGROUND: Gene editing therapies in development for correcting out-of-frame DMD mutations in Duchenne muscular dystrophy aim to replicate benign spontaneous deletions. Deletion of 45-55 DMD exons (del45-55) was described in asymptomatic subjects, but recently serious skeletal and cardiac complications have been reported. Uncovering why a single mutation like del45-55 is able to induce diverse phenotypes and grades of severity may impact the strategies of emerging therapies. Cellular models are essential for this purpose, but their availability is compromised by scarce muscle biopsies. METHODS: We introduced, as a proof-of-concept, using CRISPR-Cas9 edition, a del45-55 mimicking the intronic breakpoints harboured by a subset of patients of this form of dystrophinopathy (designing specific gRNAs), into a Duchenne patient's cell line. The edited cell line was characterized evaluating the dystrophin expression and the myogenic status. RESULTS: Dystrophin expression was restored, and the myogenic defects were ameliorated in the edited myoblasts harbouring a specific del45-55. Besides confirming the potential of CRISPR-Cas9 to create tailored mutations (despite the low cleavage efficiency of our gRNAs) as a useful approach to generate in vitro models, we also generated an immortalized myoblast line derived from a patient with a specific del45-55. CONCLUSIONS: Overall, we provide helpful resources to deepen into unknown factors responsible for DMD-pathophysiology.


Asunto(s)
Sistemas CRISPR-Cas , Distrofina , Exones , Edición Génica , Terapia Genética , Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofina/genética , Edición Génica/métodos , Terapia Genética/métodos , Línea Celular , Eliminación de Secuencia , Mioblastos/metabolismo
10.
Front Pharmacol ; 15: 1469223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39359252

RESUMEN

Backgrounds: Neuropathic pain (NP) is a kind of chronic pain that has attracted much attention in clinical practice, characterized by high morbidity, complex mechanisms, and difficulties in clinical treatment, with which the activation of High mobility group box 1 (HMGB1) is closely related. The aim of this study was to investigate the effects of lentivirus-mediated RNA interference gene therapy targeting HMGB1 on neuropathic pain in rats with chronic dorsal root ganglion compression (CCD) and its specific mechanisms, so as to explore new pharmacological targets. Methods: Adult male Wistar rats were surgically subjected to chronic compression of the dorsal root ganglia (CCD). Behavioral tests were performed by calculating the paw withdrawal mechanical threshold (PWMT) and the thermal paw withdrawal latency (TPWL). Co-immunoprecipitation (CO-IP) was used to clarify protein interactions. Gene silencing was induced by injecting lentivirus expressing HMGB1 short hairpin RNA (shRNA) into rats. An LPS-inflammation-stimulated rat astrocyte model was established to validate the animal experiment results further. Western blot analysis and real-time quantitative PCR were used to detect pathway protein expression. Results: After first establishing the rat CCD model, both PWMT and PTWL were significantly reduced in rats, indicating that the model construction was successful. After lentiviral silencing of HMGB1 expression, NP was significantly alleviated in CCD rats. CO-IP experiments showed a link between HMGB1 and AQP1; After silencing HMGB1 expression, the expression of AQP1 was significantly reduced, and HMGB1 was able to modulate the effect of AQP1 on NP. Further use of an inhibitor of the HMGB1 receptor showed that after inhibition of RAGE, AQP1 was significantly reduced; HMGB1 may regulate AQP1 through its receptor RAGE to affect NP. Silencing of HMGB1 resulted in a significant decrease in NF-κB, and HMGB1 affects the inflammatory pathways it mediates. After silencing AQP1, NF-κB also decreased significantly, indicating that AQP1 is an upstream regulator of NF-κB. Conclusion: Lentivirus-mediated RNA interference (RNAi) silencing targeting HMGB1 may play a key role in the development of neuropathic pain in rats by regulating AQP1 expression via RAGE and ultimately activating NF-κB.

11.
J Toxicol Pathol ; 37(4): 139-149, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39359899

RESUMEN

Gene therapy (GT) products created using adeno-associated virus (AAV) vectors tend to exhibit toxicity via immune reactions, but other mechanisms of toxicity remain incompletely understood. We examined the cardiotoxicity of an overexpressed transgenic protein. Male C57BL/6J mice were treated with a single intravenous dose of product X, an AAV-based GT product, at 2.6 × 1013 vg/kg. Necropsies were performed at 24 h, 7 days, and 14 days after dosing. Pathological examination and gene expression analysis were performed on the heart. Histopathologically, hypertrophy and vacuolar degeneration of cardiomyocytes and fibrosis were observed 14 days after dosing. Immunohistochemistry for endoplasmic reticulum (ER) stress-related proteins revealed increased positive reactions for glucose-regulated protein 78 and C/EBPR homologous protein in cardiomyocytes 7 days after dosing, without histopathological abnormalities. Fourteen days after dosing, some cardiomyocytes showed positivity for PKR-like endoplasmic reticulum kinase and activating transcription factor 4 expression. Ultrastructurally, increases in the ER and cytosol were observed in cardiomyocytes 7 days after dosing, along with an increase in the number of Golgi apparatus compartments 14 days after dosing. The tissue concentration of the transgene product protein increased 7 days after dosing. Gene expression analysis showed upregulation of ER stress-related genes 7 days after dosing, suggesting activation of the PKR-like ER kinase pathway of the unfolded protein reaction (UPR). Thus, the cardiotoxicity induced by product X was considered to involve cell damage caused by the overexpression of the product protein accompanied by UPR. Marked UPR activation may also cause toxicity of AAV-based GT products.

12.
Ocul Surf ; 34: 406-414, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362525

RESUMEN

PURPOSE: Neurotrophic keratopathy (NK) is a degenerative corneal condition resulting from corneal nerve injury. Current therapies, including the recombinant human nerve growth factor (rhNGF) therapy, requires continuous administration. This study aims to develop a novel and highly effective gene therapy strategy for the prevention and treatment of NK. METHODS: Adeno-associated virus (AAV) was transduced into corneal stromal cells by intrastromal injection. Three dimensional corneal wholemount imaging with co-immunostaining of ZO-1 and tubulin was utilized to assess the transduction of AAV.rh10. The efficacy of prevention and treatment of NK by a single intrastromal injection of AAV-Ngf was tested using capsaicin mouse model, herpes simplex keratitis (HSK) model, type Ⅱ diabetes model and alkali burn model. rhNGF eye drops served as the positive control. RESULTS: Intrastromal injection of AAV.rh10 efficiently transduced the subepithelial nerve plexus and retrogradely transported to the trigeminal ganglion (TG). A single injection of AAV.rh10-Ngf can significantly promote corneal nerve repair, accelerate corneal epithelial repair, reduce corneal stromal edema, and improve corneal sensitivity across the four NK models. The therapeutic effects were consistent with those achieved by continuous administration of rhNGF drops by 6 times daily. CONCLUSIONS: This proof-of-concept study demonstrates that AAV.rh10-Ngf gene therapy is a promising method for preventing and treating of NK. Our results underline the potential for developing clinical trials to further explore the safety and efficacy of such gene therapy.

13.
Front Vet Sci ; 11: 1415030, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39376911

RESUMEN

Myxomatous mitral valve disease (MMVD) stands out as the most prevalent acquired canine heart disease. Its occurrence can reach up to 40% in small breed dogs and escalates in geriatric canine populations. MMVD leads to thickening and incomplete coaptation of valve leaflets during systole, resulting in secondary mitral valve regurgitation. Serious complications may arise concurrently with the worsening of mitral valve regurgitation, including left-and right-sided congestive heart failure, and pulmonary hypertension (PH). Ultimately, the PH progression might contribute to the patient's demise or to the owner's decision of euthanasia. Most currently available FDA-approved therapies for PH are costly and aim to address the imbalance between vasoconstriction and vasodilation to restore endothelial cell function. However, none of these medications impact the molecular dysfunction of cells or impede the advancement of pulmonary vascular and right ventricular remodeling. Recent evidence has showcased successful gene therapy approaches in laboratory animal models of PH. In this manuscript, we summarize the latest advancements in gene therapy for the treatment of PH in animals. The manuscript incorporates original data showcasing sample presentations, along with non-invasive hemodynamic assessments. Our findings demonstrate that the use of metabolic gene therapy, combining synthetic adeno-associated virus with acid ceramidase, has the potential to significantly reduce the need for drug treatment and improve spontaneously occurring PH in dogs.

14.
Neuromuscul Disord ; 44: 104451, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39378752

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disorder of mainly early onset and variable severity. Prior to the introduction of disease modifying therapies (DMTs), children with SMA type 1 typically died before 2 years of age and management was primarily palliative. Onasemnogene abeparvovec (OA), nusinersen, and risdiplam are novel DMTs which ameliorate the effects of the underlying genetic defect at least partially making SMA a treatable condition. Survival and achievement of previously unmet developmental milestones result in treated SMA type 1 children spending more time upright than expected based on the natural history of the treatment-naïve condition. Consequently, spinal asymmetry and kyphosis, features not typically seen in untreated SMA type 1 children due to early mortality, are increasingly common complications. Precise data regarding their prevalence, severity, and management are currently limited. This study describes the spinal features and management in 75 children with SMA type 1 who received OA between March 2021 and December 2022. Retrospective analysis from SMA REACH UK data showed that 44/75 (59 %) clinically had spinal asymmetry and 37 (49 %) had kyphosis. This study aims to raise awareness of this important feature as part of the changed natural history of SMA type 1 post OA treatment.

15.
Orphanet J Rare Dis ; 19(1): 367, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363355

RESUMEN

BACKGROUND: Gene therapy is currently in development for several monogenetic diseases including lysosomal storage disorders. Limited evidence is available on patient preferences for gene therapy in this population. In this study, we compare gene therapy-related risk tolerance between people affected by three lysosomal storage diseases currently faced with different therapeutic options and prognoses. METHODS: A survey including the probabilistic threshold technique was developed in which respondents were asked to choose between gene therapy and the current standard of care. The attributes included to establish participants' risk tolerance were previously identified in focus groups of affected people or their representatives, namely: risk of mild side effects, severe side effects, the need for additional medication, and the likelihood of long-term effectiveness. The survey was distributed among people receiving outpatient care for type 1 Gaucher disease (good prognosis with current treatment options), Fabry disease (varying prognosis with current treatment options, XY-genotype on average more severely affected than XX), and parents representing people with severe forms of mucopolysaccharidosis type III A/B (poor prognosis, no disease-specific therapy available). RESULTS: A total of 85 surveys were completed (15 Gaucher disease respondents, 62 Fabry disease respondents (17 self-identifying male), eight parents of ten people with mucopolysaccharidosis type III). Disease groups with higher disease severity trended towards higher risk tolerance: Gaucher disease respondents were most cautious and predominantly preferred the current standard of care as opposed to MPS III representatives who were more risk tolerant. Respondents with Fabry disease were most heterogeneous in their risk tolerance, with male participants being more risk tolerant than female participants. Long-term effectiveness was the attribute in which respondents tolerated the least risk. CONCLUSIONS: People affected by a lysosomal storage disease associated with a poorer prognosis and less effective current treatment options trended towards more risk tolerance when choosing between gene therapy and the current standard of care. This study shows the importance of involvement of patient preferences before and during the development process of new treatment modalities such as gene therapy for rare diseases, to ensure that innovative therapies align with the wishes and needs of people affected by these diseases.


Asunto(s)
Terapia Genética , Enfermedades por Almacenamiento Lisosomal , Prioridad del Paciente , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/terapia , Masculino , Femenino , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/terapia , Enfermedad de Fabry/genética , Enfermedad de Fabry/terapia , Adulto , Encuestas y Cuestionarios
16.
Gut ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39366725

RESUMEN

OBJECTIVE: Acute intermittent porphyria (AIP) is a rare metabolic disorder caused by haploinsufficiency of hepatic porphobilinogen deaminase (PBGD), the third enzyme of the heme biosynthesis. Individuals with AIP experience neurovisceral attacks closely associated with hepatic overproduction of potentially neurotoxic heme precursors. DESIGN: We replicated AIP in non-human primates (NHPs) through selective knockdown of the hepatic PBGD gene and evaluated the safety and therapeutic efficacy of human PBGD (hPBGD) mRNA rescue. RESULTS: Intrahepatic administration of a recombinant adeno-associated viral vector containing short hairpin RNA against endogenous PBGD mRNA resulted in sustained PBGD activity inhibition in liver tissue for up to 7 months postinjection. The administration of porphyrinogenic drugs to NHPs induced hepatic heme synthesis, elevated urinary porphyrin precursors and reproduced acute attack symptoms in patients with AIP, including pain, motor disturbances and increased brain GABAergic activity. The model also recapitulated functional anomalies associated with AIP, such as reduced brain perfusion and cerebral glucose uptake, disturbances in hepatic TCA cycle, one-carbon metabolism, drug biotransformation, lipidomic profile and abnormal mitochondrial respiratory chain activity. Additionally, repeated systemic administrations of hPBGD mRNA in this AIP NHP model restored hepatic PBGD levels and activity, providing successful protection against acute attacks, metabolic changes in the liver and CNS disturbances. This approach demonstrated better efficacy than the current standards of care for AIP. CONCLUSION: This novel model significantly expands our understanding of AIP at the molecular, biochemical and clinical levels and confirms the safety and translatability of multiple systemic administration of hPBGD mRNA as a potential aetiological AIP treatment.

17.
Placenta ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39362807

RESUMEN

Nanoparticles offer promise as a mechanism to non-invasively deliver targeted placental therapeutics. Our previous studies utilizing intraplacental administration demonstrate efficient nanoparticle uptake into placental trophoblast cells and overexpression of human IGF1 (hIGF1). Nanoparticle-mediated placental overexpression of hIGF1 in small animal models of placental insufficiency and fetal growth restriction improved nutrient transport and restored fetal growth. The objective of this pilot study was to extend these studies to the pregnant nonhuman primate and develop a method for local delivery of nanoparticles to the placenta via maternal blood flow from the uterine artery. Nanoparticles containing hIGF1 plasmid driven by the placenta-specific PLAC1 promoter were delivered to a mid-gestation pregnant rhesus macaque via a catheterization approach that is clinically used for uterine artery embolization. Maternal-fetal interface, fetal and maternal tissues were collected four days post-treatment to evaluate the efficacy of hIGF1 treatment in the placenta. The uterine artery catheterization procedure and nanoparticle treatment was well tolerated by the dam and fetus through the four-day study period following catheterization. Nanoparticles were taken up by the placenta from maternal blood as plasmid-specific hIGF1 expression was detected in multiple regions of the placenta via in situ hybridization and qPCR. The uterine artery catheterization approach enabled successful delivery of nanoparticles to maternal circulation in close proximity to the placenta with no concerns to maternal or fetal health in this short-term feasibility study. In the future, this delivery approach can be used for preclinical evaluation of the long-term safety and efficacy of nanoparticle-mediated placental therapies in a rhesus macaque model.

19.
Transfus Med Hemother ; 51(5): 332-344, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39371249

RESUMEN

Background: Sickle cell disease (SCD) is among the most frequent hereditary disorders globally and its prevalence in Europe is increasing due to migration movements. Summary: The basic pathophysiological event of SCD is polymerization of deoxygenated sickle hemoglobin, resulting in hemolysis, vasoocclusion, and multiorgan damage. While the pathophysiological cascade offers numerous targets for treatment, currently only two disease-modifying drugs have been approved in Europe and transfusion remains a mainstay of both preventing and treating severe complications of SCD. Allogeneic stem cell transplantation and gene therapy offer a curative option but are restricted to few patients due to costs and limited availability of donors. Key Message: Further efforts are needed to grant patients access to approved treatments, to explore drug combinations and to establish new treatment options.

20.
Front Pharmacol ; 15: 1454785, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39372210

RESUMEN

Background: In-vivo CRISPR Cas genome editing is a complex therapy involving lipid nanoparticle (LNP), messenger RNA (mRNA), and single guide RNA (sgRNA). This novel modality requires prior modeling to predict dose-exposure-response relationships due to limited information on sgRNA and mRNA biodistribution. This work presents a QSP model to characterize, predict, and translate the Pharmacokinetics/Pharmacodynamics (PK/PD) of CRISPR therapies from preclinical species (mouse, non-human primate (NHP)) to humans using two case studies: transthyretin amyloidosis and LDL-cholesterol reduction. Methods: PK/PD data were sourced from literature. The QSP model incorporates mechanisms post-IV injection: 1) LNP binding to opsonins in liver vasculature; 2) Phagocytosis into the Mononuclear Phagocytotic System (MPS); 3) LNP internalization via endocytosis and LDL receptor-mediated endocytosis in the liver; 4) Cellular internalization and transgene product release; 5) mRNA and sgRNA disposition via exocytosis and clathrin-mediated endocytosis; 6) Renal elimination of LNP and sgRNA; 7) Exonuclease degradation of sgRNA and mRNA; 8) mRNA translation into Cas9 and RNP complex formation for gene editing. Monte-Carlo simulations were performed for 1000 subjects and showed a reduction in serum TTR. Results: The rate of internalization in interstitial layer was 0.039 1/h in NHP and 0.007 1/h in humans. The rate of exocytosis was 6.84 1/h in mouse, 2690 1/h in NHP, and 775 1/h in humans. Pharmacodynamics were modeled using an indirect response model, estimating first-order degradation rate (0.493 1/d) and TTR reduction parameters in NHP. Discussion: The QSP model effectively characterized biodistribution and dose-exposure relationships, aiding the development of these novel therapies. The utility of platform QSP model can be paramount in facilitating the discovery and development of these novel agents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA