Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Environ Manage ; 370: 122913, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39405894

RESUMEN

This study numerically investigated the dynamic process of residual saltwater contamination in subterranean reservoirs (aquifer upstream of subsurface physical barrier) for the first time. The results indicated that the groundwater level elevation resulting from subsurface physical barriers induced a small hydraulic gradient in the subterranean reservoir, with residual saltwater convection driven by the density contrast between saltwater and freshwater. This led to persistent inland intrusion of residual saltwater, causing a gradual expansion of the contamination area (i.e., concentration higher than 0.25 g/L) and a decreased area of high-salinity zone. The area of low concentration residual saltwater (0.25 g/L) initially increased and then decreased over time. For large-scale aquifers, the proportion of the maximum contaminated area to the total aquifer area increased from 0.05 to 0.17. Subsequently, the low-concentration saltwater was considered as a relative high-concentration for ambient freshwater, which released salts into the surroundings and the contamination area reduced to 0.0003 at 160000 d. In small-scale aquifers, residual saltwater transport was affected by inland boundary, and the low-concentration saltwater reached inland boundary at approximately 2000 d, which limited its horizontal expansion and resulted in the polluted area reaching an inflection point early relative to large-scale aquifers. The salt transfer from high-concentration residual saltwater to low-concentration saltwater was closely related to aquifer parameters of hydraulic conductivity, dispersivity, and molecular diffusion coefficient. These findings suggest that residual saltwater contamination should not be overlooked when assessing the efficiency of subterranean reservoirs.

2.
J Contam Hydrol ; 267: 104437, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39341165

RESUMEN

The application of the simulation-optimization method for groundwater contamination source identification (GCSI) encounters two main challenges: the substantial time cost of calling the simulation model, and the limitations on the accuracy of identification results due to the complexity, nonlinearity, and ill-posed nature of the inverse problem. To address these issues, we have innovatively developed an inversion framework based on ensemble learning strategies. This framework comprises a stacking ensemble model (SEM), which integrates three distinct machine learning models (Extremely Randomized Trees, Adaptive Boosting, and Bidirectional Gated Recurrent Unit), and an ensemble optimizer (E-GKSEEFO), which combines two newly proposed swarm intelligence optimizers (Genghis Khan Shark Optimizer and Electric Eel Foraging Optimizer). Specifically, the SEM serves as a surrogate model for the groundwater numerical simulation model. Compared to the original simulation model, it significantly reduces time cost while maintaining accuracy. The E-GKSEEFO, functioning as the search strategy for the optimization model, greatly enhances the accuracy of the optimization results. We have verified the performance of the SEM-E-GKSEEFO ensemble inversion framework through two hypothetical scenarios derived from an actual coal gangue pile. The results are as follows. (1) The SEM exhibits improved fitting performance compared to single machine learning models when dealing with high-dimensional nonlinear data from GCSI. (2) The E-GKSEEFO achieves significantly higher accuracy in the identification results of GCSI than individual optimizers. These findings affirm the effectiveness and superiority of the proposed SEM-E-GKSEEFO ensemble inversion framework.

3.
Environ Pollut ; 362: 125000, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313127

RESUMEN

This study evaluated high fluoride (F-) levels, source distribution, provenance, health risk, and source apportionment in the groundwater of Sargodha, Pakistan. Therefore, 48 groundwater samples were collected and analyzed by ion-chromatography (DX-120, Dionex). The lowest concentration of F- was 0.1, and the highest was 5.8 mg/L in the aquifers. In this study, 43.76% of the samples had exceeded the World Health Organization's allowable limit of 1.5 mg/L. The hydrogeochemical facies in Na-rich and Ca-poor aquifers showed NaCl (66.6%), NaHCO3 (14.5%), mixed CaNaHCO3 (8.3%), CaCl2 (8.3%), mixed CaMgCl2 (2%), and CaHCO3 (2%) type water. Alkaline pH, high Na+, HCO3- concentrations, and poor Ca-aquifers promoted F- dissolution in aquifer. The significant positive correlations between Na⁺ and F- suggested cation exchange, where elevated Na⁺ occurs in Ca-poor aquifers. The cation exchange reduces the availability of Ca2+ would lead to higher F- concentrations. Meanwhile, the correlation between HCO3- and F- indicates that carbonate minerals dissolution helps in increasing pH and HCO3- as a result F- triggers in aquifers. Groundwater chemistry is primarily governed by the weathering of rock, water-rock interaction, ion-exchange, and mineral dissolution significantly control groundwater compositions. Cluster analysis (CA) determined three potential clusters: less polluted (10.4%), moderately polluted (39.5%), and severely polluted (50%) revealing fluoride toxicity and vulnerability in groundwater wells. Mineral phases showed undersaturation and saturation determining dissolution of minerals and precipitation of minerals in the aquifer. PCAMLR model determined that high fluoride groundwater takes its genesis from F-bearing minerals, ion exchange, rock-water interaction, and industrial, and agricultural practices. The health risk assessment model revealed that children are at higher risk to F- toxicity than adults. Thus, groundwater of the area is unsuitable for drinking, domestic, and agricultural needs.

4.
J Contam Hydrol ; 267: 104422, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39260022

RESUMEN

The contaminant mass discharge is a relevant metric to evaluate the risk that a groundwater plume poses to water resources. However, this assessment is often vitiated by a high uncertainty inherent to the assessment method and often limited number of measurement points to carry out the assessment. Direct-Push techniques in combination with profiling tools and dedicated sampling can be an interesting alternative to increase the measurement point density and hence reduce the mass discharge uncertainty. The main objective of our study was to assess if DP logging and sampling could be employed to get a reasonable estimate of contaminant mass discharge in a large sulfonamide contaminant plume (> 1500 m wide), compared to a more traditional approach based on monitoring wells. To do so, an Hydraulic Profiling Tool (HPT) logging with a dedicated site calibration was used to estimate the hydraulic conductivity field. The sulfonamide concentrations were inferred from the compound fluorescence properties measured by laboratory spectrofluorometry (λEx / λEm = 255/340 nm) and a dedicated log-log linear regression model. Our results show that HPT-derived hydraulic conductivity values are in good agreement with the monitoring well results, and within the order of magnitude reported in similar studies or indirect geophysical techniques. Fluorescence appears as a powerful proxy for the sulfonamide concentration levels. Ultimately, the contaminant mass discharge estimate from HPT and fluorescence techniques lies within a factor 2 from the estimate by monitoring wells, with 549 [274-668] and 776 [695-879] kg/yr respectively. Overall, this study highlights that DP logging tools combined with indirect methods (correlation with fluorescence) could provide a relevant contaminant mass discharge estimate for some optically active substances, given that a proper calibration phase is carried out.

5.
Bull Environ Contam Toxicol ; 113(2): 25, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126524

RESUMEN

Considering the environmental impact of triafamone and ethoxysulfuron, it is crucial to investigate their leaching behaviour under different geographical conditions. The present study evaluates the effects of application rate, soil properties and rainfall conditions on leaching of these herbicides and their metabolites. Ethoxysulfuron leached up to 50-60 cm with 82.95 to 89.23% detected in leachates while triafamone leached only to 10-20 cm and was < 0.01 µg mL-1 in leachates. Highest leachability was observed in loamy sand followed by sandy loam and clay loam soil. M1 metabolite (N-(2-((4,6-dimethoxy-1,3,5-triazin-2-yl) (hydroxy) methyl) -6-fluorophenyl) -1,1-difluoro-N-methyl methane sulfonamide) was majorly present in 0 to 10 cm soil depth. With increase in rainfall, downward mobility of both parent and M1 increased. Amendment of loamy sand soil with farmyard manure reduced the leachability indicating it could mitigate groundwater pollution. However, the effect of different exogenous OM amendments on leaching behaviour of herbicides needs to be evaluated.


Asunto(s)
Monitoreo del Ambiente , Herbicidas , Lluvia , Contaminantes del Suelo , Suelo , Herbicidas/análisis , Contaminantes del Suelo/análisis , Suelo/química , Lluvia/química , Triazinas/análisis , Contaminantes Químicos del Agua/análisis , Sulfonamidas/análisis , Sulfonamidas/química
6.
Sci Total Environ ; 949: 175064, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39067594

RESUMEN

Groundwater is a crucial water supply source in Chengdu City, western China, a region experiencing significant water scarcity. The sources of inorganic pollutants in groundwater and their potential health risks are of great concern. In this study, based on 156 groundwater samples collected in 2021 in the study area were analyzed for hydrochemical characterization and controlling factors. The Positive Matrix Factorization (PMF) model was used for contaminant source analysis, and Monte Carlo Simulation (MCS) combined with the Health Risk Evaluation Model (HREM) was used to quantify the health risks. The results indicate that the groundwater in the study area is predominantly of the Ca·Na-SO4·HCO3, Ca·Na-HCO3·SO4 and Ca-HCO3·SO4 types, mainly influenced by the combination of evaporation-concentration-crystallization and rock leaching-weathering. K+, Na+, and Cl- mainly originate from the weathering and dissolution of potassium feldspar and rock salt, while Ca2+, Mg2+, HCO3-, and SO42- primarily come from the weathering and dissolution of sulfate minerals. The main sources of groundwater pollution and their contributions are as follows: domestic pollution (25.6 %), dissolution-filtration-evaporation-concentration action (22.8 %), hydrogeochemical evolution (15.8 %), water-rock interactions (12.8 %), primary geologic context (12.1 %), and agricultural non-point source pollution (11.0 %). Cl- and As are the primary contributors to non-carcinogenic and carcinogenic risks, respectively. Non-carcinogenic risks are below USEPA standards, while the average carcinogenic risk for arsenic exceeded the maximum acceptable risk level thresholds by 23 and 109 times for adults and children, respectively. Non-carcinogenic and carcinogenic health risks were mainly influenced by pollutant concentrations. The primary geological background and domestic pollution contributed the most to the non-carcinogenic risk for adults (50.3 %) and children (77.1 %), and 38.2 % and 10.3 %, respectively. This study highlights the necessity of establishing a comprehensive groundwater pollution monitoring system, enhancing industrial waste management practices, and raising public awareness to mitigate contamination and ensure the sustainable use of groundwater resources in Chengdu City.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , China , Medición de Riesgo , Calidad del Agua , Humanos , Abastecimiento de Agua
7.
J Environ Manage ; 366: 121893, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39025004

RESUMEN

This study aims to identify sources of groundwater contamination in a refinery area using integrated compound-specific stable isotope analysis (CSIA), oil fingerprinting techniques, hydrogeological data, and distillation analysis. The investigations focused on determination of the origin of benzene, toluene, ethylbenzene, and xylenes (BTEX), and aliphatic hydrocarbons as well. Groundwater and floating oil samples were collected from extraction wells for analysis. Results indicate presence of active leaks in both the northern and southern zones. In the northern zone, toluene was found to primarily originate from oil products like aviation turbine kerosene (ATK or aviation fuel), kerosene, regular gasoline, and diesel fuel. Additionally, stable isotope ratios of carbon and hydrogen for ethylbenzene, o-xylene (ortho xylene) and p-xylene (para xylene) in zone A suggested the pollution originated from gasoline within the northern zone. The origin of super gasoline (with higher octane) identified in southern zone using δ13C and δ2H values of toluene in the floating oil and groundwater samples. Further, biodegradation of toluene likely occurred in southern zone according to δ13C and δ2H. The findings underscore the critical importance of integrating CSIA and fingerprinting techniques to effectively address the challenges of source identification and relying solely on each method independently is insufficient. Accordingly, comparing the GC-MS results of floating oil samples with ATK and jet fuel (JP4) standards can be effectively utilized for source differentiation. However, this method showed no practical application to distinguish different types of diesel or gasoline. The accuracy and reliability of source identification of BTEX compounds may significantly improve when hydrogeological data incorporates with stable isotopes analysis. Additionally, the results of this study will elevate the procedures for fuel-related contaminants source identification of the polluted groundwater that is crucial to develop effective remediation strategies.


Asunto(s)
Benceno , Agua Subterránea , Tolueno , Contaminantes Químicos del Agua , Xilenos , Agua Subterránea/química , Xilenos/análisis , Benceno/análisis , Tolueno/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Derivados del Benceno/análisis
8.
Environ Sci Pollut Res Int ; 31(32): 45074-45104, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38958857

RESUMEN

Water plays a pivotal role in socio-economic development in Algeria. However, the overexploitations of groundwater resources, water scarcity, and the proliferation of pollution sources (including industrial and urban effluents, untreated landfills, and chemical fertilizers, etc.) have resulted in substantial groundwater contamination. Preserving water irrigation quality has thus become a primary priority, capturing the attention of both scientists and local authorities. The current study introduces an innovative method to mapping contamination risks, integrating vulnerability assessments, land use patterns (as a sources of pollution), and groundwater overexploitation (represented by the waterhole density) through the implementation of a decision tree model. The resulting risk map illustrates the probability of contamination occurrence in the substantial aquifer on the plateau of Mostaganem. An agricultural region characterized by the intensive nutrients and pesticides use, the significant presence of septic tanks, widespread illegal dumping, and a technical landfill not compliant with environmental standards. The critical situation in the region is exacerbated by excessive groundwater pumping surpassing the aquifer's natural replenishment capacity (with 115 boreholes and 6345 operational wells), especially in a semi-arid climate featuring limited water resources and frequent drought. Vulnerability was evaluated using the DRFTID method, a derivative of the DRASTIC model, considering parameters such as depth to groundwater, recharge, fracture density, slope, nature of the unsaturated zone, and the drainage density. All these parameters are combined with analyses of inter-parameter relationship effects. The results show a spatial distribution into three risk levels (low, medium, and high), with 31.5% designated as high risk, and 56% as medium risk. The validation of this mapping relies on the assessment of physicochemical analyses in samples collected between 2010 and 2020. The results indicate elevated groundwater contamination levels in samples. Chloride exceeded acceptable levels by 100%, nitrate by 71%, calcium by 50%, and sodium by 42%. These elevated concentrations impact electrical conductivity, resulting in highly mineralized water attributed to anthropogenic agricultural pollution and septic tank discharges. High-risk zones align with areas exhibiting elevated nitrate and chloride concentrations. This model, deemed satisfactory, significantly enhances the sustainable management of water resources and irrigated land across various areas. In the long term, it would be beneficial to refine "vulnerability and risk" models by integrating detailed data on land use, groundwater exploitation, and hydrogeological and hydrochemical characteristics. This approach could improve vulnerability accuracy and pollution risk maps, particularly through detailed local data availability. It is also crucial that public authorities support these initiatives by adapting them to local geographical and climatic specificities on a regional and national scale. Finally, these studies have the potential to foster sustainable development at different geographical levels.


Asunto(s)
Árboles de Decisión , Monitoreo del Ambiente , Agua Subterránea , Agua Subterránea/química , Argelia , Contaminación del Agua/análisis , Contaminantes Químicos del Agua/análisis , Medición de Riesgo
9.
J Contam Hydrol ; 265: 104391, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38936239

RESUMEN

Natural river flooding events can mobilize contaminants from the vadose zone and lead to increased concentrations in groundwater. Characterizing the mass and transport mechanisms of contaminants released from the vadose zone to groundwater during these recharge events is particularly challenging. Therefore, conducting highly-controlled in-situ experiments that simulate natural flooding events can help increase the knowledge of where contaminants can be stored and how they can move between hydrological compartments. This study specifically targets uranium pollution, which is accompanied by high sulfate levels in the vadose zone and groundwater. Two novel experimental river flooding events were conducted that utilized added non-reactive halides (bromide and iodide) and 2,6-difluorobenzoate tracers. In both experiments, about 8 m3 of traced water from a nearby contaminant-poor river was flooded in a 3-m diameter basin and infiltrated through the vadose zone and into a contaminant-rich unconfined aquifer for an average of 10 days. The aquifer contained 13 temporary wells that were monitored for solute concentration for up to 40 days. The groundwater analysis was conducted for changes in contaminant mass using the Theissen polygon method and for transport mechanisms using temporal moments. The results indicated an increase in uranium (21 and 24%), and sulfate (24 and 25%) contaminant mass transport to groundwater from the vadose zone during both experiments. These findings confirmed that the vadose zone can store and release substantial amounts of contaminants to groundwater during flooding events. Additionally, contaminants were detected earlier than the added tracers, along with higher concentrations. These results suggested that contaminant-rich pore water in the vadose zone was transported ahead of the traced flood waters and into groundwater. During the first flooding event, elevated concentrations of contaminants were sustained, and that chloride behaved similarly. The findings implied that contaminant- and chloride-rich evaporites in the vadose zone were dissolved during the first flooding event. For the second flooding event, the data suggested that the contaminant-rich evaporites continued to dissolve whereas chloride-rich evaporites were previously flushed. Overall, these findings indicated that contaminant-rich pore water and evaporites in the vadose zone can play a significant role in contaminant transport during flooding events.


Asunto(s)
Monitoreo del Ambiente , Inundaciones , Agua Subterránea , Ríos , Contaminantes Químicos del Agua , Agua Subterránea/química , Agua Subterránea/análisis , Contaminantes Químicos del Agua/análisis , Ríos/química , Movimientos del Agua , Uranio/análisis
10.
Environ Pollut ; 357: 124410, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38936793

RESUMEN

Fly ash from waste incineration is growing rapidly and has become a global problem. Landfill is the main treatment method, but the release behavior of ultra-alkaline fly ash needs further study. In this study, the release pattern of heavy metals from fly ash, the long-term risk after seepage, and the main control mechanisms were explored by indoor simulation experiments and process simulation modeling. The results show that carbonation is the main control mechanism for the release rate of heavy metals from super-alkaline fly ash, and the release rate is slow at the initial stage, but the release concentration of Zn and Pb may increase tens of times with the continuous reaction between the acidic substances in the leachate and the alkaline substances in the fly ash. The heavy metals released into the leachate can cause the concentration of Zn, Cd and Pb in the groundwater to exceed the standard by 39.50, 6.70 and 5.99 times due to seepage. Furnace type is the key controlling factor for background concentrations of heavy metals in ultra-alkaline fly ash, and the exposure concentrations of Cu, Cd, Zn, and Pb in ultra-alkaline fly ash from grate furnaces as well as the GT1 facility are 4.19, 4.19, 4.14, and 37.5 times greater than those of fluidized beds, respectively, with a higher risk of long-term landfill. Regionally, the regional occupancy rate of heavy metal concentrations indicated that the risk of adequate rainfall was high in the southeastern coastal region, which was five times higher than that in the inland northwest. Therefore, the long-term dynamics and risk evolution of Zn, Cd, and Pb in the groundwater around MSWLs in the coastal area should be paid attention to after the landfilling of ultra-alkaline fly ash in order to ensure the safety of the shallow groundwater environment after landfilling.


Asunto(s)
Ceniza del Carbón , Incineración , Metales Pesados , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua , Ceniza del Carbón/química , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos , Agua Subterránea/química , Monitoreo del Ambiente
11.
Sci Total Environ ; 945: 173654, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848907

RESUMEN

The investigation of leachate leakage at numerous landfill sites is urgently needed. This study presents an exploration of environmental tracing methods using δ2H and δ13C-difference in dissolved carbon (δ13CDIC-DOC) to localize leachate leak points at landfill sites. δ2H, δ13CDIC, δ13CDOC, δ18O, and an array of physicochemical indices (e.g., total dissolved solids, temperature, and oxidation reduction potential) were monitored in both leachate and groundwater from different zones of a landfill site in China during the year of 2021-2023. Moreover, data for these parameters (i.e., the isotopic composition and physicochemical indices) from twelve published landfill cases were also collected, and these groundwater/leachate data points were located within 1 km away from the landfill boundary. Then statistical analyses, such as Pearson correlation analysis and redundancy analysis (RDA), were performed using both the detected and collected parameters at landfill sites. Consequently, the intensity of interaction between leachate and background groundwater was found to significantly control the isotopic fractionation features of hydrogen and carbon, and both the content of major contamination indicators (total dissolved solids, chemical oxygen demand, and ammoniacal nitrogen) and the oxidation reduction potential were the key impact factors. Accordingly, the water type used to indicate leachate leakage points was determined to be leachate that significantly interacted with the background groundwater or precipitation (LBGP). δ2H showed a perfect linear correlation (0.81 ≤ r2 < 1.0) with δ13CDIC-DOC in leachate under highly anaerobic landfill conditions, and the δ2H & δ13CDIC-DOC combinations in the LBGP were significantly different from those in the other water types. For groundwater with total dissolved solids lower than 1400 mg/L at landfill sites, a strong positive linear correlation (r = 0.83) was revealed between δ13CDIC and δ13CDOC. Based on these insights, δ2H versus δ13CDIC-DOC plots and RDA using δ2H and δ13CDIC-DOC as response variables were proposed to localize leak points at both lined landfills and leachate facilities. These findings further understanding of the isotopic fractionation features of hydrogen, carbon, and oxygen and provide novel environmental tracer methods for investigating leachate leak points at MSW landfill sites.

12.
Environ Sci Pollut Res Int ; 31(29): 42049-42074, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38861064

RESUMEN

Groundwater is a precious natural element which ensures global water, food, and environmental security in the twenty-first century. Systematic monitoring, sustainable utilization, preservation and remediation are critical aspects of efficient groundwater resource management. This study deals with the analysis of spatial variability and trend in groundwater chemistry as well as identification of possible contamination sources in a coastal alluvial basin of eastern India. Pre-monsoon season data of 14 groundwater-quality variables measured in 'leaky confined' and 'confined' aquifers were analyzed for ten years (2012-2021). Mann-Kendall (M-K) test with the Sen's Slope Estimator, Spearman Rank Order Correlation (SROC) and Innovative Trend Analysis (ITA) tests were employed to assess decadal (2012-2021) trends. The analysis of the results indicated that the 'critical' water-quality parameters exceeding the acceptable limits for drinking are TDS, EC, TH, pH, Mg2+, Na+, K+, Fe2+, HCO3-, Cl- and NO3-. Weak negative correlations between rainfall and groundwater elevation for both the aquifers reveal poor rainfall recharge into the aquifers. Therefore, a reduction in groundwater abstraction and augmentation of groundwater recharge is recommended. Trend analysis results indicated that the concentrations of TH, Mg2+ and Fe2+ exhibit significant increasing trends in the 'leaky confined aquifer'. In contrast, significant rising trends in TH, Mg2+, Na+, Fe2+, HCO3- and NO3- concentrations are identified in the 'confined aquifer'. Further, the SROC test could not detect the trends in groundwater quality in most blocks and for many parameters. On the other hand, the ITA test revealed significant trends in most of the parameters of the two aquifers in almost all the blocks. Trend magnitudes of the groundwater-quality parameters based on the Sen's Slope Estimator and the ITA test vary from -63.7 to 58.65 mg/L/year for TDS, -14 to 39.07 mg/L/year for TH, -1.49 to 4.83 mg/L/year for Mg2+, -7.14 to 22.96 mg/L/year for Na+, -0.32 to 0.44 mg/L/year for Fe2+, -8.33 to 20.75 mg/L/year for HCO3-, -26.52 to 31.01 mg/L/year for Cl- and 1.29 to 3.76 mg/L/year for NO3- over the study area. The results of M-K and ITA tests were found in agreement in all the blocks for both the aquifers. Groundwater contamination in both the aquifers can be attributed to weathering, geogenic processes, mineral dissolution, seawater intrusion, poor recharge pattern and injudicious anthropogenic activities. It is strongly recommended that concerned authorities urgently formulate efficient strategies for managing groundwater quality in the 'leaky confined' and 'confined' aquifers which serve as vital sources of drinking and irrigation water supplies in the study area.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , Calidad del Agua , Agua Subterránea/química , India , Contaminantes Químicos del Agua/análisis
13.
Environ Sci Pollut Res Int ; 31(26): 37877-37906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38771540

RESUMEN

In the past few decades, the excessive and inadequate use of technological advances has led to groundwater contamination, mainly caused by organic and inorganic pollutants, which are highly harmful to human health, agriculture, water bodies, and aquaculture. Among all toxic pollutants, As and F- play a significant role in groundwater contamination due to their excellent reactivity with other elements. To mitigate the prevalence of arsenic and fluoride within the water system, the use of biochar gives an attractive strategy for removing them mainly because of the substantial surface area, pore size, pH, aromatic structure, and functional groups inherent in biochar, which are primarily dependent upon its raw material and pyrolysis temperature. Researcher develops different methods like physiochemical and electrochemical for treating arsenic and fluoride contamination. Among all removal methods, bioadsorption using agricultural waste residues shows effective/feasible removal of As and F- due to its low cost, ecofriendly nature, readily available, and efficient reuse compared with several other harmful synthetic materials that demand costly design specifications. This study discusses current developments in bioadsorption methods for As and F- that use agricultural-based biomaterials and describes the prevailing state of arsenic and fluoride removal strategies that use biomaterials precisely.


Asunto(s)
Arsénico , Fluoruros , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Agua Subterránea/química , Purificación del Agua/métodos , Adsorción , Carbón Orgánico
14.
Sci Total Environ ; 935: 173093, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768723

RESUMEN

A multi-layered aquifer in an industrial area in the north of the Iberian Peninsula is severely contaminated with the chlorinated ethenes (CEs) tetrachloroethylene, trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride. Both shallow and deep aquifers are polluted, with two differentiated north and south CEs plumes. Hydrogeochemical and isotopic data (δ13C of CEs) evidenced natural attenuation of CEs. To select the optimal remediation strategy to clean-up the contamination plumes, laboratory treatability studies were performed, which confirmed the intrinsic biodegradation potential of the north and south shallow aquifers to fully dechlorinate CEs to ethene after injection of lactate, but also the combination of lactate and sulfidized mZVI as an alternative treatment for the north deep aquifer. In the lactate-amended microcosms, full dechlorination of CEs was accompanied by an increase in 16S rRNA gene copies of Dehalococcoides and Dehalogenimonas, and the tceA, vcrA and bvcA reductive dehalogenases. Three in situ pilot tests were implemented, which consisted in injections of lactate in the north and south shallow aquifers, and injections of lactate and sulfidized mZVI in the north deep aquifer. The hydrogeochemical, isotopic and molecular analyses used to monitor the pilot tests evidenced that results obtained mimicked the laboratory observations, albeit at different dechlorination rates. It is likely that the efficiency of the injections was affected by the amendment distribution. In addition, monitoring of the pilot tests in the shallow aquifers showed the release of CEs due to back diffusion from secondary sources, which limited the use of isotopic data for assessing treatment efficiency. In the pilot test that combined the injection of lactate and sulfidized mZVI, both biotic and abiotic pathways contributed to the production of ethene. This study demonstrates the usefulness of integrating different chemical, isotopic and biomolecular approaches for a more robust selection and implementation of optimal remediation strategies in CEs polluted sites.


Asunto(s)
Biodegradación Ambiental , Agua Subterránea , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Proyectos Piloto , Etilenos/metabolismo , España , Tetracloroetileno
15.
Chemosphere ; 359: 142305, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740338

RESUMEN

The widespread presence of arsenic (As) and fluoride (F-) in groundwater poses substantial risks to human health on a global scale. These elements have been identified as the most prevalent geogenic contaminants in groundwater in northern Mexico. Consequently, this study aimed to evaluate the human health and ecological risks associated with the content of As and F- in the Meoqui-Delicias aquifer, which is in one of Mexico's most emblematic irrigation districts. Concentrations of As and F- were measured in 38 groundwater samples using ICP-MS and ion chromatography, respectively. Overall, these elements showed a similar trend across the aquifer, revealing a positive correlation between them and pH. The concentration of As and F- in the groundwater ranged from 5.3 µg/L to 303 µg/L and from 0.5 mg/L to 8.8 mg/L, respectively. Additionally, the levels of As and F- surpassed the established national standards for safe drinking water in 92% and 97% of samples, respectively. Given that groundwater is used for both agricultural purposes and human activities, this study also assessed the associated human health and ecological risks posed by these elements using Monte Carlo simulation and Species Sensitivity Distribution. The findings disclosed a significant noncarcinogenic health risk associated with exposure to As and F-, as well as an unacceptable carcinogenic health risk to As through water consumption for both adults and children. Furthermore, a high ecological risk to aquatic species was identified for F- and high to medium risks for As in the sampling sites. Therefore, the findings in this study provide valuable information for Mexican authorities and international organizations (e.g., WHO) about the adverse effects that any exposure without treatment to groundwater from this region represents for human health.


Asunto(s)
Arsénico , Monitoreo del Ambiente , Fluoruros , Agua Subterránea , Método de Montecarlo , Contaminantes Químicos del Agua , Agua Subterránea/química , Fluoruros/análisis , Contaminantes Químicos del Agua/análisis , Arsénico/análisis , México , Humanos , Medición de Riesgo , Agua Potable/química
16.
Water Res ; 257: 121637, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38701551

RESUMEN

Infiltration of effluents from wastewater treatment plants (WWTP) into groundwater can be a source of Contaminants of Emerging Concern (CECs), such as pharmaceutical compounds, that are not fully removed during the treatment processes. A multi-tracer approach, based on hydrogeochemical, isotopic, and organic tracers, is applied in the Vistrenque Aquifer (Gard, France) to assess the dispersion of such unintentional plumes and its potential implication on groundwater quality for CECs in a small catchment area. In this area, a point source of WWTP effluent causes contaminant infiltration and unintentional transfer to the aquifer. This strong impact of an urban effluent was revealed from the Br/Cl ratio, boron concentrations and δ11B isotopic signature of the groundwater in the direct vicinity of the infiltration point. With increasing distance from that point, dilution with groundwater rapidly attenuates the urban signal from these hydrogeochemical and isotopic tracers. Nevertheless, a gadolinium anomaly, resulting from discharges of urban wastewater containing the contrast agents used for magnetic resonance imaging (MRI), highlights the presence of a wastewater plume further along the flow line, that comes with a series of organic molecules, including pharmaceutical residues. Monitoring persistent or reactive molecules along the plume provides a more detailed understanding of the transfer of CECs into groundwater bodies. This highlights the relevance of pharmaceutical compounds as co-tracers for WWTP plume delineation. The present multi-tracer approach for groundwater resource vulnerability towards CECs allows a more in-depth understanding of contaminant transfer and their fate in groundwater.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Aguas Residuales , Contaminantes Químicos del Agua , Agua Subterránea/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos , Francia
17.
Environ Sci Pollut Res Int ; 31(23): 33591-33609, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684609

RESUMEN

In this study, we designed a machine learning-based parallel global searching method using the Bayesian inversion framework for efficient identification of dense non-aqueous phase liquid (DNAPL) source characteristics and contaminant transport parameters in groundwater. Swarm intelligence organized hybrid-kernel extreme learning machine (SIO-HKELM) was proposed to approximate the forward and inverse input-output correlation with a high accuracy using the DNAPL transport numerical simulation model. An adaptive inverse-HKELM was established for preliminary estimation of the source characteristics and contaminant transport parameters to correct prior information and generate high-quality initial starting points of parallel searching. A local accurate forward-HKELM surrogate of the numerical model was embedded in the searching system for avoiding repetitive CPU-demanding likelihood evaluations. A sensitivity-based Metropolis criterion (MC), incorporating the dynamic particle swarm optimization (SD-PSO) algorithm, was developed for improving the search ergodicity and realizing precise inversion of all the unknown variables with drastic variations in sensitivity to the likelihood function. Results showed that the generalization capability and robustness of SIO-HKELM were superior to those of the traditional machine learning methods, including KELM and support vector regression (SVR), and it sufficiently approximated the forward and inverse input-output mapping of the numerical model with testing determination coefficients of 0.9944 and 0.6440, respectively. With high-quality prior information and initial starting points generated by the adaptive inverse-HKELM feed approach, the uncertainty in the inversion outputs was reduced, and the searching process rapidly converged to reasonable posterior distributions in around 60 iterations. Compared with the widely used multichain Markov chain Monte Carlo (MCMC) approach, the parallel searching lines generated by SD-PSO-MC adequately covered the searching space, and the "equifinality" effect was more effectively restrained by reducing the relative errors of all the point estimations to less than 8%. Therefore, the real source information reflected by the statistical characteristics of the SD-PSO-MC inversion outputs was more precise than that obtained using the multichain MCMC approach.


Asunto(s)
Teorema de Bayes , Agua Subterránea , Aprendizaje Automático , Agua Subterránea/química , Algoritmos , Modelos Teóricos
18.
J Water Health ; 22(3): 612-626, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557575

RESUMEN

In a recent monitoring study of Minnesota's public supply wells, Cryptosporidium was commonly detected with 40% of the wells having at least one detection. Risk factors for Cryptosporidium occurrence in drinking water supply wells, beyond surface water influence, remain poorly understood. To address this gap, physical and chemical factors were assessed as potential predictors of Cryptosporidium occurrence in 135 public supply wells in Minnesota. Univariable analysis, regression techniques, and classification trees were used to analyze the data. Many variables were identified as significant risk factors in univariable analysis and several remained significant throughout the succeeding analysis techniques. These factors fell into general categories of well use and construction, aquifer characteristics, and connectedness to the land surface, well capture zones, and land use therein, existence of potential contaminant sources within 200-feet of the well, and variability in the chemical and isotopic parameters measured during the study. These risk categories, and the specific variables and threshold values we have identified, can help guide future research on factors influencing Cryptosporidium contamination of wells and can be used by environmental health programs to develop risk-based sampling plans and design interventions that reduce associated health risks.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Criptosporidiosis/epidemiología , Minnesota , Monitoreo del Ambiente/métodos , Abastecimiento de Agua , Pozos de Agua , Factores de Riesgo , Contaminantes Químicos del Agua/análisis
19.
Toxics ; 12(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38668487

RESUMEN

The extensive use of per- and polyfluoroalkyl substances (PFASs) in industrial consumer products has led to groundwater contamination, raising concerns for human health and the environment. These persistent chemicals exist in different forms with varying properties, which makes their removal challenging. In this study, we assessed the effectiveness of three different ß-cyclodextrin (ß-CD) adsorbents at removing a mixture of PFASs, including anionic, neutral, and zwitterionic compounds, at neutral pH. We calculated linear partition coefficient (Kd) values to quantify the adsorption affinity of each PFAS. ß-CD polymers crosslinked with hexamethylene diisocyanate (ß-CD-HDI) and epichlorohydrin (ß-CD-EPI) displayed some adsorption of PFASs. Benzyl chloride ß-CD (ß-CD-Cl), an adsorbent that had not been previously reported, was also synthesized and tested for PFAS adsorption. ß-CD-Cl exhibited higher PFAS adsorption than ß-CD-HDI and ß-CD-EPI, with log Kd values ranging from 1.9 L·g-1 to 3.3 L·g-1. ß-CD-Cl displayed no affinity for zwitterionic compounds, as opposed to ß-CD-HDI and ß-CD-EPI, which removed N-dimethyl ammonio propyl perfluorohexane sulfonamide (AmPr-FHxSA). A comparison between Kd values and the log Kow of PFAS confirmed the significant role of hydrophobic interactions in thee adsorption mechanism. This effect was stronger in ß-CD-Cl, compared to ß-CD-HDI and ß-CD-EPI. While no effect of PFAS charge was observed in ß-CD-Cl, some influence of charge was observed in ß-CD-HDI and ß-CD-EPI, with less negative compounds being more adsorbed. The adsorption of PFASs by ß-CD-Cl was similar in magnitude to that of other adsorbents proposed in literature. However, it offers the advantage of not containing fluorine, unlike many commonly proposed adsorbents.

20.
J Water Health ; 22(4): 757-772, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38678428

RESUMEN

This study investigates groundwater contamination by arsenic and iron and its health implications within the Sylhet district in Bangladesh. Utilizing geographic information system (GIS) and inverse distance weighting (IDW) methods, hazard maps have been developed to evaluate contamination risk across various upazilas. The findings show significant arsenic and iron pollution, particularly in the northwestern part of the district. In about 50% of the area, especially in Jaintiapur, Zakiganj, Companiganj, and Kanaighat where arsenic levels surpass 0.05 mg/L which is the standard limit of Bangladesh. Iron levels peak at 13.83 mg/L, severely impacting 45% of the region, especially in Gowainghat, northeastern Jaintiapur, Zakigonj, and Golabganj. The study employs USEPA health risk assessment methods to calculate the hazard quotient (HQ) and hazard index (HI) for both elements via oral and dermal exposure. Results indicate that children face greater noncarcinogenic and carcinogenic risks than adults, with oral HI showing significant risk in Balagonj and Bishwanath. Dermal adsorption pathways exhibit comparatively lower risks. Cancer risk assessments demonstrate high carcinogenic risks from oral arsenic intake in all areas. This comprehensive analysis highlights the urgent need for effective groundwater management and policy interventions in the Sylhet district to mitigate these health risks and ensure safe drinking water.


Asunto(s)
Arsénico , Agua Subterránea , Hierro , Contaminantes Químicos del Agua , Agua Subterránea/análisis , Agua Subterránea/química , Arsénico/análisis , Bangladesh , Contaminantes Químicos del Agua/análisis , Hierro/análisis , Medición de Riesgo , Humanos , Monitoreo del Ambiente/métodos , Sistemas de Información Geográfica , Agua Potable/análisis , Agua Potable/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA