Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Anim ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261059

RESUMEN

Here, we report the identification of causative genes for limb-shortening in individuals repeatedly found in a population of severely immunodeficient NOG mice maintained via sibling mating. First, we conducted a pedigree survey to determine whether limb-shortening was a recessive genetic trait and then identified it using a crossing test. Simultaneously, the symptoms were identified in detail using pathological analysis. Accordingly, a mouse strain exhibiting a recessive trait caused by a single gene trait and similar symptoms was identified, suggesting growth differentiation factor 5 (Gdf5) as a causative gene. Genome walking via PCR and sequence analysis of Gdf5 revealed a deletion of approximately 1.1 kb from the latter half of exon 2 of Gdf5. Furthermore, we established NOG-Gdf5bpJic by removing other modified genes and confirmed that the inheritance pattern was reconfirmed semi-dominant. In recent years, regenerative medicine research using immunodeficient mice has been actively conducted, and this murine strain is expected to contribute to niche stem cell analysis and transplantation research.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38743962

RESUMEN

Osteoarthritis (OA) arises from a intricate interplay of genetic and environmental factors. Numerous studies have explored the link between the growth differentiation factor 5 (GDF-5) +104T>C polymorphism and OA risk, but the findings have been inconclusive. We carried out a case-control study with 704 OA cases and 418 healthy controls. Furthermore, we conducted a meta-analysis by thoroughly searching the literature for relevant studies published until 1 September, 2023. The combined odds ratio and 95% confidence intervals were used to assess the correlation's strength. A total of 47 independent case-control studies, including 17,602 OA cases and 30,947 controls, were analyzed. Of these, 31 studies (11,176 cases, 16,724 controls) focused on knee OA, 8 studies (3,973 cases, 8,055 controls) examined hip OA, and 6 studies (2244 cases, 5965 controls) investigated hand OA. Overall, our findings suggest that the GDF-5 + 104T>C polymorphism has a protectibe role in development of OA in global scale. Subgroup analyses by ethnicity indicated that this genetic variation provides protection against OA in Caucasian, Asian, and African populations. Further subgroup analysis based on the type of OA showed a decreased risk of knee and hand OA associated with this variation, but not for hip OA. Our combined data indicates that the GDF-5 + 104T>C polymorphism offers protection against the development of OA in general, as well as knee and hand OA. Nevertheless, there was no correlation found between this polymorphism and the development of hip OA.

3.
Mater Today Bio ; 26: 101046, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38600922

RESUMEN

Owing to the tissue characteristics of tendons with few blood vessels and cells, the regeneration and repair of injured tendons can present a considerable challenge, which considerably affects the motor function of limbs and leads to serious physical and mental pain, along with an economic burden on patients. Herein, we designed and fabricated a dipeptide hydrogel (DPH) using polypeptides P11-4 and P11-8. This hydrogel exhibited self-assembly characteristics and could be administered in vitro. To endow the hydrogel with differentiation and regeneration abilities, we added different concentrations of growth differentiation factor 5 (GDF5) to form GDF5@DPH. GDF5@DPH promoted the aggregation and differentiation of tendon stem/progenitor cells and promoted the regeneration and repair of tendon cells and collagen fibers in injured areas. In addition, GDF5@DPH inhibited inflammatory reactions in the injured area. Owing to its injectable properties, DPH can jointly inhibit adhesion and scar hyperplasia between tissues caused by endogenous inflammation and exogenous surgery and can provide a favorable internal environment for the regeneration and repair of the injured area. Overall, the GDF5@DPH system exhibits considerable promise as a novel approach to treating tendon injury.

4.
Orthop Surg ; 14(9): 2386-2390, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35819086

RESUMEN

Brachydactyly is a common feature of congenital hand anomalies characterized by shortening of the phalanges and/or metacarpals. Mutation of growth differentiation factor-5 (GDF5) may result in loss of appearance and function in brachydactyly type C (BDC). Herein, we describe an 11 year-old Chinese BDC patient with significant shortening of the 1st, 2nd, 3rd, and 5th digits. Notably, according to the analysis of metacarpophalangeal pattern profiles, we do not think the 4th digit appears unaffected as usual. In this patient a novel heterozygous frameshift mutation was identified (c.349delG) causing termination of translation after translating six amino acids from codon 117 (p.A117fs*6). This mutation is located in the propeptide region of GDF5, causing GDF5 haploinsufficiency in BDC. Considering our results expanding the genetic spectrum of BDC-causing mutations, further molecular analysis to diagnose and reclassify isolated brachydactyly on the basis of genotype rather than phenotype is warranted.


Asunto(s)
Braquidactilia , Huesos del Metacarpo , Aminoácidos/genética , Braquidactilia/diagnóstico , Braquidactilia/genética , China , Mutación del Sistema de Lectura , Humanos , Huesos del Metacarpo/diagnóstico por imagen , Mutación
5.
Neural Regen Res ; 17(1): 38-44, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34100424

RESUMEN

Parkinson's disease is the most common movement disorder worldwide, affecting over 6 million people. It is an age-related disease, occurring in 1% of people over the age of 60, and 3% of the population over 80 years. The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra, and their axons, which innervate the striatum, resulting in the characteristic motor and non-motor symptoms of Parkinson's disease. This is paralleled by the intracellular accumulation of α-synuclein in several regions of the nervous system. Current therapies are solely symptomatic and do not stop or slow disease progression. One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum, to protect the remaining dopaminergic neurons of the nigrostriatal pathway. However, clinical trials of two well-established neurotrophic factors, glial cell line-derived neurotrophic factor and neurturin, have failed to meet their primary end-points. This failure is thought to be at least partly due to the downregulation by α-synuclein of Ret, the common co-receptor of glial cell line-derived neurorophic factor and neurturin. Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors, that signals through the Ret-independent canonical Smad signaling pathway. Here, we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson's disease. We discuss new work on growth/differentiation factor 5's mechanisms of action, as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in the α-synuclein rat model of Parkinson's disease. These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson's disease.

6.
Biotechnol J ; 16(10): e2100227, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34347378

RESUMEN

Cell surface heparan sulfate proteoglycan (HSPG)-mediated endocytosis lowers the yield of recombinant human bone morphogenetic proteins (rhBMPs), such as rhBMP-2 and rhBMP-4, from Chinese hamster ovary (CHO) cell cultures. Exogenous recombinant human growth/differentiation factor-5 (rhGDF-5), a member of the BMP family, bound to cell surface HSPGs and was actively internalized into CHO cells. Knockdown of heparan sulfate (HS) synthesis enzymes in CHO cells revealed that the chain length and N-sulfation of HS affected the binding of rhGDF-5 to HSPGs and subsequent rhGDF-5 internalization. To increase product yield by minimizing rhGDF-5 internalization in recombinant CHO (rCHO) cell cultures, heparin, and dextran sulfate (DS) of various polysaccharide chain lengths, which are structural analogs of HS, were examined for blockage of rhGDF-5 internalization. Heparin fragments of four monosaccharides (MW of 1.2 kDa) and DS (MW of 15 kDa) did not inhibit rhGDF-5 internalization whereas unfractionated heparin and DS of 200 kDa could significantly inhibit it. Compared to the control cultures, supplementation with unfractionated heparin or DS of 200 kDa at 1 g L-1 resulted in more than a 10-fold increase in the maximum rhGDF-5 concentration. Taken together, the supplementation of structural HS analogs improved rhGDF-5 production in rCHO cell cultures by inhibiting rhGDF-5 internalization.


Asunto(s)
Heparina , Heparitina Sulfato , Animales , Células CHO , Técnicas de Cultivo de Célula , Diferenciación Celular , Cricetinae , Cricetulus , Endocitosis , Humanos
7.
Int J Rheum Dis ; 24(5): 694-700, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33861510

RESUMEN

AIM: Osteoarthritis (OA) is the most common chronic joint disorder, resulting from the breakdown of joint cartilage. It occurs in the knees, hands, and hips, leading to pain, stiffness, inflammation, and swelling. METHODS: In this study, 100 hand and knee OA patients, meeting the American College of Rheumatology criteria were included in the case group, and 100 healthy individuals were allocated to the control group. Blood samples were collected from the participants. After DNA extraction, genotyping was carried out for GDF5 rs143383 C/T polymorphism by allele-specific polymerase chain reaction (ASPCR) and for D-repeat alleles of asporin (ASPN) by conventional PCR assay. RESULTS: The results showed that the frequency of the D14 allele of ASPN was significantly higher than other alleles in the case group (P = .0001). Also, the frequency of the D14 allele among women was significantly higher than in men (P = .004). Moreover, the frequency of the TT allele in GDF5 rs143383 C/T polymorphism was significantly higher than the CC and CT alleles in the case group, compared with the control group (P = .001). A significant difference was found between the TT allele and other alleles in female and male patients compared with the control group (P = .02). CONCLUSIONS: The D14 allele of the ASPN gene and TT allele of the GDF5 gene (rs143383 + 104T/C) are associated with hand and knee OA in the Kurdish population, indicating that these alleles could be risk factors for OA, at least in our populations.


Asunto(s)
Cartílago Articular/fisiopatología , Proteínas de la Matriz Extracelular/genética , Predisposición Genética a la Enfermedad/genética , Factor 5 de Diferenciación de Crecimiento/genética , Mano/fisiopatología , Osteoartritis de la Rodilla/genética , Polimorfismo Genético/genética , Anciano , Alelos , Estudios de Casos y Controles , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Predisposición Genética a la Enfermedad/etnología , Factor 5 de Diferenciación de Crecimiento/metabolismo , Humanos , Irán/epidemiología , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/epidemiología , Polimorfismo de Nucleótido Simple
8.
J Orthop Surg Res ; 16(1): 146, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608035

RESUMEN

BACKGROUND: A great deal of evidence has supported that growth differentiation factor 5 (GDF5) is associated with the occurrence of knee osteoarthritis (KOA), while their results are not consistent. In the present study, we aimed to explore the association between GDF5 gene polymorphism and KOA for a more credible conclusion. METHODS: Comprehensive literature searches were carried out in English databases, including PubMed, Embase, Web of Science (WOS), and Cochrane, and Chinese databases, including China National Knowledge Infrastructure (CNKI), WANFANG, and VIP database. After the data were extracted from the required studies, the odds ratios (ORs) and their 95% confidence intervals (CIs) were determined to assess the correlation between GDF5 gene polymorphism and KOA. The publication bias was evaluated by funnel plot. RESULTS: According to the inclusion and exclusion criteria, 15 studies on the correlation between GDF5 gene polymorphism and KOA occurrence were eligible for meta-analysis. Among these articles, four studies showed no apparent correlation, while the other 11 studies indicated an obvious correlation. Meanwhile, we also carried out a subgroup analysis of the population. Due to the inevitable heterogeneity, three genetic models were finally selected for analysis. With the allele model (C versus T: OR = 0.79, 95% CI = 0.73~0.87), recessive model (CC versus CT + TT: OR = 0.76, 95% CI = 0.68~0.86), and homozygous model (CC versus TT: OR = 0.66, 95% CI = 0.58~0.76), GDF5 gene polymorphism decreased the risk of KOA. Besides, a significant association was observed in Caucasians, Asians, and Africans. Meanwhile, the protective effect of genotype C (or CC) in the Asian group was little obvious than that in the Caucasian group and the African group. Although the quality of the included studies was above medium-quality, we obtained results with a low level of evidence. CONCLUSIONS: The results of the meta-analysis showed that the genotype C (or CC) of GDF5 protected against KOA occurrence in Caucasian, Asian, and African populations.


Asunto(s)
Factor 5 de Diferenciación de Crecimiento/genética , Osteoartritis de la Rodilla/genética , Polimorfismo Genético , Predisposición Genética a la Enfermedad , Genotipo , Humanos
9.
J Cell Mol Med ; 25(4): 1939-1948, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33369147

RESUMEN

The migration of epidermal stem cells (EpSCs) is critical for wound re-epithelization and wound healing. Recently, growth/differentiation factor-5 (GDF-5) was discovered to have multiple biological effects on wound healing; however, its role in EpSCs remains unclear. In this work, recombinant mouse GDF-5 (rmGDF-5) was found via live imaging in vitro to facilitate the migration of mouse EpSCs in a wound-scratch model. Western blot and real-time PCR assays demonstrated that the expression levels of RhoA and matrix metalloproteinase-9 (MMP9) were correlated with rmGDF-5 concentration. Furthermore, we found that rmGDF-5 stimulated mouse EpSC migration in vitro by regulating MMP9 expression at the mRNA and protein levels through the RhoA signalling pathway. Moreover, in a deep partial-thickness scald mouse model in vivo, GDF-5 was confirmed to promote EpSC migration and MMP9 expression via RhoA, as evidenced by the tracking of cells labelled with 5-bromo-2-deoxyuridine (BrdU). The current study showed that rmGDF-5 can promote mouse EpSC migration in vitro and in vivo and that GDF-5 can trigger the migration of EpSCs via RhoA-MMP9 signalling.


Asunto(s)
Movimiento Celular/genética , Células Epidérmicas/metabolismo , Factor 5 de Diferenciación de Crecimiento/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Células Madre/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Células Cultivadas , Expresión Génica , Regulación de la Expresión Génica , Metaloproteinasa 9 de la Matriz/genética , Ratones , ARN Mensajero/genética
10.
Mater Sci Eng C Mater Biol Appl ; 119: 111506, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321604

RESUMEN

Tissue engineering, especially cell sheets-based engineering, offers a promising approach to tendon regeneration; however, obtaining a sufficient source of cells for tissue engineering applications is challenging. Adipose-derived stem cells (ASCs) are essential sources for tissue regeneration and have been shown to have the potential for tenogenic differentiation in vitro via induction by growth differentiation factor 5 (GDF-5). In this study, we explored the feasibility of ASCs cell sheets stimulated by GDF-5 for engineered tendon repair. As shown by quantitative polymerase chain reaction and western blotting, tenogenesis-related markers (Col I&III, TNMD, biglycan, and tenascin C) were significantly increased in GDF-5-induced ASCs cell sheets compared with the uninduced. Moreover, the levels of SMAD2/3 proteins and phospho-SMAD1/5/9 were significantly enhanced, demonstrating that GDF-5 may exert its functions through phosphorylation of SMAD1/5/9. Furthermore, the cell sheets were combined with P(LLA-CL)/Silk fibroin nanoyarn scaffolds to form constructs for tendon tissue engineering. Terminal deoxynucleotidyl transferase dUTP nick end labeling and immunofluorescence assays demonstrated favorable cell viability and tenogenesis-related marker expression in GDF-5-induced constructs. In addition, the constructs showed the potential for tendon repair in rabbit models, as demonstrated by histological, immunohistochemical, and biomechanical analyses. In our study, we successfully produced a new tissue-engineered tendon by the combination of GDF-5-induced ASCs cell sheets and nanoyarn scaffold which is valuable for tendon regeneration.


Asunto(s)
Tejido Adiposo , Tendones , Animales , Diferenciación Celular , Conejos , Células Madre , Ingeniería de Tejidos , Andamios del Tejido
11.
Bone Joint Res ; 9(10): 689-700, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33231490

RESUMEN

AIMS: The study aimed to determine whether the microRNA miR21-5p (MiR21) mediates temporomandibular joint osteoarthritis (TMJ-OA) by targeting growth differentiation factor 5 (Gdf5). METHODS: TMJ-OA was induced in MiR21 knockout (KO) mice and wild-type (WT) mice by a unilateral anterior crossbite (UAC) procedure. Mouse tissues exhibited histopathological changes, as assessed by: Safranin O, toluidine blue, and immunohistochemistry staining; western blotting (WB); and quantitative real-time polymerase chain reaction (RT-qPCR). Mouse condylar chondrocytes were transfected with a series of MiR21 mimic, MiR21 inhibitor, Gdf5 siRNA (si-GDF5), and flag-GDF5 constructs. The effects of MiR-21 and Gdf5 on the expression of OA related molecules were evaluated by immunofluorescence, alcian blue staining, WB, and RT-qPCR. RESULTS: UAC altered the histological structure and extracellular matrix content of cartilage in the temporomandibular joint (TMJ), and KO of MiR21 alleviated this effect (p < 0.05). Upregulation of MiR21 influenced the expression of TMJ-OA related molecules in mandibular condylar chondrocytes via targeting Gdf5 (p < 0.05). Gdf5 overexpression significantly decreased matrix metalloproteinase 13 (MMP13) expression (p < 0.05) and reversed the effects of MiR21 (p < 0.05). CONCLUSION: MiR21, which acts as a critical regulator of Gdf5 in chondrocytes, regulates TMJ-OA related molecules and is involved in cartilage matrix degradation, contributing to the progression of TMJ-OA. Cite this article: Bone Joint Res 2020;9(10):689-700.

12.
Arthritis Res Ther ; 22(1): 215, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32928309

RESUMEN

BACKGROUND: A few months ago, the Bioscience Reports journal showed that growth differentiation factor 5 (GDF5) rs143383 genetic polymorphism increases the susceptibility of knee osteoarthritis (KOA), but previous studies' results have debates about available data. Considering the availability of more recent data, we focus on clarifying the relationship of KOA and GDF5 rs143383 genetic polymorphism by a meta-analysis of case-control trial data. METHODS: The eligible studies from the time of database established to Oct. 2019 were collected from PubMed, Springer, Cochrane library, Web of Science, China National Knowledge Infrastructure (CNKI), and Wan Fang library. Odds ratios (OR) and 95% confidence intervals (CI) were used to estimate the association between these polymorphisms and KOA risk. The meta-analysis was completed by STATA 18.0 software. RESULTS: A total of 196 studies were collected, 16 of them included in final meta-analysis (7997 cases and 12,684 controls). There was significant association between GDF5 rs143383 polymorphism and KOA in all genetic models (for Allele model (C versus T): OR = 0.84 (95% CI = 0.76-0.91); dominate model (CC+CT versus TT): OR = 0.80 (95% CI = 0.72-0.90); recessive model (CC versus CT+TT): OR = 0.79 (95% CI = 0.68-0.92); heterozygote model (CT versus CC+TT): OR = 0.89 (95% CI = 0.80-0.97); homozygous model (CC versus TT): OR = 0.71 (95% CI = 0.60-0.85)). In the subgroup analysis, we obtained the results that there is no significance among Asians. CONCLUSION: GDF5 rs143383 genetic polymorphism increases the risk of KOA among Caucasians; CC genotype and C allele are protective factors for the susceptibility of KOA among Caucasians.


Asunto(s)
Factor 5 de Diferenciación de Crecimiento , Osteoartritis de la Rodilla , Pueblo Asiatico/genética , Estudios de Casos y Controles , China , Predisposición Genética a la Enfermedad/genética , Factor 5 de Diferenciación de Crecimiento/genética , Humanos , Osteoartritis de la Rodilla/genética , Polimorfismo de Nucleótido Simple/genética
13.
Int J Mol Sci ; 21(16)2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32824547

RESUMEN

Mesenchymal stem cells derived from human bone marrow (hBM-MSCs) are utilized in tendon tissue-engineering protocols while extra-embryonic cord-derived, including from Wharton's Jelly (hWJ-MSCs), are emerging as useful alternatives. To explore the tenogenic responsiveness of hBM-MSCs and hWJ-MSCs to human Growth Differentiation Factor 5 (hGDF-5) we supplemented each at doses of 1, 10, and 100 ng/mL of hGDF-5 and determined proliferation, morphology and time-dependent expression of tenogenic markers. We evaluated the expression of collagen types 1 (COL1A1) and 3 (COL3A1), Decorin (DCN), Scleraxis-A (SCX-A), Tenascin-C (TNC) and Tenomodulin (TNMD) noting the earliest and largest increase with 100 ng/mL. With 100 ng/mL, hBM-MSCs showed up-regulation of SCX-A (1.7-fold) at Day 1, TNC (1.3-fold) and TNMD (12-fold) at Day 8. hWJ-MSCs, at the same dose, showed up-regulation of COL1A1 (3-fold), DCN (2.7-fold), SCX-A (3.8-fold) and TNC (2.3-fold) after three days of culture. hWJ-MSCs also showed larger proliferation rate and marked aggregation into a tubular-shaped system at Day 7 (with 100 ng/mL of hGDF-5). Simultaneous to this, we explored the expression of pro-inflammatory (IL-6, TNF, IL-12A, IL-1ß) and anti-inflammatory (IL-10, TGF-ß1) cytokines across for both cell types. hBM-MSCs exhibited a better balance of pro-inflammatory and anti-inflammatory cytokines up-regulating IL-1ß (11-fold) and IL-10 (10-fold) at Day 8; hWJ-MSCs, had a slight expression of IL-12A (1.5-fold), but a greater up-regulation of IL-10 (2.5-fold). Type 1 collagen and tenomodulin proteins, detected by immunofluorescence, confirming the greater protein expression when 100 ng/mL were supplemented. In the same conditions, both cell types showed specific alignment and shape modification with a length/width ratio increase, suggesting their response in activating tenogenic commitment events, and they both potential use in 3D in vitro tissue-engineering protocols.


Asunto(s)
Células de la Médula Ósea/metabolismo , Factor 5 de Diferenciación de Crecimiento/farmacología , Células Madre Mesenquimatosas/metabolismo , Tenocitos/metabolismo , Adulto , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Diferenciación Celular , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Decorina/genética , Decorina/metabolismo , Femenino , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Tenascina/genética , Tenascina/metabolismo , Tenocitos/citología , Cordón Umbilical/citología
14.
Front Pharmacol ; 11: 701, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508644

RESUMEN

Both extracellular matrix (ECM) and stem cells contribute to the formation of bones. Accumulating evidence proved that the growth differentiation factor 5 (GDF5) plays a vital role in ECM osteogenesis regulation; the use of human periodontal ligament stem cells (hPDLSCs) may contribute to alveolar bone regeneration. Moreover, long noncoding RNAs (lncRNA) serves as a regulator in the growing process of cellular organisms including bone formation. Previous efforts has led us to the discovery that the expression of growth arrest specific transcript 5 (GAS5) changed in the osteogenic differentiation of hPDLSCs. Moreover, the expression of GAS5, as it turns out, is correlated to GDF5. This study attempts to investigate the inner workings of GAS5 in its regulation of osteoblastic differentiation of hPDLSCs. Cell transfection, Alkaline phosphatase (ALP) staining, Alizarin red S (ARS) staining, qRT-PCR, immunofluorescence staining analysis and western blotting were employed in this study. It came to our notice that GAS5 and GDF5 expression increased during osteogenesis induction of hPDLSCs. Knocking down of GAS5 inhibited the osteogenic differentiation of hPDLSCs, whereas overexpressing GAS5 promoted these effects. Molecular mechanism study further demonstrated that overexpressing GAS5 bolsters GDF5 expression and boosts the phosphorylation of JNK and p38 in hPDLSCs, with opposite effects in GAS5 knockdown group. To sum up, long noncoding RNA GAS5 serves to regulate the osteogenic differentiation of PDLSCs via GDF5 and p38/JNK signaling pathway. Our findings expand the theoretical understanding of the osteogenesis mechanism in hPDLSCs, providing new insights into the treatment of bone defects.

15.
J Biomed Mater Res B Appl Biomater ; 108(5): 2005-2016, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31930605

RESUMEN

To evaluate the effects of thermosensitive hydrogels loaded with human-induced pluripotent stem cells transfected with the growth differentiation factor-5 (GDF5-hiPSCs) on rat intervertebral disc regeneration. GDF5-hiPSCs were cocultured with rat nucleus pulposus (NP) cells in vitro. Real-time PCR and western blot were used to determine the differentiation of hiPSCs. Rat caudal intervertebral discs were punctured using a needle under X-ray, and groups of coccygeal (Co) discs were subject to various treatments: Puncture group (Co6/7, punctured without treatment); Hydrogel group (Co7/8, 2 µl of hydrogel injected without cells); GDF5-hiPSCs + Hydrogel group (Co8/9, 2 µl of GDF5-hiPSCs-loaded hydrogel injected); and Normal control (Co5/6). X-ray, MRI, and histological evaluations were performed at 1, 2, and 3 months after cell transplantation and relative changes in the disc height index (DHI%) and voxel count were calculated and compared. GDF5-hiPSCs were successfully differentiated to a chondrogenic linage after cocultured with rat NP cells. In terms of X-ray, MRI, and HE staining scores, the GDF5-hiPSCs + Hydrogel group was significantly superior to the Puncture and Hydrogel groups (p < .05). Compared with the Normal group, the MRI-based voxel count of the GDF5-hiPSCs + Hydrogel group was significantly lower at 1, 2, and 3 months after cell transplantation (p < .05). However, there were no significant differences in histological scores at 1 and 2 months after cell transplantation compared with the Normal group (p > .05). In conclusion, thermosensitive hydrogel-encapsulated hiPSCs overexpressing the GDF5 gene ameliorated intervertebral disc degeneration.


Asunto(s)
Materiales Biocompatibles/química , Factor 5 de Diferenciación de Crecimiento/metabolismo , Hidrogeles/química , Células Madre Pluripotentes Inducidas/química , Degeneración del Disco Intervertebral/metabolismo , Polietilenglicoles/química , Polímeros/química , Animales , Diferenciación Celular , Trasplante de Células , Quitosano/química , Técnicas de Cocultivo , Regulación de la Expresión Génica , Factor 5 de Diferenciación de Crecimiento/genética , Humanos , Hidrogeles/metabolismo , Células Madre Pluripotentes Inducidas/patología , Inyecciones , Disco Intervertebral/patología , Lentivirus/genética , Imagen por Resonancia Magnética , Núcleo Pulposo/citología , Ratas , Factores de Tiempo
16.
Regen Ther ; 14: 72-78, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31970269

RESUMEN

Periodontitis is commonly observed and is an important concern in dental health. It is characterized by a multifactorial etiology, including imbalance of oral microbiota, mechanical stress, and systemic diseases such as diabetes mellitus. The current standard treatments for periodontitis include elimination of the microbial pathogen and application of biomaterials for treating bone defects. However, the periodontal tissue regeneration via a process consistent with the natural tissue formation process has not yet been achieved. Developmental biology studies state that periodontal tissue is composed of neural crest-derived ectomesenchyme. To elucidate the process of periodontal regeneration, it is essential to understand the developmental background and intercellular cross-talk. Several recent studies have reported the efficacy of transplantation of mesenchymal stem cells for periodontal tissue regeneration. In this review, we discuss the basic knowledge of periodontal tissue regeneration using mesenchymal stem cells and highlight the potential of stem cell-based periodontal regenerative medicine.

17.
Adv Exp Med Biol ; 1247: 17-31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31884529

RESUMEN

In this paper I provide a personal perspective on future prospects for cell and gene therapy for osteoarthritis (OA) and how mammalian protein production platforms, virally transfected and irradiated protein packaging cell lines may be used as "cellular factories" for over-production of therapeutic proteins and growth factors, particularly in the context of intra-articular regenerative therapies. I will also speculate on future opportunities and challenges in this area of research and how new innovations in biotechnology will impact on the field of cell and gene therapy for OA, related osteoarticular disorders and the broader discipline of regenerative medicine for musculoskeletal disorders. Mammalian protein production platforms are likely to have a significant impact on synovial joint diseases that are amenable to cell and gene therapy using therapeutic proteins and growth factors. Future cell and gene therapy for OA will need to re-consider the current strategies that employ primary, aged and senescent cells with feeble regenerative properties and seriously consider the use of mammalian protein production platforms.


Asunto(s)
Línea Celular/efectos de la radiación , Tratamiento Basado en Trasplante de Células y Tejidos , Terapia Genética , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Osteoartritis/terapia , Transfección , Animales , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Articulaciones/patología , Osteoartritis/genética , Osteoartritis/patología
18.
Pathol Res Pract ; 215(12): 152722, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31718857

RESUMEN

BACKGROUND: Periodontal ligament stem cells (PDLSCs) could differentiate into osteoblasts and have a great prospect in treating bone diseases. microRNAs (miRs) and nuclear factor kappa-B (NF-κB) signaling pathway have proved pivotal in regulating osteogenic differentiation. This study intended to discuss the mechanism of miR-132 and NF-κB in PDLSC osteogenesis. METHODS: PDLSCs were firstly cultured, induced, and identified by detecting the surface markers and observing cell morphology. Levels of osteogenic markers alkaline phosphatase (ALP), bone morphogenetic proteins 2 (BMP2), runt-related transcription factor 2 (Runx2) and osteocalcin (OCN), along with miR-132 expression were measured. The osteoblast activity and mineral deposition were detected by ALP and alizarin red S (ARS) stainings. The targeting relationship between miR-132 and growth differentiation factor 5 (GDF5) was verified. The gain-and loss-of-function was performed to discuss roles of miR-132 and GDF5 in osteogenic differentiation of PDLSCs. Besides, levels of NF-κB signaling pathway-related proteins were measured. RESULTS: In osteogenic differentiation of PDLSCs, levels of ALP, BMP2, Runx2 and OCN were upregulated while miR-132 was downregulated. Overexpressing miR-132 reduced levels of osteogenic markers, osteoblast activity, ALP and ARS intensity and the activation of NF-κB axis. GDF5 is a target of miR-132 and GDF5 overexpression reversed the inhibitory effects of overexpressed miR-132 on PDLSC osteogenesis. CONCLUSION: Together, miR-132 could inhibit PDLSC osteogenesis via targeting GDF5 and activating NF-κB axis. These data provide useful information for PDLSC application in periodontal therapy.


Asunto(s)
Diferenciación Celular , Factor 5 de Diferenciación de Crecimiento/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Osteogénesis , Ligamento Periodontal/metabolismo , Células Madre/metabolismo , Adolescente , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Factor 5 de Diferenciación de Crecimiento/genética , Humanos , MicroARNs/genética , Osteocalcina/genética , Osteocalcina/metabolismo , Ligamento Periodontal/citología , Transducción de Señal , Adulto Joven
19.
DNA Cell Biol ; 38(11): 1303-1312, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31553232

RESUMEN

Growth differentiation factor 5 (GDF5) was reported to regulate brown adipogenesis; however, its effects on insulin sensitivity, full metabolic syndrome spectrum, and the thermogenesis in subcutaneous white adipose tissue (sWAT) have not been elucidated yet. We thus generated fatty acid-binding protein 4 (Fabp4)-GDF5 transgenic (TG) mice and showed that GDF5 TG mice developed a relative lean phenotype on a high-fat diet (HFD) and showed increased insulin sensitivity. Over expression of GDF5 in adipose tissues greatly promoted the thermogenic process in sWAT after cold or ß3-agonist treatment. In TG mice, sWAT showed an important thermogenic effect as the thermogenic gene expression was markedly increased, which was consistent with the typical features of beige adipocytes. Moreover, knockdown of the protein GDF5 impaired browning program in sWAT after thermogenic stimuli. Enhanced mitogen-activated protein kinase (MAPK)/activating transcription factor 2 (ATF2) signaling was also identified in sWAT of HFD-fed GDF5 mice, and thermogenesis in mature adipocytes induced by GDF5 protein could be partly blocked by a p38 MAPK inhibitor. Taken together, our data suggest that GDF5 could improve insulin sensitivity and prevent metabolic syndrome, the adaptive thermogenesis in sWAT could mediate the obesity resistance effects of GDF5 in mice and partially resulted in the activation of the p38 MAPK signaling pathway.


Asunto(s)
Tejido Adiposo Blanco/fisiología , Factor 5 de Diferenciación de Crecimiento/fisiología , Termogénesis/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Adipogénesis/fisiología , Tejido Adiposo Blanco/metabolismo , Animales , Células Cultivadas , Factor 5 de Diferenciación de Crecimiento/genética , Resistencia a la Insulina/genética , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/genética , Obesidad/metabolismo , Transducción de Señal/genética
20.
J Tissue Eng Regen Med ; 13(4): 625-636, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30770650

RESUMEN

The treatment of lengthy peripheral nerve defect is challenging in the field of nerve regeneration. Our previous studies have shown that low-intensity pulsed ultrasound (LIPUS) could promote the proliferation, cell viability, and neural differentiation of induced pluripotent stem cells-derived neural crest stem cells (iPSCs-NCSCs) and improve the regeneration of damaged peripheral nerve. In this study, the mechanical signal transduction pathway of LIPUS promoting iPSCs-NCSCs proliferation and differentiation was further explored, and the effects of LIPUS combined with iPSCs-NCSCs, perfluorotributylamine (PFTBA), and growth differentiation factor 5 (GDF5) on the repair of peripheral nerve injury were evaluated. Results showed LIPUS may regulate the proliferation and differentiation of iPSCs-NCSCs through FAK-ERK1/2 signal pathway. PFTBA could supply sufficient oxygen to promote the viability of iPSCs-NCSCs under 5% hypoxia culture condition and provide a favourable microenvironment for nerve regeneration. The addition of GDF5 could promote the neural differentiation of iPSCs-NCSCs in vitro. LIPUS treatment of allogeneic decellularized nerve conduit containing iPSCs-NCSCs, PFTBA, and GDF5 has very good effect on the repair of sciatic nerve injury. Taken together, these results provide functional evidence that LIPUS might be a useful tool to explore alternative approaches in the field of nerve regeneration.


Asunto(s)
Factor 5 de Diferenciación de Crecimiento/farmacología , Células Madre Pluripotentes Inducidas/citología , Regeneración Nerviosa/efectos de los fármacos , Cresta Neural/citología , Células-Madre Neurales/citología , Recuperación de la Función/efectos de los fármacos , Nervio Ciático/fisiopatología , Ondas Ultrasónicas , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Fluorocarburos/farmacología , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Ratas Sprague-Dawley , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA