Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genes (Basel) ; 14(2)2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36833444

RESUMEN

RON is a receptor tyrosine kinase (RTK) of the MET receptor family that is canonically involved in mediating growth and inflammatory signaling. RON is expressed at low levels in a variety of tissues, but its overexpression and activation have been associated with malignancies in multiple tissue types and worse patient outcomes. RON and its ligand HGFL demonstrate cross-talk with other growth receptors and, consequentially, positions RON at the intersection of numerous tumorigenic signaling programs. For this reason, RON is an attractive therapeutic target in cancer research. A better understanding of homeostatic and oncogenic RON activity serves to enhance clinical insights in treating RON-expressing cancers.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Humanos , Factor de Crecimiento de Hepatocito , Ligandos , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal
2.
Am J Nephrol ; 52(7): 582-587, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34375971

RESUMEN

INTRODUCTION: Chronic kidney disease (CKD) is a prevalent complication of sickle cell anemia (SCA). Hyperfiltration that delayed detection of CKD is common in SCA patients. Identification of novel urinary biomarkers correlating with glomerular filtration rates may help to detect and predict progression of renal disease. METHODS: Reanalysis of mass spectra of urinary samples obtained from University of Illinois at Chicago identified kringle domain-containing protein HGFL. RESULTS: HGFL levels correlated with hyperfiltration, were significantly reduced at CKD stage 1 compared to stage 0, negatively correlated with progression of CKD and were suitable for differentiation of stage 1. Better prediction of CKD progression to stage 2 was observed for HGFL-based risk prediction compared to the estimated glomerular filtration rate (eGFR)-based prediction. Results from a Howard University patient cohort supported the utility of HGFL-based test for the differentiation of stage 1 of CKD. CONCLUSION: Urinary HGFL may contribute additional information beyond eGFR and improve diagnosis of early-stage CKD in SCA patients.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Factor de Crecimiento de Hepatocito/orina , Proteínas Proto-Oncogénicas/orina , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/orina , Adolescente , Adulto , Anciano , Biomarcadores/orina , Progresión de la Enfermedad , Diagnóstico Precoz , Femenino , Tasa de Filtración Glomerular , Factor de Crecimiento de Hepatocito/química , Humanos , Kringles , Masculino , Persona de Mediana Edad , Pronóstico , Proteínas Proto-Oncogénicas/química , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/fisiopatología , Adulto Joven
3.
Oncotarget ; 8(35): 58918-58933, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28938607

RESUMEN

Breast cancer stem cells (BCSCs), which drive tumor progression, recurrence, and metastasis, are considered a major challenge for breast cancer treatments, thus the discovery of novel pathways regulating BCSC maintenance remains essential to develop new strategies to effectively target this population and combat disease mortality. The HGFL-RON signaling is overexpressed in human breast cancers and is associated with increased breast cancer progression, metastasis, and poor prognosis. Here, we report that overexpression of RON/MST1R and HGFL/MST1 in cell lines and primary tumors increases BCSC self-renewal, numbers, and tumorigenic potential after syngeneic transplantation. Transcriptome analyses also reveal that the HGFL-RON signaling pathway regulates additional BCSC functions and supports an immunosuppressive microenvironment to stimulate tumor formation and progression. Moreover, we show that genetic and chemical downregulation of HGFL-RON signaling disrupts BCSC phenotypes and tumor growth by suppressing the RON-mediated phosphorylation/activation of ß-CATENIN/CTNNB1 and its effector NF-κB/RELA. These studies indicate that HGFL-RON signaling regulates BCSC phenotypes and the tumor microenvironment to drive tumorigenesis and present HGFL/RON as novel therapeutic targets to effectively eradicate BCSCs in patients.

4.
Biomedicines ; 3(1): 110-123, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-28536402

RESUMEN

Hepatocyte growth factor-like protein (HGFl) and its receptor, Recepteur d'Origine Nantais (RON), have been implicated in the development of wound chronicity. HGFl and RON expression was detected in acute wound tissue, chronic wound tissue and in normal skin using quantitative polymerase chain reaction (Q-PCR). HGFl and RON expression was also assessed in chronic healing and chronic non-healing wound tissues using Q-PCR and immunohistochemical staining. Expression was similarly detected in the HaCaT immortalized human keratinocyte cell line using reverse transcription polymerase chain reaction (RT-PCR). rhHGFl was used to assess the impact of this molecule on HaCaT cell functionality using in vitro growth assays and electric cell-substrate impendence sensing (ECIS) migration assays. HGFl and RON transcript expression were significantly increased in acute wound tissue compared to chronic wound tissue and were also elevated, though non-significantly, in comparison to normal skin. Minimal expression was seen in both healing and non-healing chronic wounds. Treatment of HaCaT cells with rhHGFl had no effect on growth rates but did enhance cell migration. This effect was abolished by the addition of a phospholipase C gamma (PLCγ) small molecule inhibitor. The increased expression of HGFl and RON in acute, healing wounds and the pro-migratory effect of HGFl in an in vitro human keratinocyte model, may indicate a role for HGFl in active wound healing.

5.
Mech Dev ; 133: 11-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25049204

RESUMEN

The Ron receptor tyrosine kinase regulates multiple cellular processes and is important during mammary gland development and tumor progression. Hepatocyte growth factor-like protein [HGFL] is the only known ligand for the Ron receptor and recent studies have identified major roles for HGFL during breast cancer metastasis. Understanding the functional importance HGFL during mammary gland development will provide significant insights onto its contribution during tumor development and metastasis. In this study, we assessed the role of HGFL during postnatal mammary gland development using mice that were either proficient [HGFL +/+] or deficient [HGFL-/-] for HGFL. Postnatal ductal morphology and stromal cell associations were analyzed at multiple time points through puberty until adulthood. HGFL deficiency resulted in several mammary gland developmental defects including smaller terminal end buds [TEBs], significantly fewer TEBs, and delayed ductal outgrowth during early puberty. Additionally, HGFL deficient animals exhibited significantly altered TEB epithelial cell turnover with decreased proliferation and increased apoptosis coupled with decreased TEB diameter. Macrophage recruitment to the TEBs was also significantly decreased in the HGFL-/- mice compared to controls. Moreover, the levels of STAT3 mRNA as well as the phosphorylation status of this protein were lower in the HGFL-/- mammary glands compared to controls. Taken together, our data provide the first evidence for HGFL as a positive regulator of mammary gland ductal morphogenesis by controlling overall epithelial cell turnover, macrophage recruitment, and STAT3 activation in the developing mammary gland. With a function in early mammary gland development, HGFL represents a potential target for the development of novel breast cancer therapies.


Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Factor de Crecimiento de Hepatocito/deficiencia , Factor de Crecimiento de Hepatocito/genética , Macrófagos/citología , Macrófagos/metabolismo , Glándulas Mamarias Animales/citología , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA