RESUMEN
5-Hydroxymethylfurfural (5-HMF) is an important biomass-based platform compound that links biomass feedstocks with petrochemical refinery products. In this work, we developed a novel approach using TEBAC-based acidic deep eutectic solvents (ADESs) to synthesize 5-HMF through the dehydration of fructose. Our approach demonstrates significant improvements in both 5-HMF yield and process efficiency compared to conventional solvent systems. Under optimal experimental conditions (90°C, 4.5 h), a maximum 5-HMF yield of 97.77±3.20% was achieved at a TEBAC:acetic acid ratio of 2:3 with 1 wt% fructose loading. Notably, our system inhibits the formation of by-products such as levulinic acid (LA) and formic acid (FA), which are commonly detected in other dehydration processes. Additionally, higher 5-HMF yields of 76.67±0.33% and 73.51±1.14% were achieved with 10 wt% and 20 wt% fructose loadings, respectively, further highlighting the scalability of the process. The acidity of ADESs was found to significantly affect the dehydration rate and yield, as demonstrated through Hammett's acidity function analysis. The key innovation of our study lies in the strategic selection of hydrogen bond donors and acceptors in the DES, enabling both high efficiency and selectivity in 5-HMF production. These findings provide a promising pathway for large-scale biomass conversion with reduced by-product formation.
RESUMEN
A one-pot three-component synthesis of substituted meta-hetarylanilines from heterocycle-substituted 1,3-diketones has been developed. The electron-withdrawing power of the heterocyclic substituent (which can be estimated on the basis of calculated Hammett constants) in the 1,3-diketone plays a pivotal role in the studied reaction. The series of meta-hetarylanilines prepared (21-85% isolated yield) demonstrates the synthetic utility of the developed method.
RESUMEN
Rate and product data are reported for the solvolysis reactions of twenty-seven mono, di (3,4) and tri (3,4,5) ring-substituted benzyl chlorides. The first order rate constant for solvolysis in 20% acetonitrile in water decrease from k solv = 2.2 s-1 for 4-methoxybenzyl chloride to 1.1 x 10-8 s-1 for 3,4-dinitrobenzyl chloride. The product rate constant ratios k MeOH/k TFE for solvolysis in 70/27/3 (v/v/v) HOH/TFE/MeOH range from a minimum of k MeOH/k TFE = 8 to a maximum of 110. The rate data were fit to a four-parameter Hammett equation that separates the resonance ρ r σ r and polar ρ n σ n effects of the aromatic ring substituents on the reaction rate. Increases in the values of the Hammett reaction constants ρ r and ρ n are observed as the substituent constants σ r or σ n are increased. A sharp decrease in the product selectivity k MeOH/k TFE = 26 for stepwise solvolysis of 4-methoxybenzyl chloride is observed as electron-withdrawing meta-substituents are added to 4-methoxybenzyl ring due to a Hammond-effect on the position of the transition state for solvent addition to the substituted 4-methoxybenzyl carbocation reaction intermediates. Sharp increases in the selectivity k MeOH/k TFE are observed with decreasing reactivity of other 3,4,5-subsituted benzyl chlorides due to anti-Hammond shifts on a two-dimensional More-O'Ferrall reaction coordinate diagram in the position of the transition state for a concerted solvolysis reaction.
RESUMEN
The wide use of boronic compounds, especially boronic acids and benzoxaboroles, in virtually all fields of chemistry is related to their specific properties. The most important of them are the ability to form cyclic esters with diols and the complexation of anions. In both cases, the equilibrium of the reaction depends mainly on the acidity of the compounds, although other factors must also be taken into account. Quantification of the acidity (pKa value) is a fundamental factor considered when designing new compounds of practical importance. The aim of the current work was to collect available values of the acidity constants of monosubstituted phenylboronic acids, critically evaluate these data, and supplement the database with data for missing compounds. Measurements were made using various methods, as a result of which a fast and reliable method for determining the pKa of boronic compounds was selected. For an extensive database of monosubstituted phenylboronic acids, their correlation with their Brønsted analogues-namely carboxylic acids-was examined. Compounds with ortho substituents do not show any correlation, which is due to the different natures of both types of acids. Nonetheless, both meta- and para-substituted compounds show excellent correlation. From a practical point of view, acidity constants are best determined from the Hammett equation. Computational approaches for determining acidity constants were also analyzed. In general, the reported calculated values are not compatible with experimental ones, providing comparable results only for selected groups of compounds.
RESUMEN
In this study, we explore the stereoselectivity of Hurd-Claisen Rearrangements, focusing on the influence of two electron-withdrawing groups and eight diverse substituents. Utilizing the Curtin-Hammett principle, we performed energy calculations for reactions, products, and transition states using the M062X/def2TZVPP compound model. Our analysis reveals that kinetic factors predominantly dictate the reaction equilibrium. A key aspect of our research is the application of Shubin's energy decomposition analysis to optimized transition states, highlighting the significant role of electrostatic interactions in determining stereoselectivity. We further dissected each transition state into four fragments: the electron-withdrawing groups ( C O 2 E t ${CO_2 Et}$ , C N ${CN}$ ), the Hurd group ( H ${H}$ ), various substituents ( C H 3 ${CH_3 }$ , E t ${Et}$ , S P r o p ${SProp}$ , T B u t ${TBut}$ , I s o B u t ${IsoBut}$ , N H 2 P h ${NH_2 Ph}$ , N O 2 P h ${NO_2 Ph}$ , P h ${Ph}$ ), and the central fragment. This fragmentation approach enabled an in-depth analysis of group dipole moments, providing insights into the electrostatic forces at play. Our findings shed light on the intricate mechanisms driving stereoselectivity in Hurd-Claisen Rearrangements and enhance the understanding of molecular interactions, offering valuable implications for organic synthesis.
RESUMEN
CONTEXT: Push-pull compounds are model systems and have numerous applications. By changing their substituents, properties are modified and new molecules for different applications can be designed. The work investigates the gas-phase electronic absorption spectra of 15 derivatives of push-pull para-nitroaniline (pNA). This molecule has applications in pharmaceuticals, azo dyes, corrosion inhibitors, and optoelectronics. Both electron-donor and electron-withdrawing groups were investigated. Employing machine learning-derived Hammett's constants σm, σm0, σR, and σI, correlations between substituents and electronic properties were obtained. Overall, the σm0 constants presented the best correlation with HOMO and LUMO energies, whereas the σR constants best agreed with the transition energy of the first band and HOMO-LUMO energy gap. Electron-donors, which have lower σR values, redshift the absorption spectrum and reduce the HOMO-LUMO energy gap. Conversely, electron-withdrawing groups (higher σR's) blueshift the spectrum and increase the energy gap. The second band maximum energies, studied here for the first time, showed no correlation with σ but tended to increase with σ. A comprehensive charge transfer (CT) analysis of the main transition of all systems was also carried out. We found that donors (lower σ's) slightly enhance the CT character of the unsubstituted pNA, whereas acceptors (higher σ's) decrease it, leading to increased local excitations within the aromatic ring. The overall CT variation is not large, except for pNA-SO2H, which considerably decreases the total CT value. We found that the strong electron donors pNA-OH, pNA-OCH3, and pNA-NH2, which have the smallest HOMO-LUMO energy gaps and lowest σ's, have potential for optoelectronic applications. The results show that none of the studied molecules is fluorescent in the gas phase. However, pNA-NH2 and pNA-COOH in cyclohexane and water reveal fluorescence upon solvation. METHODS: We investigated theoretically employing the second-order algebraic diagrammatic construction (ADC(2)) ab initio wave function and time-dependent density functional theory (TDDFT) the gas-phase electronic absorption spectra of 15 derivatives of p-nitroaniline (pNA). The investigated substituents include both electron-donor (C6H5, CCH, CH3, NH2, OCH3, and OH,) and electron-withdrawing (Br, CCl3, CF3, Cl, CN, COOH, F, NO2, and SO2H) substituents.
RESUMEN
We report the Cu(II) catalyzed synthesis of ß-disubstituted ketones from styrene via oxo-alkylation with unactivated cycloalkanes as the alkylating agent in presence of tert-butylhydroperoxide (TBHP) and 1-methylimidazole as oxidant and base respectively. ß-disubstituted ketones are known to be synthesized by using either expensive Ru/Ir complexes, or low-cost metal complexes (e. g., Fe, Mn) with activated species like aldehyde, acid, alcohol, or phthalimide derivatives as the alkylating agent, however, use of unactivated cycloalkanes directly as the alkylating agent remains challenging. A wide range of aliphatic C-H substrates as well as various olefinic arenes and heteroarene (35 substrates including 14 new substrates) are well-tolerated in this method. Hammett analysis shed more light on the substitution effect in the olefinic part on the overall mechanism. Furthermore, the controlled experiments, kinetic isotope effect study, and theoretical calculations (DFT) enable us to gain deeper insight of mechanistic intricacies of this new simple and atom-economic methodology.
RESUMEN
Citrate buffers are commonly utilized in the field of biomolecule stabilization. We investigate their applicability in the frozen state within a range of initial pHs (2.5 to 8.0) and concentrations (0.02 to 0.60 M). Citrate buffer solutions subjected to various cooling and heating temperatures are examined in terms of the freezing-induced acidity changes, revealing that citrate buffers acidify upon cooling. The acidity is assessed with sulfonephthalein molecular probes frozen in the samples. Optical cryomicroscopy combined with differential scanning calorimetry was employed to investigate the causes of the observed acidity changes. The buffers partly crystallize and partly vitrify in the ice matrix; these processes influence the resulting pH and allow designing the optimal storage temperatures in the frozen state. The freezing-induced acidification apparently depends on the buffer concentration; at each pH, we suggest pertinent concentration, at which freezing causes minimal acidification.
Asunto(s)
Citratos , Congelación , Tampones (Química) , Concentración de Iones de Hidrógeno , Liofilización , Rastreo Diferencial de CalorimetríaRESUMEN
A convenient method of applying competition experiments to devise a Hammett correlation in the dissociation by α-cleavage of 17 ionised 3- and 4-substituted benzophenones, YC6H4COC6H5 [Y=F, Cl, Br, CH3, CH3O, NH2, CF3, OH, NO2, CN and N(CH3)2] is reported and discussed. The results given by this approach, which rely on the relative abundance of [M-C6H5]+ and [M-C6H4Y]+ ions in the electron ionisation spectra of the substituted benzophenones, are compared with those obtained by previous methods. Various refinements of the method are considered, including reducing the ionising electron energy, making allowance for the relative abundance of ions such as C6H5+ and C6H4Y+, which may be formed to some extent by secondary fragmentation, and using substituent constants other than the standard σ constants. The reaction constant, ρ, of 1.08, which is in good agreement with that deduced previously, is consistent with a considerable reduction in electron density (corresponding to an increase in positive charge) at the carbon of the carbonyl group during fragmentation. This method has been successfully extended to the corresponding cleavage of 12 ionised substituted dibenzylideneacetones, YC6H4CH=CHCOCH=CHC6H5 (Y=F, Cl, CH3, OCH3, CF3, and NO2), which may fragment to form either a substituted cinnamoyl cation, [YC6H4CH=CHCO]+, or the cinnamoyl cation, [C6H5CH=CHCO]+. The derived ρ value of 0.76 indicates that the substituent, Y, influences the stability of the cinnamoyl cation somewhat less strongly than it does the analogous benzoyl cation.
RESUMEN
Diketopyrrolopyrrole (DPP) systems have promising applications in different organic electronic devices. In this work, we investigated the effect of 20 different substituent groups on the optoelectronic properties of DPP-based derivatives as the donor ( D )-material in an organic photovoltaic (OPV) device. For this purpose, we employed Hammett's theory (HT), which quantifies the electron-donating or -withdrawing properties of a given substituent group. Machine learning (ML)-based σ m , σ p , σ m 0 , σ p 0 , σ p + , σ p - , σ I , and σ R Hammett's constants previously determined were used. Mono- (DPP-X1 ) and di-functionalized (DPP-X2 ) DPPs, where X is a substituent group, were investigated using density functional theory (DFT), time-dependent DFT (TDDFT), and ab initio methods. Several properties were computed using CAM-B3LYP and the second-order algebraic diagrammatic construction, ADC(2), an ab initio wave function method, including the adiabatic ionization potential ( I P A ), the electron affinity ( E A A ), the HOMO-LUMO gaps ( E g ), and the maximum absorption wavelengths ( λ max ), the first excited state transition 1 S0 â 1 S1 energies ( ∆ E ) (the optical gap), and exciton binding energies. From the optoelectronic properties and employing typical acceptor systems, the power conversion efficiency ( PCE ), open-circuit voltage ( V OC ), and fill factor ( FF ) were predicted for a DPP-based OPV device. These photovoltaic properties were also correlated with the machine learning (ML)-based Hammett's constants. Overall, good correlations between all properties and the different types of σ constants were obtained, except for the σ I constants, which are related to inductive effects. This scenario suggests that resonance is the main factor controlling electron donation and withdrawal effects. We found that substituent groups with large σ values can produce higher photovoltaic efficiencies. It was also found that electron-withdrawing groups (EWGs) reduced E g and ∆ E considerably compared to the unsubstituted DPP-H. Moreover, for every decrease (increase) in the values of a given optoelectronic property of DPP-X1 systems, a more significant decrease (increase) in the same values was observed for the DPP-X2 , thus showing that the addition of the second substituent results in a more extensive influence on all electronic properties. For the exciton binding energies, an unsupervised machine learning algorithm identified groups of substituents characterized by average values (centroids) of Hammett's constants that can drive the search for new DDP-derived materials. Our work presents a promising approach by applying HT on molecular engineering DPP-based molecules and other conjugated molecules for applications on organic optoelectronic devices.
RESUMEN
We employ a molecular torsion balance displaying bifurcated conformational isomerism to quantitatively evaluate the non-covalent interactions between the fullerene surface and substituted arene moieties containing elements with high atomic numbers, as well as the thermodynamic processes involved in the folding equilibrium using nuclear magnetic resonance spectroscopy. The interaction between fullerene and haloaryl groups was stronger in cases where the introduced halogen had a higher atomic number, indicating that dispersion forces play a significant role in the interaction between fullerenes and 4-haloaryl groups. The dispersion term also significantly contributed to the interaction between fullerene and the 4-mercaptophenyl group. Moreover, the addition of an appropriate base to the 4-mercaptophenyl-appended torsion balance formed the corresponding thiophenolate anion, resulting in a large negative change in the folding free energy in CDCl3 . Detailed analysis suggested that the observed attractive anionic arene-fullerene interactions predominantly originated from solvation effects.
RESUMEN
This paper is focused on the theoretical investigation of O-C Bond Dissociation Enthalpy (BDE) of methoxy OCH3 group in 15 meta- and 15 para-substituted anisoles in gas phase, non-polar environment, and water. Density Functional Theory (DFT) calculations were carried out using M06-2X functional and 6-311++G(d,p) basis set. Obtained BDEs were correlated with Brown and Okamoto σp+ and Hammett σm constants representing commonly used descriptors of electron-donating or electron-withdrawing substituent effect. Obtained linear dependences allow the prediction of substituent effect on BDE using σp+ and σm constants. Calculated reaction enthalpies were also compared with available experimental and theoretical ab initio G4 values. Found results suggest that employed method may provide reliable thermochemistry data for demethylation of naturally occurring (poly)phenolic compounds, as well. In all studied environments, substituent induced changes in O-C BDE can be considered equal to those observed for the dissociation of phenolic O-H bond of substituted phenols.
Asunto(s)
Anisoles , Fenoles , Fenoles/química , Agua/química , Termodinámica , ElectronesRESUMEN
Aryl diazonium salts are ubiquitous building blocks in chemistry, as they are useful radical precursors in organic synthesis as well as for the functionalization of solid materials. They can be reduced electrochemically or through a photo-induced electron transfer reaction. Here we provide a detailed picture of the ground and excited-state reactivity of a series of 9 rare and earth abundant photosensitizers with 13 aryl diazonium salts, which also included 3 macrocyclic calix[4]arene tetradiazonium salts. Nanosecond transient absorption spectroscopy confirmed the occurrence of excited-state electron transfer and was used to quantify cage-escape yields, i.e. the efficiency with which the formed radicals separate and escape the solvent cage. Cage-escape yields were large; increased when the driving force for photo-induced electron transfer increased and also tracked with the C-N2 + bond cleavage propensity, amongst others. A photo-induced borylation reaction was then investigated with all the photosensitizers and proceeded with yields between 9 and 74%.
RESUMEN
Catalytic and switchable C-H functionalization of N-heteroarenes under easily tunable conditions is a robust but challenging tool for the construction of biologically relevant compounds. Recently, a general electrochemical strategy has been developed for the direct C-H carboxylation of N-heteroarenes with CO2 , and by simply choosing different types of cell setups, carboxylated products are furnished with excellent and tunable site selectivity. This study also paves the way for regulating the reactivity modes in electrochemical synthesis.
RESUMEN
Here we describe a photoswitchable iron(III) salen phosphate catalyst, which is able to catalyze the enantiodivergent oxidation of prochiral aryl alkyl sulfides to chiral aryl alkyl sulfoxides. The stable (S)-axial isomer of the catalyst produced enantioenriched sulfoxides with the (R)-configuration in up to 75 % e.e., whereas the photoisomerized metastable (R)-axial isomer of the catalyst favored the formation of (S)-sulfoxides in up to 43 % e.e. The maximum Δe.e. value obtained in the enantiodivergent sulfoxidation was 118 %, which is identical to the maximum Δe.e. value that was measured in the enantiodivergent epoxidation of alkenes by a related recently described Mn1 catalyst. This iron-based catalyst broadens the scope of photoswitchable enantiodivergent catalysts and may be used in the future to develop a photoswitchable catalytic system that can write digital information on a polymer chain in the form chiral sulfoxide functions.
RESUMEN
The photocatalytic degradation behavior of aromatic micro-pollutants (AMPs) exhibits complexity and uncertainty, which mainly depends on the properties of different substituents on benzene. And with similar catalytic reaction substrates, the reaction rate constant could reveal the influence of different characteristics of molecular structure in a specific system. Therefore, the photooxidation pseudo first-order kinetic rate constants (kobs) of 30 AMPs were experimentally determined in Photo-GO system. A quantitative structure-activity relationship (QSAR) model for predicting the photooxidation reaction of AMPs has been developed by stepwise multiple linear regression (MLR) method, based on the lg kobs and representative molecule descriptors (20 in total) including physicochemical, quantum chemical and electrostatic descriptors. Afterwards, Radj2, QLOO2, and Qext2 were calculated as 0.870, 0.841, and 0.732 respectively, which exhibited the excellent goodness-of-fit, robustness, and predictability of the QSAR model, indicating its great prediction ability for photooxidation behavior of AMPs. Meanwhile, during the photooxidation process of AMPs with GO, the model revealed that the one-electron oxidation potential (Eox), molecular dipole moment (µ), and number of hydrogen bond donors (#HD) were the most important molecular structural parameters, which showed that the single electron transfer pathway and adsorption were as the significant steps. Additionally, the Hammett correlation showed that photooxidation of AMPs in Photo-GO system is of typical electrophilic reactions, which demonstrated that the electron-donating substituents could promote the photooxidation of AMPs. The QSAR model was constructed and evaluated to perform the prediction of AMPs reaction kinetics, which provided a guidance for the study of the mechanism and selective oxidation of AOPs photooxidation system based on GO.
Asunto(s)
Contaminantes Ambientales , Grafito , Contaminantes Químicos del Agua , Agua , Relación Estructura-Actividad Cuantitativa , Contaminantes Químicos del Agua/análisisRESUMEN
To stabilize SN 2 transition state-like penta-coordinate carbon species, triaryl-substituted cationic carbon compounds bearing a moderately flexible 7-6-7-ring skeleton with sulfur donors were synthesized and characterized. Electronic effects of para substituents (R=Cl, F, H, CH3 , SMe, OMe) of the two equatorial aryl groups bound to the cationic central carbon were investigated systematically along with a planar bidentate thioxanthene derivative. X-ray analysis on their solid-state structures showed that the parent (R=H), chloro-, fluoro- and methyl-derivatives were tetracoordinate carbon (sulfonium) structures, while the p-MeO and thioxanthenyl system were pentacoordinate carbocation structures. The Hammett substituent constants for the para substituents (σp + ) correlates well with the bonding in these compounds. The methylthio-derivative with intermediate Hammett substituent constants (p-MeS; σp + =-0.60) showed a tetracooridnate solid-state structure, though solution UV-Vis properties suggested the presence of a penta-coordinate structure. These findings amount to the first unambiguous solution evidence of the hypervalent apical 3c-4e interactions in pentacoordinate carbon compounds.
RESUMEN
Vacuum ultraviolet (VUV) photolysis is recognized as an environmental-friendly treatment process. Nitrate (NO3-) and natural organic matter (NOM) are widely present in water source. We investigated trichloronitromethane (TCNM) formation during chlorination after VUV photolysis, because TCNM is an unregulated highly toxic disinfection byproduct. In this study: (1) we found reactive nitrogen species that is generated under VUV photolysis of NO3- react with organic matter to form nitrogen-containing compounds and subsequently form TCNM during chlorination; (2) we found the mere presence of 0.1 mmol/L NO3- can result in the formation of up to 63.96 µg/L TCNM; (3) we found the changes in pH (6.0-8.0), chloride (1-4 mmol/L), and bicarbonate (1-4 mmol/L) cannot effectively diminish TCNM formation; and, (4) we established the quantitative structure-activity relationship (QSAR) model, which indicated a linear relationship between TCNM formation and the Hammett constant (σ) of model compounds; and, (5) we characterized TCNM precursors in water matrix after VUV photolysis and found 1161 much more nitrogen-containing compounds with higher aromaticity were generated. Overall, this study indicates more attention should be paid to reducing the formation risk of TCNM when applying VUV photolysis process at scale.
Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Relación Estructura-Actividad Cuantitativa , Vacio , Contaminantes Químicos del Agua/análisis , Halogenación , Desinfección , Compuestos de Nitrógeno , Agua/química , Nitrógeno/química , Rayos UltravioletaRESUMEN
Fluorine gauche effects are conformational properties of 2-fluoroethanes often applied in modern molecular designs. However, the physical origins of fluorine gauche effects are not well understood, with the consensus favoring the established hyperconjugation theory over an emerging electrostatic model. Using a series of model systems, we show that a shift to fluorine gauche effects can be influenced by intramolecular CHâ â â π aromatic interactions, a through-space event. Modulating the π-ring (forming the aromatic interaction) with substituent groups resulted in a linear Hammett relationship, thus indicating that the CHâ â â π interaction has electrostatic features. For instance, attaching a nitro group (an electron-withdrawing substituent) to the π-ring weakened the CHâ â â π interaction and led to a gauche preference, whereas an anti conformer is preferred with amine as substituent. The experimental results performed by using proton NMR spectroscopy are corroborated by gas-phase DFT calculations and solid-state X-ray crystallography.
RESUMEN
A photoredox/cobalt dual catalytic procedure has been developed that allows benzoylation of olefins. Here the photoredox catalyst effects the decarboxylation of α-ketoacids to form benzoyl radicals. After addition of this radical to styrenes, the cobalt catalyst abstracts a H-atom. Hydrogen evolution from the putative cobalt hydride intermediate allows a Heck-like aroylation without the need for a stoichiometric oxidant. Mechanistic studies reveal that electronically different styrenes lead to a curved Hammett plot, thus suggesting a change in product-determining step in the catalytic mechanism.