Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Hum Neurosci ; 18: 1338453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952645

RESUMEN

Introduction: As robot teleoperation increasingly becomes integral in executing tasks in distant, hazardous, or inaccessible environments, operational delays remain a significant obstacle. These delays, inherent in signal transmission and processing, adversely affect operator performance, particularly in tasks requiring precision and timeliness. While current research has made strides in mitigating these delays through advanced control strategies and training methods, a crucial gap persists in understanding the neurofunctional impacts of these delays and the efficacy of countermeasures from a cognitive perspective. Methods: This study addresses the gap by leveraging functional Near-Infrared Spectroscopy (fNIRS) to examine the neurofunctional implications of simulated haptic feedback on cognitive activity and motor coordination under delayed conditions. In a human-subject experiment (N = 41), sensory feedback was manipulated to observe its influences on various brain regions of interest (ROIs) during teleoperation tasks. The fNIRS data provided a detailed assessment of cerebral activity, particularly in ROIs implicated in time perception and the execution of precise movements. Results: Our results reveal that the anchoring condition, which provided immediate simulated haptic feedback with a delayed visual cue, significantly optimized neural functions related to time perception and motor coordination. This condition also improved motor performance compared to the asynchronous condition, where visual and haptic feedback were misaligned. Discussion: These findings provide empirical evidence about the neurofunctional basis of the enhanced motor performance with simulated synthetic force feedback in the presence of teleoperation delays. The study highlights the potential for immediate haptic feedback to mitigate the adverse effects of operational delays, thereby improving the efficacy of teleoperation in critical applications.

2.
Biosens Bioelectron ; 261: 116432, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38861810

RESUMEN

Haptic technology permeates diverse fields and is receiving renewed attention for VR and AR applications. Advances in flexible electronics, facilitate the integration of haptic technologies into soft wearable systems, however, because of small footprint requirements face challenges of operational time requiring either large batteries, wired connections or frequent recharge, restricting the utility of haptic devices to short-duration tasks or low duty cycles, prohibiting continuously assisting applications. Currently many chronic applications are not investigated because of this technological gap. Here, we address wireless power and operation challenges with a biosymbiotic approach enabling continuous operation without user intervention, facilitated by wireless power transfer, eliminating the need for large batteries, and offering long-term haptic feedback without adhesive attachment to the body. These capabilities enable haptic feedback for robotic surgery training and posture correction over weeks of use with neural net computation. The demonstrations showcase that this device class expands use beyond conventional brick and strap or epidermally attached devices enabling new fields of use for imperceptible therapeutic and assistive haptic technologies supporting care and disease management.


Asunto(s)
Técnicas Biosensibles , Diseño de Equipo , Dispositivos Electrónicos Vestibles , Humanos , Técnicas Biosensibles/instrumentación , Tacto , Interfaz Usuario-Computador , Retroalimentación Sensorial , Tecnología Inalámbrica , Procedimientos Quirúrgicos Robotizados/instrumentación , Robótica/instrumentación
3.
Surg Endosc ; 38(8): 4222-4228, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38858248

RESUMEN

INTRODUCTION: Despite the advancements in technology and organized training for surgeons in laparoscopic surgery, the persistent challenge of not being able to feel the resistance and characteristics of the tissue, including pulsations, remains unmet. A recently developed grasper (Optigrip®) with real time haptic feedback, based on photonic technology, aims to address this issue by restoring the tactile sensation for surgeons. The key question is whether pulsations can be detected and at what minimal size level they become clinical significant. METHODS: To simulate arterial conditions during laparoscopic procedures, four different silicone tubes were created, representing the most prevalent arteries. These tubes were connected to a validated pressure system, generating a natural pulse ranging between 80 and 120 mm Hg. One control tube without pressure was added. The surgeons had to grasp these tubes blindly with the conventional grasper or the haptic feedback grasper in a randomized order. They then indicated whether they felt the pressure or not and the percentage of correct answers was calculated. RESULTS: The haptic grasper successfully detected 96% of all pulsations, while the conventional grasper could only detect 6%. When considering the size of the arteries, the Optigrip® identified pulsations in 100% the 4 and 5 mm arteries and 92% of the smallest arteries. The conventional grasper was only able to feel the smallest arteries in 8%. These differences were highly significant (p < 0.0001). CONCLUSION: This study demonstrated that the newly developed haptic feedback grasper enables detection of arterial pulsations during laparoscopy, filling an important absence in tactile perception within laparoscopic surgery.


Asunto(s)
Arterias , Laparoscopía , Laparoscopía/métodos , Humanos , Diseño de Equipo , Tacto , Retroalimentación Sensorial
4.
Sensors (Basel) ; 24(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732782

RESUMEN

In robot-assisted microsurgery (RAMS), surgeons often face the challenge of operating with minimal feedback, particularly lacking in haptic feedback. However, most traditional desktop haptic devices have restricted operational areas and limited dexterity. This report describes a novel, lightweight, and low-budget wearable haptic controller for teleoperated microsurgical robotic systems. We designed a wearable haptic interface entirely made using off-the-shelf material-PolyJet Photopolymer, fabricated using liquid and solid hybrid 3D co-printing technology. This interface was designed to resemble human soft tissues and can be wrapped around the fingertips, offering direct contact feedback to the operator. We also demonstrated that the device can be easily integrated with our motion tracking system for remote microsurgery. Two motion tracking methods, marker-based and marker-less, were compared in trajectory-tracking experiments at different depths to find the most effective motion tracking method for our RAMS system. The results indicate that within the 4 to 8 cm tracking range, the marker-based method achieved exceptional detection rates. Furthermore, the performance of three fusion algorithms was compared to establish the unscented Kalman filter as the most accurate and reliable. The effectiveness of the wearable haptic controller was evaluated through user studies focusing on the usefulness of haptic feedback. The results revealed that haptic feedback significantly enhances depth perception for operators during teleoperated RAMS.


Asunto(s)
Microcirugia , Procedimientos Quirúrgicos Robotizados , Dispositivos Electrónicos Vestibles , Humanos , Procedimientos Quirúrgicos Robotizados/instrumentación , Procedimientos Quirúrgicos Robotizados/métodos , Microcirugia/instrumentación , Algoritmos , Robótica/instrumentación , Diseño de Equipo , Impresión Tridimensional
5.
Disabil Rehabil Assist Technol ; : 1-16, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38469665

RESUMEN

PURPOSE: Visually impaired people (VIP) find it challenging to understand and gain awareness of their surroundings. Most activities require the use of the auditory or tactile senses. As such, assistive systems which are capable of aiding visually impaired people to understand, navigate and form a mental representation of their environment are extensively being studied and developed. The aim of this paper is to provide insight regarding the characteristics, as well as the advantages and drawbacks of different types of sonification strategies in assistive systems, to assess their suitability for certain use-cases. MATERIALS AND METHODS: To this end, we reviewed a sizeable number of assistive solutions for VIP which provide a form of auditory feedback to the user, encountered in different scientific databases (Scopus, IEEE Xplore, ACM and Google Scholar) through direct searches and cross-referencing. RESULTS: We classified these solutions based on the aural information they provide to the VIP - alerts, guidance and information about their environment, be it spatial or semantic. Our intention is not to provide an exhaustive review, but to select representative implementations from recent literature that highlight the particularities of each sonification approach. CONCLUSIONS: Thus, anyone who is intent on developing an assistive solution will be able to choose the desired sonification class, being aware of the advantages/disadvantages and at the same time having a fairly wide selection of articles from the representative class.


The motivation behind this paper is to provide an overview of sonification strategies in the context of assistive systems for the visually impaired people.Whilst surveys and reviews which provide in-depth insights into assistive technologies and sonification exist, papers which provide a combined view of these topics are rather lacking.The analysis of the selected papers provides insight regarding the characteristics of different types of sonification strategies in assistive systems for visually impaired people and their suitability for certain use-cases.

6.
Front Psychol ; 15: 1327992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515976

RESUMEN

In this perspective paper, we explore the use of haptic feedback to enhance human-human interaction during musical tasks. We start by providing an overview of the theoretical foundation that underpins our approach, which is rooted in the embodied music cognition framework, and by briefly presenting the concepts of action-perception loop, sensorimotor coupling and entrainment. Thereafter, we focus on the role of haptic information in music playing and we discuss the use of wearable technologies, namely lightweight exoskeletons, for the exchange of haptic information between humans. We present two experimental scenarios in which the effectiveness of this technology for enhancing musical interaction and learning might be validated. Finally, we briefly discuss some of the theoretical and pedagogical implications of the use of technologies for haptic communication in musical contexts, while also addressing the potential barriers to the widespread adoption of exoskeletons in such contexts.

7.
Sci Rep ; 14(1): 5140, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429357

RESUMEN

Accomplishing motor function requires multimodal information, such as visual and haptic feedback, which induces a sense of ownership (SoO) over one's own body part. In this study, we developed a visual-haptic human machine interface that combines three different types of feedback (visual, haptic, and kinesthetic) in the context of passive hand-grasping motion and aimed to generate SoO over a virtual hand. We tested two conditions, both conditions the three set of feedback were synchronous, the first condition was in-phase, and the second condition was in antiphase. In both conditions, we utilized passive visual feedback (pre-recorded video of a real hand displayed), haptic feedback (balloon inflated and deflated), and kinesthetic feedback (finger movement following the balloon curvature). To quantify the SoO, the participants' reaction time was measured in response to a sense of threat. We found that most participants had a shorter reaction time under anti-phase condition, indicating that synchronous anti-phase of the multimodal system was better than in-phase condition for inducing a SoO of the virtual hand. We conclude that stronger haptic feedback has a key role in the SoO in accordance with visual information. Because the virtual hand is closing and the high pressure from the balloon against the hand creates the sensation of grasping and closing the hand, it appeared as though the person was closing his/her hand at the perceptual level.


Asunto(s)
Tecnología Háptica , Propiedad , Humanos , Femenino , Masculino , Retroalimentación , Mano , Extremidad Superior
8.
Med Biol Eng Comput ; 62(6): 1887-1897, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403863

RESUMEN

Mixed-reality surgical simulators are seen more objective than conventional training. The simulators' utility in training must be established through validation studies. Establish face-, content-, and construct-validity of a novel mixed-reality surgical simulator developed by McGill University, CAE-Healthcare, and DePuy Synthes. This study, approved by a Research Ethics Board, examined a simulated L4-L5 oblique lateral lumbar interbody fusion (OLLIF) scenario. A 5-point Likert scale questionnaire was used. Chi-square test verified validity consensus. Construct validity investigated 276 surgical performance metrics across three groups, using ANOVA, Welch-ANOVA, or Kruskal-Wallis tests. A post-hoc Dunn's test with a Bonferroni correction was used for further analysis on significant metrics. Musculoskeletal Biomechanics Research Lab, McGill University, Montreal, Canada. DePuy Synthes, Johnson & Johnson Family of Companies, research lab. Thirty-four participants were recruited: spine surgeons, fellows, neurosurgical, and orthopedic residents. Only seven surgeons out of the 34 were recruited in a side-by-side cadaver trial, where participants completed an OLLIF surgery first on a cadaver and then immediately on the simulator. Participants were separated a priori into three groups: post-, senior-, and junior-residents. Post-residents rated validity, median > 3, for 13/20 face-validity and 9/25 content-validity statements. Seven face-validity and 12 content-validity statements were rated neutral. Chi-square test indicated agreeability between group responses. Construct validity found eight metrics with significant differences (p < 0.05) between the three groups. Validity was established. Most face-validity statements were positively rated, with few neutrally rated pertaining to the simulation's graphics. Although fewer content-validity statements were validated, most were rated neutral (only four were negatively rated). The findings underscored the importance of using realistic physics-based forces in surgical simulations. Construct validity demonstrated the simulator's capacity to differentiate surgical expertise.


Asunto(s)
Procedimientos Quirúrgicos Mínimamente Invasivos , Humanos , Procedimientos Quirúrgicos Mínimamente Invasivos/educación , Fusión Vertebral/métodos , Reproducibilidad de los Resultados , Realidad Virtual , Femenino , Masculino , Encuestas y Cuestionarios , Simulación por Computador , Columna Vertebral/cirugía , Adulto , Realidad Aumentada
9.
J Robot Surg ; 18(1): 43, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236452

RESUMEN

Robotic surgery started nearly 30 years ago. It has achieved telepresence and the performance of repetitive, precise, and accurate tasks. The "master-slave" robotic system allows control of manipulators by surgeon at distant site. Robotic surgical fingers were developed to allow surgeons to move them with accuracy through sensors fixed on surgeon's hand. Also, haptic sensors were developed to allow transmission of sensation from robotic finger to surgeon's finger. A complete system of a, 3D printed by a stereolithography (SLA) 3D printer, robotic surgical finger with haptic feedback system is proposed. The developed system includes a master glove that controls the motion of a 3DOF robotic slave finger while getting haptic feedback of force/pressure exerted on it. The precise control of the slave robotic finger was achieved by applying a Proportional Integral and Derivative (PID), fast and robust, control algorithm using an Arduino based hardware and software module. The individual joint angles, metacarpophalangeal joint (MCP) and proximal interphalangeal joint (PIP), and wrist were measured using rotatory and inertial sensors respectively. The degree of movement for MCP, PIP, and Wrist joints were measured to be 0-86°, 0-71°, and 0-89° respectively. Motion to the robotic finger is mimicked by a glove motion requiring minimal learning curve for the device. The collected data for the slave motion is in good agreement with the master-glove motion data. The vibro-tactile haptic feedback system was developed to distinguish between three different materials to mimic human flesh, tumor, and bone. The master-slave system using robotic surgical finger with good simultaneous movement to surgeon's finger and good haptic sensation will provide the surgeon with the opportunity to perform finger dissection in laparoscopic and robotic surgery, as it used to be in open surgery. 3D bio printing will make this process even cheaper with the added advantage of making surgical tools locally according to the need of the surgery. An ongoing work is to develop silicone based 8 mm robotic surgical finger with multiple type haptic feedback.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Procedimientos Quirúrgicos Robotizados/métodos , Retroalimentación , Tecnología Háptica , Extremidad Superior
10.
Surg Today ; 54(4): 375-381, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37653350

RESUMEN

PURPOSE: To verify the usefulness of haptic feedback in telesurgery and improve the safety of telerobotic surgery. METHODS: The surgeon's console was installed at two sites (Fukuoka and Beppu; 140 km apart), and the patient cart was installed in Fukuoka. During the experiment, the surgeon was blinded to the haptic feedback levels and asked to grasp the intestinal tract in an animal model. The surgeon then performed the tasks at each location. RESULTS: No marked differences in task accuracy or average grasping force were observed between the surgeon locations. However, the average task completion time was significantly longer, and the system usability scale (SUS) was significantly lower rating for remote operations than for local ones. No marked differences in task accuracy or task completion time were observed between the haptic feedback levels. However, with haptic feedback, the organ was grasped with a significantly weaker force than that without it. Furthermore, with haptic feedback, experienced surgeons in robotic surgery tended to perform an equivalent task with weaker grasping forces than inexperienced surgeons. CONCLUSION: The haptic feedback function is a tool that allows the surgeon to perform surgery with an appropriate grasping force, both on site and remotely. Improved safety is necessary in telesurgery; haptic feedback will thus be an essential technology in robotic telesurgery going forward.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Cirujanos , Animales , Humanos , Retroalimentación , Tecnología Háptica
11.
J Dent Educ ; 88(3): 366-379, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38044266

RESUMEN

BACKGROUND: Haptic technologies have opened a new avenue in preclinical dental education, with evidence that they can be used to improve student performance. The aim of this systematic review was to (1) determine the effect of haptic simulators on motor skill acquisition during preclinical dental training, (2) explore students' perception, and (3) explore the ability of haptic systems to distinguish users based on their initial level of manual dexterity. METHODS: A comprehensive search of articles published up to February 2023 was performed using five databases (i.e., PubMed/Medline, ScienceDirect, Web of Sciences, Scopus, and Cochrane Library) and specialized journals. The Preferred Reporting Items for Systematic Review and Meta-Analysis 2020 guidelines were followed, and the risk of bias was assessed. Only studies on the application of haptic simulators in dentistry preclinical training were included. Qualitative synthesis of data was performed, and the protocol was registered in PROSPERO (ID = CRD42022337177). RESULTS: Twenty-three clinical studies, including 1303 participants, were included. The authors observed a statistically significant improvement in dental students' motor skills in various dental specialties, such as restorative dentistry, pediatric, prosthodontics, periodontics, implantology, and dental surgery, after haptic training. Haptic technologies were perceived well by all participants, with encouraging data regarding their ability to differentiate users according to their initial level of manual dexterity. CONCLUSIONS: Our work suggests that haptic simulators can significantly improve motor skill acquisition in preclinical dental training. This new digital technology, which was well perceived by the participants, also showed encouraging results in discriminating users according to their level of experience.


Asunto(s)
Instrucción por Computador , Tecnología Háptica , Humanos , Niño , Educación en Odontología/métodos , Destreza Motora , Atención Odontológica
12.
Appl Ergon ; 116: 104206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38141524

RESUMEN

Trams are experiencing a resurgence with worldwide network expansion driven by the need for sustainable and efficient cities. Trams often operate in shared or mixed-traffic environments, which raise safety concerns, particularly in hazardous situations. This paper adopts an international, mixed-methods approach, conducted through two interconnected studies in Melbourne (Australia) and Birmingham (UK). The first study involved qualitative interviews, while the second was an experimental study involving a virtual reality (VR) simulator and haptic master controller (i.e., speed lever). In tram operations, master controllers play a critical role in ensuring a smooth ride, which directly influences passenger safety and comfort. The objective was to understand how a master control system, enhanced with additional haptic feedback, could improve tram driver braking performance and perceptions in safety-critical scenarios. Interview results indicate that the use of the emergency brake is considered the final or ultimate choice by drivers, and their driving experience is a moderating factor in limiting its application. Combined with the experimental results, this paper highlights how implementing haptic feedback within a master controller can reduce the performance disparity between novice and experienced tram drivers.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Humanos , Retroalimentación , Tecnología Háptica , Vehículos a Motor
13.
Int J Med Robot ; : e2605, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38071613

RESUMEN

BACKGROUND: Liver medical procedures are considered one of the most challenging because of the liver's complex geometry, heterogeneity, mechanical properties, and movement due to respiration. Haptic features integrated into needle insertion systems and other medical devices could support physicians but are uncommon. Additional training time and safety concerns make it difficult to implement in robot-assisted surgery. The main challenges of any haptic device in a teleoperated system are the stability and transparency levels required to develop a safe and efficient system that suits the physician's needs. PURPOSE: The objective of the review article is to investigate whether haptic-based teleoperation potentially improves the efficiency and safety of liver needle insertion procedures compared with insertion without haptic feedback. In addition, it looks into haptic technology that can be integrated into simulators to train novice physicians in liver procedures. METHODS: This review presents the physician's needs during liver interventions and the consequent requirements of haptic features to help the physician. This paper provides an overview of the different aspects of a teleoperation system in various applications, especially in the medical field. It finally presents the state-of-the-art haptic technology in robot-assisted procedures for the liver. This includes 3D virtual models of the liver and force measurement techniques used in haptic rendering to estimate the real-time position of the surgical instrument relative to the liver. RESULTS: Haptic feedback technology can be used to navigate the surgical tool through the desired trajectory to reach the target accurately and avoid critical regions. It also helps distinguish between various textures of liver tissue. CONCLUSION: Haptic feedback can complement the physician's experience to compensate for the lack of real-time imaging during Computed Tomography guided (CT-guided) liver procedures. Consequently, it helps the physician mitigate the destruction of healthy tissues and takes less time to reach the target.

14.
Sensors (Basel) ; 23(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37960421

RESUMEN

In modern logistics, the box-in-box insertion task is representative of a wide range of packaging applications, and automating compliant object insertion is difficult due to challenges in modelling the object deformation during insertion. Using Learning from Demonstration (LfD) paradigms, which are frequently used in robotics to facilitate skill transfer from humans to robots, can be one solution for complex tasks that are difficult to mathematically model. In order to automate the box-in-box insertion task for packaging applications, this study makes use of LfD techniques. The proposed framework has three phases. Firstly, a master-slave teleoperated robot system is used in the initial phase to haptically demonstrate the insertion task. Then, the learning phase involves identifying trends in the demonstrated trajectories using probabilistic methods, in this case, Gaussian Mixture Regression. In the third phase, the insertion task is generalised, and the robot adjusts to any object position using barycentric interpolation. This method is novel because it tackles tight insertion by taking advantage of the boxes' natural compliance, making it possible to complete the task even with a position-controlled robot. To determine whether the strategy is generalisable and repeatable, experimental validation was carried out.

15.
Cureus ; 15(9): e45440, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37859917

RESUMEN

The hybrid navigation technique involves the merging of the Dynamic navigation (DN) system (Navident, Claronav, Canada) and static navigation technique (3Shape, Copenhagen, Denmark). Combining the advantages of both techniques, devising a protocol of hybrid navigation will be advantageous to eliminate the difficulties faced by operators in using either methods separately. Three patients requiring dental implants were included in this study. This requires the cone beam computed tomography (CBCT) (Digital Imaging and Communications in Medicine (DICOM) data) and intra-oral scan (Standard Tessellation Language (STL) format) data for the accurate planning of the implant positions in both the static and dynamic approaches. The steps carried out were repeated for each of the patients, the accuracy of the implant placement was verified postoperatively by merging the CBCT data pre and post through the Evalunav software (NaviDent, Claronav). The accuracy of the implants placed were assessed based on the mesio-distal, bucco-lingual, apical deviations in distance and in angulation. The semi-robotic DN and static guide combination as a hybrid technique is an interesting method to improve the accuracy of flapless implant surgeries and can be used in cases where the anatomical landmarks are determinant factors for the implant placement.

16.
BMC Med Educ ; 23(1): 794, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880665

RESUMEN

BACKGROUND: Intraspinal anesthesia poses significant teaching challenges and inadequate teaching resources, which ultimately limit students' opportunities for practice. To address this issue, we aimed to develop a virtual platform for combined spinal-epidural anesthesia that merges virtual reality technology with haptic feedback technology, while assessing its educational impact and learning outcomes. METHODS: We utilized MIMICS, 3Ds MAX, and UNITY 3D software to perform 3D reconstruction based on lumbar CT/MRI data from a standard male volunteer. The haptic coefficients were configured on each layer by 20 experienced anesthesiologists in accordance with the Geomagic Touch X force feedback device. A total of 20 anesthesiology interns completed 30 virtual puncture training sessions. Two experienced anesthetists evaluated the efficacy of the platform and the level of mastery achieved using the Global Rating Scale (GRS) and a Checklist score, respectively. Finally, a questionnaire survey was conducted to gather feedback on the virtual platform. RESULTS: After the 10th session, the puncture time stabilized at 2.4 min. As the number of sessions increased, the Global Rating Scale (GRS) score stabilized by the 8th session, and the Checklist scores tended to stabilize by the 10th session. Results from questionnaires indicated that over half of the anesthesiology interns (70%) believed that the platform, which exhibited strong repeatability, improved their anatomical recognition and provided a strong sense of breakthrough in identifying the ligamentum flavum. The majority of them (80%) expressed satisfaction with the virtual platform. CONCLUSIONS: The platform effectively facilitated the acquisition of basic and accurate puncture skills on a virtual patient.


Asunto(s)
Anestesia Epidural , Realidad Virtual , Humanos , Masculino , Tecnología Háptica , Programas Informáticos , Retroalimentación , Interfaz Usuario-Computador , Simulación por Computador
17.
J Neural Eng ; 20(6)2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37863034

RESUMEN

Objective.This study's objective is to understand distally-referred surface electrical nerve stimulation (DR-SENS) and evaluates the effects of electrode placement, polarity, and stimulation intensity on the location of elicited sensations in non-disabled individuals.Approach.A two-phased human experiment was used to characterize DR-SENS. In Experiment One, we explored 182 electrode combinations to identify a subset of electrode position combinations that would be most likely to elicit distally-referred sensations isolated to the index finger without discomfort. In Experiment Two, we further examined this subset of electrode combinations to determine the effect of stimulation intensity and electrode position on perceived sensation location. Stimulation thresholds were evaluated using parameter estimation by sequential testing and sensation locations were characterized using psychometric intensity tests.Main Results.We found that electrode positions distal to the wrist can consistently evoke distally referred sensations with no significant polarity dependency. The finger-palm combination had the most occurrences of distal sensations, and the different variations of this combination did not have a significant effect on sensation location. Increasing stimulation intensity significantly expanded the area of the sensation, moved the most distal sensation distally, and moved the vertical centroid proximally. Also, a large anodic-leading electrode at the elbow mitigated all sensation at the anodic-leading electrode site while using symmetric stimulation waveforms. Furthermore, this study showed that the most intense sensation for a given percept can be distally referred. Lastly, for each participant, at least one of the finger-palm combinations evaluated in this study worked at both perception threshold and maximum comfortable stimulation intensities.Significance.These findings show that a non-invasive surface electrical stimulation charge modulated haptic interface can be used to elicit distally-referred sensations on non-disabled users. Furthermore, these results inform the design of novel haptic interfaces and other applications of surface electrical stimulation based haptic feedback on electrodes positioned distally from the wrist.


Asunto(s)
Interfaces Hápticas , Tecnología Háptica , Humanos , Retroalimentación , Mano/fisiología , Estimulación Eléctrica/métodos
18.
JMIR Hum Factors ; 10: e49675, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37796596

RESUMEN

BACKGROUND: The escalating demands of modern health care systems, combined with the emotional toll of patient care, have led to an alarming increase in physician burnout rates. This burnout, characterized by emotional exhaustion, depersonalization, and reduced personal accomplishment, can hinder doctors' ability to connect with patients effectively. Moreover, the cognitive load arising from information overload and the need for multitasking can further hinder doctors' ability to connect with patients effectively. Understanding the complex relationship between physician burnout and cognitive load is crucial for devising targeted interventions that enhance physician well-being and promote effective physician-patient interactions. Implementing strategies to alleviate burnout and cognitive load can lead to improved health care experiences and patient outcomes. OBJECTIVE: Our study explores the interplay between physician burnout and its potential impact on interpersonal communication, particularly focusing on the role of cognitive load using a pilot study in a nonclinical setting involving nonclinical participants. METHODS: This study uses an experimental design to evaluate 3 feedback tools (haptic, visual, and postvisit summary) and measure the cognitive load they impose on nonclinical participants in a nonclinical environment. The NASA Task Load Index, a widely accepted measure of cognitive load, was used to quantify the cognitive load associated with the feedback tools. The study used a within-subject design, meaning participants experienced all 3 feedback methods. A sample of 18 nonclinical participants was selected using counterbalancing techniques. RESULTS: Postsession feedback not only enhancing performance but also mitigating the influence of cognitive load as compared with real-time feedback (haptic+visual). Participants with interview experience showed lower cognitive load levels when exposed to real-time feedback as compared with novice users. In contrast, postsession feedback was more effective for novice users. In addition, cognitive workload emerged as a moderating factor in the relationship between feedback tools and their impact on performance, particularly in terms of speaking balance and pace. This moderating effect suggests that the correlation between feedback tool efficacy and performance varies based on an individual's cognitive load while using the feedback tool. The comparison of postfeedback with haptic feedback yielded a Z score of -3.245 and a P value of .001, while the comparison with visual feedback resulted in a Z score of -2.940 and a P value of .003. These outcomes underscore a significant disparity in the means between postsession feedback and real-time feedback (haptic+visual), with postsession feedback indicating the lowest mean score. CONCLUSIONS: Through the examination of various feedback tools, this study yields significant and insightful comparisons regarding their usability and appropriateness in nonclinical settings. To enhance the applicability of these findings to clinical environments, further research encompassing diverse participant cohorts and clinical scenarios is warranted.


Asunto(s)
Agotamiento Profesional , Proyectos de Investigación , Humanos , Retroalimentación , Proyectos Piloto , Comunicación , Agotamiento Profesional/prevención & control , Cognición
19.
IEEE J Transl Eng Health Med ; 11: 451-459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37817822

RESUMEN

In laparoscopic surgery, quality of haptic feedback is reduced compared to conventional surgery, leading to unintentional tissue damage during grasping. From the perspective of haptics, poor mechanical design of laparoscopic instrument joints induces friction and a nonlinear actuation-tip force relation. In this study, a novel laparoscopic grasper using compliant joints and a magnetic balancer is presented, and the reduction in hysteresis and friction is evaluated. The hysteresis loop of the novel compliant grasper and two conventional laparoscopic graspers (high quality leading commercial brand and low quality unbranded grasper) were measured. In order to assess quality of haptic feedback, the lowest grasper tip load perceivable by instrument users was measured with the novel and the conventional laparoscopic graspers. The hysteresis loop measurement yielded a mechanical efficiency of 43% for the novel grasper, compared to- 25% and 23% for the Aesculap and the unbranded grasper, respectively. The forces perceivable by the user through the novel grasper were significantly lower (mean 1.37N, SD 0.44N) than those of conventional graspers (mean 2.15N, SD 0.71N and mean 2.65N, SD 1.20N, respectively). The balanced compliant grasper technology has the ability to improve the quality of haptic feedback compared to conventional laparoscopic graspers. Research is needed to relate these results to soft and delicate tissue grasping in a clinical setting, for which this instrument is intended.


Asunto(s)
Laparoscopía , Diseño de Equipo , Fuerza de la Mano , Retroalimentación , Fricción
20.
Bioengineering (Basel) ; 10(10)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37892887

RESUMEN

The remote perception of teleoperated surgical robotics has been a critical issue for surgeons in fulfilling their remote manipulation tasks. In this article, an adaptive teleoperation control framework is proposed. It provides a physical human-robot interaction interface to enhance the ability of the operator to intuitively perceive the material properties of remote objects. The recursive least square (RLS) is adopted to estimate the required human hand stiffness that the operator can achieve to compensate for the contact force. Based on the estimated stiffness, a force feedback controller is designed to avoid the induced motion and to convey the haptic information of the slave side. The passivity of the proposed teleoperation system is ensured by the virtual energy tank. A stable contact test validated that the proposed method achieved stable contact between the slave robot and the hard environment while ensuring the transparency of the force feedback. A series of human subject experiments was conducted to empirically verify that the proposed teleoperation framework can provide a more smooth, dexterous, and intuitive user experience with a more accurate perception of the mechanical property of the interacted material on the slave side, compared to the baseline method. After the experiment, the design idea about the force feedback controller of the bilateral teleoperation is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA