Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.736
Filtrar
Más filtros

Intervalo de año de publicación
1.
J. bras. nefrol ; 46(3): e20230123, July-Sept. 2024.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1558253

RESUMEN

Abstract In the past decades, an epidemic of chronic kidney disease (CKD) has been associated with environmental and occupational factors (heat stress from high workloads in hot temperatures and exposure to chemicals, such as pesticides and metals), which has been termed CKD of non-traditional origin (CKDnt). This descriptive review aims to present recent evidence about heat stress, pesticides, and metals as possible causes of CKDnt and provide an overview of the related Brazilian regulation, enforcement, and health surveillance strategies. Brazilian workers are commonly exposed to extreme heat conditions and other CKDnt risk factors, including increasing exposure to pesticides and metals. Furthermore, there is a lack of adequate regulation (and enforcement), public policies, and strategies to protect the kidney health of workers, considering the main risk factors. CKDnt is likely to be a significant cause of CKD in Brazil, since CKD's etiology is unknown in many patients and several conditions for its development are present in the country. Further epidemiological studies may be conducted to explore causal associations and estimate the impact of heat, pesticides, and metals on CKDnt in Brazil. Moreover, public policies should prioritize reducing workers´ exposure and promoting their health and safety.


Resumo Nas últimas décadas, uma epidemia de doença renal crônica (DRC) tem sido associada a fatores ambientais e ocupacionais (estresse térmico decorrente de cargas de trabalho elevadas em altas temperaturas e exposição a produtos químicos, como agrotóxicos e metais), denominada DRC de origem não tradicional (DRCnt). Esta revisão descritiva tem como objetivo apresentar evidências recentes sobre estresse térmico, agrotóxicos e metais como possíveis causas de DRCnt e fornecer uma visão geral das estratégias brasileiras de regulamentação, fiscalização e vigilância sanitária relacionadas. Os trabalhadores brasileiros são comumente expostos a condições extremas de calor e outros fatores de risco de DRCnt, incluindo o aumento da exposição a agrotóxicos e metais. Além disso, há uma falta de regulamentação e fiscalização, políticas públicas e estratégias adequadas para proteger a saúde renal dos trabalhadores em relação aos principais fatores de risco. É provável que a DRCnt seja uma causa significativa de DRC no Brasil, uma vez que a etiologia da doença é desconhecida em muitos pacientes e diversas condições para seu desenvolvimento estão presentes no país. Estudos epidemiológicos devem ser realizados para explorar associações causais e estimar o impacto do calor, dos agrotóxicos e dos metais na DRCnt no Brasil. Além disso, as políticas públicas devem priorizar a redução da exposição dos trabalhadores e a promoção de sua saúde e segurança.

2.
Animal ; 18(9): 101264, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39116469

RESUMEN

Heat stress is a significant challenge in dairy cattle herds, affecting milk production and quality, and generating important changes at the cellular level. Most in vitro research on heat shock (HS) effects on dairy cow mammary cells was focused on medium-long-term effects. In recent years, Fourier transform-infrared (FT-IR) micro-spectroscopy has been increasingly used to study the effects of several external stresses on different cell lines, down to the level of single cellular components, such as DNA/RNA, lipids, and proteins. In this study, the possible changes at the biochemical and molecular level induced by acute (30 min-2 h) HS in bovine mammary epithelial (BME-UV1) cells were investigated. The cells were exposed to different temperatures, thermoneutral (TN, 37 °C) and HS (42 °C), and FT-IR spectra were acquired to analyse the effects of HS on biochemical characteristics of BME-UV1 cellular components (proteins, lipids, and DNA/RNA). Moreover, cell viability assay, reactive oxygen species production, and mRNA expression of heat shock proteins (HSPA1A, HSP90AA1, GRP78, GRP94) and antioxidant genes (SOD1, SOD2) by RT-qPCR were also analysed. The FT-IR results showed a change already at 30 min of HS exposure, in the content of long-chain fatty acids, which probably acted as a response to a modification of membrane fluidity in HS cells compared with TN cells. After 2 h of HS exposure, modification of DNA/RNA activity and accumulation of aggregated proteins was highlighted in HS cells. The gene expression analyses showed the overexpression of HSPA1A and HSP90AA1 starting from 30 min up to 2 h in HS cells compared with TN cells. At 2 h of HS exposure, also the overexpression of GRP94 was observed in HS cells. Acute HS did not affect cell viability, reactive oxygen species level, and SOD1 and SOD2 gene expression of BME-UV1 cells. According to the results obtained, cells initiate early defence mechanisms in case of acute HS and probably this efficient response capacity may be decisive for tolerance to heat stress of dairy cattle.

3.
Placenta ; 155: 42-51, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121586

RESUMEN

INTRODUCTION: Trophoblast homeostasis and differentiation require a proper endoplasmic reticulum (ER) function. The Krüppel-like factor-6 (KLF6) transcription factor modulates trophoblast migration, differentiation, and reactive oxygen species (ROS) production. Since ROS may impact on ER homeostasis, we assessed whether downregulation of KLF6 altered the unfolded protein response (UPR) and cellular process associated with ER homeostasis. MATERIALS AND METHODS: Protein and RNA expression were analyzed by Western blot and qRT-PCR, respectively, in extravillous trophoblast HTR-8/SVneo cells silenced for KLF6. Apoptosis was detected by flow cell cytometry using Annexin V Apoptosis Detection Kit. Protein trafficking was assessed by confocal microscopy of a reporter fluorescent protein whose release from the ER was synchronized. RESULTS: KLF6 downregulation reduced the expression of BiP, the master regulator of the UPR, at protein, mRNA, and pre-mRNA levels. Ire1α protein, XBP1 splicing, and DNAJB9 mRNA levels were also reduced in KLF6-silenced cells. Instead, PDI, Ero1α, and the p-eIF2α/eIF2α ratio as well as autophagy and proteasome dependent protein degradation remained unchanged while intracellular trafficking was increased. Under thapsigargin-induced stress, KLF6 silencing impaired BiP protein and mRNA expression increase, as well as the activation of the Ire1α pathway, but it raised the p-eIF2α/eIF2α ratio and CHOP protein levels. Nevertheless, apoptosis was not increased. DISCUSSION: Results provide the first evidence of KLF6 as a modulator of the UPR components. The increase in protein trafficking and protection from apoptosis, observed in KLF6-silenced cells, are consistent with its role in extravillous trophoblast migration and differentiation.

4.
Mol Cell ; 84(15): 2856-2869.e9, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121843

RESUMEN

RNA polymerase II (RNA Pol II)-mediated transcription is a critical, highly regulated process aided by protein complexes at distinct steps. Here, to investigate RNA Pol II and transcription-factor-binding and dissociation dynamics, we generated endogenous photoactivatable-GFP (PA-GFP) and HaloTag knockins using CRISPR-Cas9, allowing us to track a population of molecules at the induced Hsp70 loci in Drosophila melanogaster polytene chromosomes. We found that early in the heat-shock response, little RNA Pol II and DRB sensitivity-inducing factor (DSIF) are reused for iterative rounds of transcription. Surprisingly, although PAF1 and Spt6 are found throughout the gene body by chromatin immunoprecipitation (ChIP) assays, they show markedly different binding behaviors. Additionally, we found that PAF1 and Spt6 are only recruited after positive transcription elongation factor (P-TEFb)-mediated phosphorylation and RNA Pol II promoter-proximal pause escape. Finally, we observed that PAF1 may be expendable for transcription of highly expressed genes where nucleosome density is low. Thus, our live-cell imaging data provide key constraints to mechanistic models of transcription regulation.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , ARN Polimerasa II , Transcripción Genética , Factores de Elongación Transcripcional , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Factor B de Elongación Transcripcional Positiva/genética , Regiones Promotoras Genéticas , Sistemas CRISPR-Cas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Cromosomas Politénicos/genética , Cromosomas Politénicos/metabolismo , Regulación de la Expresión Génica , Fosforilación , Unión Proteica , Respuesta al Choque Térmico/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Nucleosomas/metabolismo , Nucleosomas/genética
5.
J Mol Biol ; : 168740, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122169

RESUMEN

Heat shock factor 1 (HSF1) responds to stress to mount the heat shock response (HSR), a conserved transcriptional program that allows cells to maintain proteostasis by upregulating heat shock proteins (HSPs). The homeostatic stress regulation of HSF1 plays a key role in human physiology and health but its mechanism has remained difficult to pinpoint. Recent work in the budding yeast model has implicated stress-inducible chaperones of the HSP70 family as direct negative regulators of HSF1 activity. Here, we have investigated the latency control and activation of human HSF1 by HSP70 and misfolded proteins. Purified oligomeric HSF1-HSP70 (HSPA1A) complexes exhibited basal DNA binding activity that was inhibited by increasing the levels of HSP70 and, importantly, misfolded proteins reverted the inhibitory effect. Using site-specific UV photo-crosslinking, we monitored HSP70-HSF1 complexes in HEK293T cells. While HSF1 was bound by the substrate binding domain of HSP70 in unstressed cells, activation of HSF1 by heat shock as well as by inducing the misfolding of newly synthesized proteins resulted in release of HSF1 from the chaperone. Taken our results together, we conclude that latent HSF1 populate dynamic complexes with HSP70, which are sensitive to increased levels of misfolded proteins that compete for binding to the HSP70 substrate binding domain. Thus, human HSF1 is activated by various stress conditions that all titrate available HSP70.

6.
J Mol Histol ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122894

RESUMEN

BACKGROUND: In diabetic wounds, M2 polarization of macrophages regulates the transition from an inflammatory phase to a proliferative phase. Prior investigations have demonstrated the potential of deferoxamine (DFO) in creating a localized hypoxic microenvironment, which could stimulate angiogenesis by promoting vascular endothelial growth factor (VEGF) secretion in diabetic wound healing. Nevertheless, there is still no clear information on whether this chemically induced hypoxic microenvironment modulates macrophage polarization to promote diabetic wound healing. METHODS: The 18 diabetic mice were randomly divided into three groups: a control group (n = 6), a 100µM DFO group (n = 6), and a 200µM DFO group (n = 6). Subsequently, a full-thickness wound with a diameter of 1.00 cm was created on the dorsal region of the diabetic mice. Observe wound closure regularly during treatment. At the end of the observation, tissue specimens were collected for a series of experiments and analyses, including hematoxylin and eosin (H&E), Masson, immunofluorescent, and immunohistochemical staining. The role and mechanism of DFO in regulating macrophage polarization were studied using RAW264.7 cells. RESULTS: In comparison to the control group, the administration of DFO notably facilitates wound healing in diabetic mice. In diabetic wounds, DFO increases blood supply by upregulating VEGF, which promotes angiogenesis. Additionally, The expression of HSP70 and CD206 were also upregulated by DFO in both vivo and in vitro, while iNOS expression was downregulated. Additionally, knk437 inhibited the expression of HSP70 in RAW264.7 cells, resulting in a reduction of M2 polarization and an increase in M1 polarization. CONCLUSION: The induction of a hypoxic microenvironment by DFO has been found to exert a substantial influence on the process of diabetic wound healing. DFO treatment enhances the capacity of diabetic wounds to stimulate angiogenesis and modulate macrophage polarization that may be associated with HSP70 expression, thereby expediting the transition of these wounds from an inflammatory to a proliferative state.

7.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39126000

RESUMEN

Ageing populations, mass "baby-free" policies and children born to mothers at the age at which they are biologically expected to become grandmothers are growing problems in most developed societies. Therefore, any opportunity to improve the quality of infertility treatments seems important for the survival of societies. The possibility of indirectly studying the quality of developing oocytes by examining their follicular fluids (hFFs) offers new opportunities for progress in our understanding the processes of final oocyte maturation and, consequently, for predicting the quality of the resulting embryos and personalising their culture. Using mass spectrometry, we studied follicular fluids collected individually during in vitro fertilisation and compared their composition with the quality of the resulting embryos. We analysed 110 follicular fluids from 50 oocyte donors, from which we obtained 44 high-quality, 39 medium-quality, and 27 low-quality embryos. We identified 2182 proteins by Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS) using a TripleTOF 5600+ hybrid mass spectrometer, of which 484 were suitable for quantification. We were able to identify several proteins whose concentrations varied between the follicular fluids of different oocytes from the same patient and between patients. Among them, the most important appear to be immunoglobulin heavy constant alpha 1 (IgA1hc) and dickkopf-related protein 3. The first one is found at higher concentrations in hFFs from which oocytes develop into poor-quality embryos, the other one exhibits the opposite pattern. None of these have, so far, had any specific links to fertility disorders. In light of these findings, these proteins should be considered a primary target for research aimed at developing a diagnostic tool for oocyte quality control and pre-fertilisation screening. This is particularly important in cases where the fertilisation of each egg is not an option for ethical or other reasons, or in countries where it is prohibited by law.


Asunto(s)
Biomarcadores , Desarrollo Embrionario , Líquido Folicular , Oocitos , Proteómica , Líquido Folicular/metabolismo , Líquido Folicular/química , Humanos , Femenino , Proteómica/métodos , Oocitos/metabolismo , Biomarcadores/metabolismo , Fertilización In Vitro , Adulto , Proteoma/metabolismo , Proteoma/análisis , Espectrometría de Masas/métodos
8.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126099

RESUMEN

Dynamic climate changes pose a significant challenge for plants to cope with numerous abiotic and biotic stressors of increasing intensity. Plants have evolved a variety of biochemical and molecular defense mechanisms involved in overcoming stressful conditions. Under environmental stress, plants generate elevated amounts of reactive oxygen species (ROS) and, subsequently, modulate the activity of the antioxidative enzymes. In addition, an increase in the biosynthesis of important plant compounds such as anthocyanins, lignin, isoflavonoids, as well as a wide range of low molecular weight stress-related proteins (e.g., dehydrins, cyclotides, heat shock proteins and pathogenesis-related proteins), was evidenced. The induced expression of these proteins improves the survival rate of plants under unfavorable environmental stimuli and enhances their adaptation to sequentially interacting stressors. Importantly, the plant defense proteins may also have potential for use in medical applications and agriculture (e.g., biopesticides). Therefore, it is important to gain a more thorough understanding of the complex biological functions of the plant defense proteins. It will help to devise new cultivation strategies, including the development of genotypes characterized by better adaptations to adverse environmental conditions. The review presents the latest research findings on selected plant defense proteins.


Asunto(s)
Proteínas de Plantas , Plantas , Estrés Fisiológico , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo , Peso Molecular , Regulación de la Expresión Génica de las Plantas , Especies Reactivas de Oxígeno/metabolismo
9.
Eur J Med Chem ; 277: 116736, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39126794

RESUMEN

Heat shock protein 90 alpha (Hsp90α) is an abundantly expressed and evolutionarily conserved molecular chaperone. Hsp90α is the inducible Hsp90 isoform, and its expression and secretion extracellularly (eHsp90α) can be triggered in response to a variety of cellular stresses to protect/activate client proteins and to facilitate cellular adjustment to the stress. As a result, cancers often have high expression levels of intracellular and extracellular (plasma) Hsp90α, allowing them to support their oncogenesis and progression. In fact, (e)Hsp90α has been implicated in regulating processes such as cell signaling transduction, DNA repair, promotion of the Epithelial-to-Mesenchymal Transition (EMT), promotion of angiogenesis, immune response, and cell migration. Hsp90α levels have been correlated with cancer progression and severity in several cancers, indicating that it may be a useful biomarker or drug-target for cancer. To date, the development of intracellular Hsp90α-targeted therapies include standard N-terminal ATP-competitive inhibitors and allosteric regulators that bind to Hsp90α's middle or C-terminal domain. On-target toxicities and dosing complications as a result of Hsp90α inhibition has driven the development of eHsp90α-targeted therapies. Examples include anti-Hsp90α monoclonal antibodies and cell-impermeable Hsp90α small molecule inhibitors. This review aims to discuss the many roles Hsp90α plays in cancer progression with a focus on the current development of Hsp90α-targeted therapies.

10.
Environ Pollut ; : 124677, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127336

RESUMEN

Mitochondria, as the powerhouse of the cell, play a vital role in maintaining cellular energy homeostasis and are known to be a primary target of cadmium (Cd) toxicity. The improper targeting of proteins to mitochondria can compromise the normal functions of the mitochondria. However, the precise mechanism by which protein localization contributes to the development of mitochondrial dysfunction induced by Cd is still not fully understood. For this research, Hy-Line white variety chicks (1-day-old) were used and equally distributed into 4 groups: the Control group (fed with a basic diet), the Cd35 group (basic diet with 35 mg/kg CdCl2), the Cd70 group (basic diet with 70 mg/kg CdCl2) and the Cd140 group (basic diet with 140 mg/kg CdCl2), respectively for 90 days. It was found that Cd caused the accumulation of heat shock factor 1 (HSF1) in the mitochondria, and the overexpression of HSF1 in the mitochondria led to mitochondrial dysfunction and neuronal damage. This process is due to the mitochondrial HSF1 (mtHSF1), causing mitochondrial fission through the upregulation of dynamin-related protein 1 (Drp1) content, while inhibiting oligomer formation of single-stranded DNA-binding protein 1 (SSBP1), resulting in the mitochondrial DNA (mtDNA) deletion. The findings unveil an unforeseen role of HSF1 in triggering mitochondrial dysfunction.

11.
Mol Plant ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39095994

RESUMEN

Understanding how maize (Zea mays L.) responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties. Despite the extensive utilization of the genome-wide association study (GWAS) approach in exploring favorable natural alleles associated with maize cold tolerance, there are few reports that have successfully identified the candidate genes contributing to maize cold tolerance. In this study, by employing a diverse panel of maize inbred lines collected from different germplasm sources, we conducted a GWAS on the variation of the relative injured area of maize true leaves during cold stress-a trait most closely correlated with maize cold tolerance-and identified HSF21, encoding a B-class heat shock transcription factor, which positively regulates cold tolerance at both seedling and germination stages. The natural variations within the promoter of the cold-tolerant HSF21Hap1 allele led to increased HSF21 expression under cold stress by inhibiting the binding of bZIP68 transcription factor, a negative regulator of cold tolerance. Through integrated transcriptome deep sequencing, DNA affinity purification sequencing, and targeted lipidomic analysis, we unveiled the function of HSF21 in regulating lipid metabolism homeostasis for modulating cold tolerance in maize. Additionally, HSF21 confers maize cold tolerance without incurring yield penalties. This study thereby establishes HSF21 as a key regulator that enhances cold tolerance in maize, thus providing valuable genetic resources for the breeding of cold-tolerant maize varieties.

12.
Plant Cell ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102899

RESUMEN

Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The tomato (Solanum lycopersicum) anthocyanin reduced (are) mutant harbors a mutation in FLAVANONE 3-HYDROXYLASE (F3H), resulting in impaired flavonol antioxidant biosynthesis. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, phenotypes that are accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent reactive oxygen species (ROS) accumulation in pollen and restored the reduced viability, germination, and tube elongation of are to VF36 levels. Overexpression of F3H in VF36 prevented temperature-driven ROS increases and impaired pollen performance, revealing that flavonol biosynthesis promotes thermotolerance. Although stigmas of are had reduced flavonol and elevated ROS levels, the growth of are pollen tubes was similarly impaired in both are and VF36 pistils. RNA-seq was performed at optimal and stress temperatures in are, VF36, and the F3H overexpression line at multiple timepoints across pollen tube elongation. The number of differentially expressed genes increased over time under elevated temperatures in all genotypes, with the greatest number in are. These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that lead to reproductive failure.

13.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39125776

RESUMEN

Heat shock proteins (HSPs) play an important role in all living organisms under stress conditions by acting as molecular chaperones. The expression of different HSPs during stress varies depending on their protective functions and anti-apoptotic activities. The application of HSPs improves the efficiency and decreases the economic cost of animal breeding. By upregulating the expression of HSPs, feed supplements can improve stress tolerance in farm animals. In addition, high expression of HSPs is often a feature of tumor cells, and inhibiting the expression of HSPs is a promising novel method for killing these cells and treating cancers. In the present review, the findings of previous research on the application of HSPs in animal breeding and veterinary medicine are summarized, and the knowledge of the actions of HSPs in animals is briefly discussed.


Asunto(s)
Proteínas de Choque Térmico , Animales , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Cruzamiento/métodos , Estrés Fisiológico , Respuesta al Choque Térmico
14.
Front Microbiol ; 15: 1408796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104585

RESUMEN

Skin serves as both barrier and interface between body and environment. Skin microbes are intermediaries evolved to respond, transduce, or act in response to changing environmental or physiological conditions. We quantified genome-wide changes in gene expression levels for one abundant skin commensal, Staphylococcus epidermidis, in response to an internal physiological signal, glucose levels, and an external environmental signal, temperature. We found 85 of 2,354 genes change up to ~34-fold in response to medically relevant changes in glucose concentration (0-17 mM; adj p ≤0.05). We observed carbon catabolite repression in response to a range of glucose spikes, as well as upregulation of genes involved in glucose utilization in response to persistent glucose. We observed 366 differentially expressed genes in response to a physiologically relevant change in temperature (37-45°C; adj p ≤ 0.05) and an S. epidermidis heat-shock response that mostly resembles the heat-shock response of related staphylococcal species. DNA motif analysis revealed CtsR and CIRCE operator sequences arranged in tandem upstream of dnaK and groESL operons. We identified and curated 38 glucose-responsive genes as candidate ON or OFF switches for use in controlling synthetic genetic systems. Such systems might be used to instrument the in-situ skin microbiome or help control microbes bioengineered to serve as embedded diagnostics, monitoring, or treatment platforms.

15.
Front Cell Dev Biol ; 12: 1411529, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105172

RESUMEN

Introduction: Prion diseases are deadly neurodegenerative disorders in both animals and humans, causing the destruction of neural tissue and inducing behavioral manifestations. Heat shock proteins (Hsps), act as molecular chaperones by supporting the appropriate folding of proteins and eliminating the misfolded proteins as well as playing a vital role in cell signaling transduction, cell cycle, and apoptosis control. SW02 is a potent activator of Hsp 70 kDa (Hsp70). Methods: In the current study, the protective effects of SW02 against prion protein 106-126 (PrP106-126)-induced neurotoxicity in human neuroblastoma cells (SH-SY5Y) were investigated. In addition, the therapeutic effects of SW02 in ME7 scrapie-infected mice were evaluated. Results: The results showed that SW02 treatment significantly increased Hsp70 mRNA expression levels and Hsp70 ATPase activity (p < 0.01). SW02 also significantly inhibited cytotoxicity and apoptosis induced by PrP106-126 (p < 0.01) and promoted neurite extension. In vivo, intraperitoneal administration of SW02 did not show a statistically significant difference in survival time (p = 0.16); however, the SW02-treated group exhibited a longer survival time of 223.6 ± 6.0 days compared with the untreated control group survival time of 217.6 ± 5.4 days. In addition, SW02 reduced the PrPSc accumulation in ME7 scrapie-infected mice at 5 months post-injection (p < 0.05). A significant difference was not observed in GFAP expression, an astrocyte marker, between the treated and untreated groups. Conclusion: In conclusion, the potential therapeutic role of the Hsp70 activator SW02 was determined in the present study and may be a novel and effective drug to mitigate the pathologies of prion diseases and other neurodegenerative diseases. Further studies using a combination of two pharmacological activators of Hsp70 are required to maximize the effectiveness of each intervention.

16.
Mol Pharm ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120577

RESUMEN

A significant impediment persists in developing multicomponent nanomedicines designed to dismantle the heat shock protein (HSP)-based protective mechanism of malignant tumors during photothermal therapy. Herein, well-defined PEGylated phospholipid micelles were utilized to coencapsulate quercetin (QUE, a natural anticancer agent and potent HSP inhibitor) and indocyanine green (ICG, a photothermal agent) with the aim of achieving synchronized and synergistic drug effects. The subsequent investigations validated that the tailored micellar system effectively enhanced QUE's water solubility and augmented its cellular internalization efficiency. Intriguingly, the compositional PEGylated phospholipids induced extraordinary endoplasmic reticulum stress, thereby sensitizing the tumor cells to QUE. Furthermore, QUE played a crucial role in inhibiting the stress-induced overexpression of HSP70, thereby augmenting the photothermal efficacy of ICG. In systemic applications, the proposed nanotherapeutics exhibited preferential accumulation within tumors and exerted notable tumoricidal effects against 4T1 xenograft tumors under 808 nm near-infrared irradiation, facilitated by prominent near-infrared fluorescence imaging-guided chemo-photothermal therapy. Therefore, our strategy for fabricating multicomponent nanomedicines emerges as a coordinated platform for optimizing antitumor therapeutic efficacy and offers valuable insights for diverse therapeutic modalities.

17.
Animals (Basel) ; 14(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39123696

RESUMEN

Forty castrated Holstein calves underwent an adrenocorticotropic hormone (ACTH) challenge to assess the effects of premortem stress on the longissimus lumborum (LL) following harvest. LL biopsies were collected before the challenge, at different harvest times (2, 12, 24, and 48 h; n = 10), and after 14 d aging. The expression of small heat shock proteins (SHSPs), deglycase 1 (DJ-1), and troponin were analyzed. Blood was analyzed throughout the ACTH challenge and at harvest for cortisol, oxidative stress, and complete blood count (CBC). Color and myofibrillar fragmentation index (MFI) were measured in aged samples. Unexpectedly, calves from different harvest times differed (p = 0.05) in cortisol response. Calves were divided into two different cortisol response groups (high or low; n = 20). Statistical analysis assessed the effects of cortisol response (n = 20), harvest time (n = 10), and their interaction. Harvest time altered SHSPs (p = 0.03), DJ-1 (p = 0.002), and troponin (p = 0.02) expression. Harvest time and cortisol response impacted steak color (p < 0.05), and harvest time altered steak pH (p < 0.0001). Additionally, various CBCs were changed (p < 0.05) by harvest time. Harvest time changed (p = 0.02) MFI. These data demonstrate that the protein expression, color, and MFI of the LL may be influenced by premortem stress.

18.
Animals (Basel) ; 14(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39123737

RESUMEN

The abdominal testes of Asian elephants show normal spermatogenesis. Heat shock in cryptorchid testes elevates heat shock factor (HSF) expression, leading to germ cell apoptosis, while increased heat shock proteins (HSPs) levels provide protection. To investigate how heat shock affects elephant spermatogenic cells, focusing on heat shock-related molecules and the cell death mechanism, immunohistochemistry and TUNEL staining were employed to assess the immunoexpression of several heat shock-related molecules and the status of apoptosis in elephant fibroblasts (EF) induced by heat shock stimulus. Additionally, the immunoexpression of heat shock-related molecules and cell proliferation status in the elephant spermatogenic cells. Our finding indicated that heat shock-induced HSF1 immunoexpression in EF leads to apoptosis mediated by T-cell death-associated gene 51 (TDAG51) while also upregulating HSP70 to protect damaged cells. In elephant spermatogenic cells, immunostaining revealed a predominance of proliferating cell nuclear antigen (PCNA)-positive cells with minimal TDAG51- and TUNEL-positive cells, suggesting active proliferation and apoptosis suppression during normal spermatogenesis in the abdominal testis. Interestingly, spermatogonia co-immunoexpressed HSF1 and HSP90, potentially reducing apoptosis through protective mechanisms different from those observed in other mammals. Spermatogenic cells did not show immunolocalisation of HSP70, and hence, it may not contribute to protecting the spermatogonia from heat shock because the transcriptional activity of HSF1 is suppressed by HSP90A binding. This study provides insight into the specific heat shock response and defence mechanisms in elephant spermatogenic cells and may contribute to our understanding of species-specific adaptation to environmental stresses of the testis.

19.
Adv Sci (Weinh) ; : e2309588, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119950

RESUMEN

Intron retention (IR) constitutes a less explored form of alternative splicing, wherein introns are retained within mature mRNA transcripts. This investigation demonstrates that the cell division cycle (CDC)-like kinase 2 (CLK2) undergoes liquid-liquid phase separation (LLPS) within nuclear speckles in response to heat shock (HS). The formation of CLK2 condensates depends on the intrinsically disordered region (IDR) located within the N-terminal amino acids 1-148. Phosphorylation at residue T343 sustains CLK2 kinase activity and promotes overall autophosphorylation, which inhibits the LLPS activity of the IDR. These CLK2 condensates initiate the reorganization of nuclear speckles, transforming them into larger, rounded structures. Moreover, these condensates facilitate the recruitment of splicing factors into these compartments, restricting their access to mRNA for intron splicing and promoting the IR. The retained introns lead to the sequestration of transcripts within the nucleus. These findings extend to the realm of glioma stem cells (GSCs), where a physiological state mirroring HS stress inhibits T343 autophosphorylation, thereby inducing the formation of CLK2 condensates and subsequent IR. Notably, expressing the CLK2 condensates hampers the maintenance of GSCs. In conclusion, this research unveils a mechanism by which IR is propelled by CLK2 condensates, shedding light on its role in coping with cellular stress.

20.
J Glob Infect Dis ; 16(2): 68-72, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081503

RESUMEN

Introduction: Of the many sexually transmitted pathogens, Chlamydia trachomatis is increasingly being associated with long-term sequelae such as infertility, apart from causing genital tract infections. Many inflammatory responses directed against chlamydial infection can cause tubal damage resulting in infertility. For example, chlamydial heat shock protein 60 (cHSP60) and cHSP10 along with humoral immune response. The aim of our study is to detect the presence of immunoglobulin G (IgG) antibodies against Major Outer Membrane Protein (MOMP), cHSP60, and cHSP10 among female infertility. Methods: A total number of 230 female infertility patients attending the Outpatient Department of Reproductive Medicine, SRIHER, were included in the study. Detailed history documented in the proforma. Serological detection of C. trachomatis IgG antibody against MOMP, cHSP60, and cHSP10 antibody was done by enzyme-linked immunosorbent assay (ELISA). Results: C. trachomatis IgG antibody against MOMP was detected in 15 (6.5%) of 230 females. High seropositivity to cHSP60 antibodies was detected among females of tubal factor infertility (TFI). Our study showed that cHSP60 antibodies (3.4%) were more common than cHSP10 (2.6%). Conclusion: Our study suggest cHSP60 or cHSP10 antibody detection by ELISA along with TFI is helpful for diagnosis and early institution of therapy. The accuracy of TFI prediction could be increased by the detection of anti-MOMP and cHSP60 over cHSP10 among secondary infertility than primary. The most probable reason for high seropositivity among secondary infertility patients may be due to repeated infection and chronicity because of longer active sexual life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA