Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genes (Basel) ; 14(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003036

RESUMEN

Practices related to mitochondrial research have long been hindered by the presence of mitochondrial pseudogenes within the nuclear genome (NUMTs). Even though partially assembled human reference genomes like hg38 have included NUMTs compilation, the exhaustive NUMTs within the only complete reference genome (T2T-CHR13) remain unknown. Here, we comprehensively identified the fixed NUMTs within the reference genome using human pan-mitogenome (HPMT) from GeneBank. The inclusion of HPMT serves the purpose of establishing an authentic mitochondrial DNA (mtDNA) mutational spectrum for the identification of NUMTs, distinguishing it from the polymorphic variations found in NUMTs. Using HPMT, we identified approximately 10% of additional NUMTs in three human reference genomes under stricter thresholds. And we also observed an approximate 6% increase in NUMTs in T2T-CHR13 compared to hg38, including NUMTs on the short arms of chromosomes 13, 14, and 15 that were not assembled previously. Furthermore, alignments based on 20-mer from mtDNA suggested the presence of more mtDNA-like short segments within the nuclear genome, which should be avoided for short amplicon or cell free mtDNA detection. Finally, through the assay of transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) on cell lines before and after mtDNA elimination, we concluded that NUMTs have a minimal impact on bulk ATAC-seq, even though 16% of sequencing data originated from mtDNA.


Asunto(s)
Mitocondrias , Seudogenes , Humanos , Seudogenes/genética , Mitocondrias/genética , ADN Mitocondrial/genética , Genoma Humano , Telómero
2.
Genome Biol ; 24(1): 157, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403156

RESUMEN

BACKGROUND: The first telomere-to-telomere (T2T) human genome assembly (T2T-CHM13) release is a milestone in human genomics. The T2T-CHM13 genome assembly extends our understanding of telomeres, centromeres, segmental duplication, and other complex regions. The current human genome reference (GRCh38) has been widely used in various human genomic studies. However, the large-scale genomic differences between these two important genome assemblies are not characterized in detail yet. RESULTS: Here, in addition to the previously reported "non-syntenic" regions, we find 67 additional large-scale discrepant regions and precisely categorize them into four structural types with a newly developed website tool called SynPlotter. The discrepant regions (~ 21.6 Mbp) excluding telomeric and centromeric regions are highly structurally polymorphic in humans, where the deletions or duplications are likely associated with various human diseases, such as immune and neurodevelopmental disorders. The analyses of a newly identified discrepant region-the KLRC gene cluster-show that the depletion of KLRC2 by a single-deletion event is associated with natural killer cell differentiation in ~ 20% of humans. Meanwhile, the rapid amino acid replacements observed within KLRC3 are probably a result of natural selection in primate evolution. CONCLUSION: Our study provides a foundation for understanding the large-scale structural genomic differences between the two crucial human reference genomes, and is thereby important for future human genomics studies.


Asunto(s)
Genoma Humano , Genómica , Animales , Humanos , Duplicaciones Segmentarias en el Genoma , Familia de Multigenes , Centrómero/genética , Subfamília C de Receptores Similares a Lectina de Células NK/genética
3.
Clin Chem ; 68(9): 1177-1183, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35869940

RESUMEN

BACKGROUND: Laboratories utilizing next-generation sequencing align sequence data to a standardized human reference genome (HRG). Several updated versions, or builds, have been released since the original HRG in 2001, including the Genome Reference Consortium Human Build 38 (GRCh38) in 2013. However, most clinical laboratories still use GRCh37, which was released in 2009. We report our laboratory's clinical validation of GRCh38. METHODS: Migration to GRCh38 was validated by comparing the coordinates (lifting over) of 9443 internally curated variants from GRCh37 to GRCh38, globally comparing protein coding sequence variants aligned with GRCh37 vs GRCh38 from 917 exomes, assessing genes with known discrepancies, comparing coverage differences, and establishing the analytic sensitivity and specificity of variant detection using Genome in a Bottle data. RESULTS: Eight discrepancies, due to strand swap or reference base, were observed. Three clinically relevant variants had the GRCh37 alternate allele as the reference allele in GRCh38. A comparison of 88 295 calls between builds identified 8 disease-associated genes with sequence differences: ABO, BNC2, KIZ, NEFL, NR2E3, PTPRQ, SHANK2, and SRD5A2. Discrepancies in coding regions in GRCh37 were resolved in GRCh38. CONCLUSIONS: There were a small number of clinically significant changes between the 2 genome builds. GRCh38 provided improved detection of nucleotide changes due to the resolution of discrepancies present in GRCh37. Implementation of GRCh38 results in more accurate and consistent reporting.


Asunto(s)
Genoma Humano , Laboratorios , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Alelos , Proteínas de Ciclo Celular , Exoma , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Proteínas de la Membrana , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores
4.
Genes (Basel) ; 11(11)2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33202901

RESUMEN

The current human reference genome (GRCh38), with its superior quality, has contributed significantly to genome analysis. However, GRCh38 may still underrepresent the ethnic genome, specifically for Asians, though exactly what we are missing is still elusive. Here, we juxtaposed GRCh38 with a high-contiguity genome assembly of one Korean (AK1) to show that a part of AK1 genome is missing in GRCh38 and that the missing regions harbored ~1390 putative coding elements. Furthermore, we found that multiple populations shared some certain parts in the missing genome when we analyzed the "unmapped" (to GRCh38) reads of fourteen individuals (five East-Asians, four Europeans, and five Africans), amounting to ~5.3 Mb (~0.2% of AK1) of the total genomic regions. The recovered AK1 regions from the "unmapped reads", which were the estimated missing regions that did not exist in GRCh38, harbored candidate coding elements. We verified that most of the common (shared by ≥7 individuals) missing regions exist in human and chimpanzee DNA. Moreover, we further identified the occurrence mechanism and ethnic heterogeneity as well as the presence of the common missing regions. This study illuminates a potential advantage of using a pangenome reference and brings up the need for further investigations on the various features of regions globally missed in GRCh38.


Asunto(s)
Pueblo Asiatico/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena de la Polimerasa , Secuencias Repetitivas de Ácidos Nucleicos
5.
Cell Syst ; 9(1): 24-34.e10, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344359

RESUMEN

We present a systematic analysis of the effects of synchronizing a large-scale, deeply characterized, multi-omic dataset to the current human reference genome, using updated software, pipelines, and annotations. For each of 5 molecular data platforms in The Cancer Genome Atlas (TCGA)-mRNA and miRNA expression, single nucleotide variants, DNA methylation and copy number alterations-comprehensive sample, gene, and probe-level studies were performed, towards quantifying the degree of similarity between the 'legacy' GRCh37 (hg19) TCGA data and its GRCh38 (hg38) version as 'harmonized' by the Genomic Data Commons. We offer gene lists to elucidate differences that remained after controlling for confounders, and strategies to mitigate their impact on biological interpretation. Our results demonstrate that the hg19 and hg38 TCGA datasets are very highly concordant, promote informed use of either legacy or harmonized omics data, and provide a rubric that encourages similar comparisons as new data emerge and reference data evolve.


Asunto(s)
Genoma/genética , MicroARNs/genética , Neoplasias/genética , Programas Informáticos , Estudios Controlados Antes y Después , Conjuntos de Datos como Asunto , Perfilación de la Expresión Génica , Genoma Humano , Genómica , Intercambio de Información en Salud , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
6.
BMC Genomics ; 20(1): 459, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170919

RESUMEN

BACKGROUND: The most widely used human genome reference assembly hg19 harbors minor alleles at 2.18 million positions as revealed by 1000 Genome Phase 3 dataset. Although this is less than 2% of the 89 million variants reported, it has been shown that the minor alleles can result in 30% false positives in individual genomes, thus misleading and burdening downstream interpretation. More alarming is the fact that, significant percentage of variants that are homozygous recessive for these minor alleles, with potential disease implications, are masked from reporting. RESULTS: We have demonstrated that the false positives (FP) and false negatives (FN) can be corrected for by simply replacing nucleotides at the minor allele positions in hg19 with corresponding major allele. Here, we have effectively replaced 2.18 million minor alleles Single Nucleotide Polymorphism (SNPs), Insertion and Deletions (INDELs), Multiple Nucleotide Polymorphism (MNPs) in hg19 with the corresponding major alleles to create an ethnically normalized reference genome called hg19KIndel. In doing so, hg19KIndel has both corrected for sequencing errors acknowledged to be present in hg19 and has improved read alignment near the minor alleles in hg19. CONCLUSION: We have created and made available a new version human reference genome called hg19KIndel. It has been shown that variant calling using hg19KIndel, significantly reduces false positives calls, which in-turn reduces the burden from downstream analysis and validation. It also improved false negative variants call, which means that the variants which were getting missed due to the presence of minor alleles in hg19, will now be called using hg19KIndel. Using hg19KIndel, one even gets a better mapping percentage when compared to currently available human reference genome. hg19KIndel reference genome and its auxiliary datasets are available at https://doi.org/10.5281/zenodo.2638113.


Asunto(s)
Etnicidad/genética , Variación Genética , Genoma Humano , Alelos , Bases de Datos de Ácidos Nucleicos , Humanos , Mutación INDEL , Polimorfismo de Nucleótido Simple , Estándares de Referencia , Análisis de Secuencia de ADN
7.
BMC Bioinformatics ; 20(1): 342, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31208315

RESUMEN

BACKGROUND: Whole exome sequencing (WES) is a cost-effective method that identifies clinical variants but it demands accurate variant caller tools. Currently available tools have variable accuracy in predicting specific clinical variants. But it may be possible to find the best combination of aligner-variant caller tools for detecting accurate single nucleotide variants (SNVs) and small insertion and deletion (InDels) separately. Moreover, many important aspects of InDel detection are overlooked while comparing the performance of tools, particularly its base pair length. RESULTS: We assessed the performance of variant calling pipelines using the combinations of four variant callers and five aligners on human NA12878 and simulated exome data. We used high confidence variant calls from Genome in a Bottle (GiaB) consortium for validation, and GRCh37 and GRCh38 as the human reference genome. Based on the performance metrics, both BWA and Novoalign aligners performed better with DeepVariant and SAMtools callers for detecting SNVs, and with DeepVariant and GATK for InDels. Furthermore, we obtained similar results on human NA24385 and NA24631 exome data from GiaB. CONCLUSION: In this study, DeepVariant with BWA and Novoalign performed best for detecting accurate SNVs and InDels. The accuracy of variant calling was improved by merging the top performing pipelines. The results of our study provide useful recommendations for analysis of WES data in clinical genomics.


Asunto(s)
Simulación por Computador , Secuenciación del Exoma , Polimorfismo de Nucleótido Simple/genética , Emparejamiento Base/genética , Exoma/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación INDEL/genética , Curva ROC
8.
Cell ; 176(3): 663-675.e19, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30661756

RESUMEN

In order to provide a comprehensive resource for human structural variants (SVs), we generated long-read sequence data and analyzed SVs for fifteen human genomes. We sequence resolved 99,604 insertions, deletions, and inversions including 2,238 (1.6 Mbp) that are shared among all discovery genomes with an additional 13,053 (6.9 Mbp) present in the majority, indicating minor alleles or errors in the reference. Genotyping in 440 additional genomes confirms the most common SVs in unique euchromatin are now sequence resolved. We report a ninefold SV bias toward the last 5 Mbp of human chromosomes with nearly 55% of all VNTRs (variable number of tandem repeats) mapping to this portion of the genome. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity.


Asunto(s)
Frecuencia de los Genes/genética , Genoma Humano/genética , Variación Estructural del Genoma/genética , Alelos , Eucromatina/genética , Genómica/métodos , Humanos , Repeticiones de Minisatélite/genética , Análisis de Secuencia de ADN/métodos
9.
Genes (Basel) ; 9(10)2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30304863

RESUMEN

The current human reference sequence (GRCh38) is a foundation for large-scale sequencing projects. However, recent studies have suggested that GRCh38 may be incomplete and give a suboptimal representation of specific population groups. Here, we performed a de novo assembly of two Swedish genomes that revealed over 10 Mb of sequences absent from the human GRCh38 reference in each individual. Around 6 Mb of these novel sequences (NS) are shared with a Chinese personal genome. The NS are highly repetitive, have an elevated GC-content, and are primarily located in centromeric or telomeric regions. Up to 1 Mb of NS can be assigned to chromosome Y, and large segments are also missing from GRCh38 at chromosomes 14, 17, and 21. Inclusion of NS into the GRCh38 reference radically improves the alignment and variant calling from short-read whole-genome sequencing data at several genomic loci. A re-analysis of a Swedish population-scale sequencing project yields > 75,000 putative novel single nucleotide variants (SNVs) and removes > 10,000 false positive SNV calls per individual, some of which are located in protein coding regions. Our results highlight that the GRCh38 reference is not yet complete and demonstrate that personal genome assemblies from local populations can improve the analysis of short-read whole-genome sequencing data.

10.
Genomics ; 109(2): 83-90, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28131802

RESUMEN

Analyses of high throughput sequencing data starts with alignment against a reference genome, which is the foundation for all re-sequencing data analyses. Each new release of the human reference genome has been augmented with improved accuracy and completeness. It is presumed that the latest release of human reference genome, GRCh38 will contribute more to high throughput sequencing data analysis by providing more accuracy. But the amount of improvement has not yet been quantified. We conducted a study to compare the genomic analysis results between the GRCh38 reference and its predecessor GRCh37. Through analyses of alignment, single nucleotide polymorphisms, small insertion/deletions, copy number and structural variants, we show that GRCh38 offers overall more accurate analysis of human sequencing data. More importantly, GRCh38 produced fewer false positive structural variants. In conclusion, GRCh38 is an improvement over GRCh37 not only from the genome assembly aspect, but also yields more reliable genomic analysis results.


Asunto(s)
Genoma Humano , Biblioteca Genómica , Genómica/métodos , Polimorfismo Genético , Análisis de Secuencia de ADN/métodos , Exactitud de los Datos , Genómica/normas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Análisis de Secuencia de ADN/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA