Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Intervalo de año de publicación
2.
Front Immunol ; 15: 1443096, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176097

RESUMEN

Introduction: Influenza virus infection can cause a range of clinical symptoms, including respiratory failure (RF) and even death. The mechanisms responsible for the most severe forms of the disease are not yet well understood. The objective is to assess the initial immune response upon admission and its potential impact on infection progression. Methods: We conducted a prospective observational study of patients with influenza virus infection who required admission to a tertiary hospital in the 2017/18 and 2018/19 flu seasons. Immune markers, surrogate markers of neutrophil activation, and blood levels of DNase I and Apolipoprotein-H (ApoH) were determined in the first serum sample available during hospital care. Patients were followed until hospital discharge or death. Initially, 792 patients were included. From this group, 107 patients with poor evolution were selected, and a random control group was matched by day of admission. Results: Patients with poor outcomes had significantly reduced ApoH levels, a soluble protein that regulate both complement and coagulation pathways. In multivariate analysis, low plasma levels of ApoH (OR:5.43; 2.21-13.4), high levels of C- reactive protein (OR:2.73: 1.28-5.4), hyperferritinemia (OR:2.83; 1.28-5.4) and smoking (OR:3.41; 1.04-11.16), were significantly associated with a worse prognosis. RF was independently associated with low levels of ApoH (OR: 5.12; 2.02-1.94), while high levels of IL15 behaved as a protective factor (OR:0.30; 0.12-0.71). Discussion: Therefore, in hospitalized influenza patients, a dysregulated early immune response is associated with a worse outcome. Adequate plasma levels of ApoH are protective against severe influenza and RF and High levels of IL15 protect against RF.


Asunto(s)
Biomarcadores , Gripe Humana , Interleucina-15 , Interleucina-8 , Humanos , Gripe Humana/inmunología , Gripe Humana/sangre , Masculino , Femenino , Biomarcadores/sangre , Pronóstico , Persona de Mediana Edad , Interleucina-15/sangre , Anciano , Estudios Prospectivos , Interleucina-8/sangre , Adulto
3.
Exp Hematol Oncol ; 13(1): 85, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160631

RESUMEN

Epstein-Barr virus (EBV) related post-transplant lymphoproliferative disorder (EBV-PTLD) is a life-threatening complication after hematopoietic stem cell transplantation (HSCT) or solid organ transplantation (SOT), for which no standard therapeutic means have been developed. Significant increase expression of natural killer group 2 member D ligands (NKG2DLs) was observed on B-lymphoblastoid cells of EBV-PTLD, indicating NKG2DLs as potential therapeutic targets for treatment of EBV-PTLD. In this study, the recombinant constructs of NKG2D CAR and IL-15/IL-15Rα-NKG2D CAR were generated with a retroviral vector and then transduced to human T cells to produce NKG2D CAR-T and IL-15/IL-15Rα-NKG2D CAR-T cells, respectively. B-lymphoblastoid cell lines (B-LCLs) and the xenografted mouse models were established to evaluate the efficacy of these CAR-T cells. IL-15/IL-15Rα-NKG2D CAR-T cells exhibited superior proliferation and antigen-specific cytotoxic effect compared to NKG2D CAR-T, as IL-15/IL-15Rα signaling promoted the expansion of less differentiated central memory T cells (TCM) and increased expression of CD107a and IFN-γ. Moreover, EBV DNA load was dramatically reduced, and 80% B-LCL cells were eliminated by IL-15/IL-15Rα-NKG2D CAR-T cells after co-culturing. In-vivo study confirmed that IL-15/IL-15Rα-NKG2D CAR-T cell therapy significantly enhanced antiviral efficacy in mice, as the serum load of EBV after IL-15/IL-15Rα-NKG2D CAR-T cell infusion was 1500 times lower than the untreated control (P < 0.001). The enhanced efficacy of IL-15/IL-15Rα-NKG2D CAR T cells was probably due to the IL-15/IL-15Rα signaling improved homing and persistence of NKG2D CAR-T cells in vivo, and increased the production of IFN-γ, Perforin, and Granulysin. In conclusion, NKG2D CAR-T cells co-expressing IL-15/IL-15Rα promoted the central memory CAR T cell proliferation and improved the homing and persistence of CAR T cells in vivo, resulting in enhanced anti-tumor and anti-viral effects in treating EBV-PTLD.

4.
J Cancer Immunol (Wilmington) ; 6(1): 20-28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119270

RESUMEN

The emergence of chimeric antigen receptor T cell (CAR-T cell) therapy has revolutionized cancer treatment, particularly for hematologic malignancies. This commentary discusses developments in CAR-T cell therapy, focusing on the molecular mechanisms governing T cell fate and differentiation. Transcriptional and epigenetic factors play a pivotal role in determining the specificity, effectiveness, and durability of CAR-T cell therapy. Understanding these mechanisms is crucial to improve the efficacy and decrease the adverse events associated with CAR-T cell therapies, unlocking the full potential of these approaches. T cell differentiation in CAR-T cell product manufacturing plays an important role in clinical outcomes. A positive correlation exists between the clinical efficacy of CAR-T cell therapy and signatures of memory, whereas a negative correlation has been observed with signatures of effector function or exhaustion. The effectiveness of CAR-T cell products is likely influenced by T-cell frequency and by their ability to proliferate, which is closely linked to early T cell differentiation. The differentiation process involving distinct T memory cell subsets is initiated upon antigen elimination, indicating infection resolution. In chronic infections or cancer, T cells may undergo exhaustion, marked by continuous inhibitory receptor expression, decreased cytokine production, and diminished proliferative capacity. Other cell subsets, such as CD4+ T cells, innate-like T lymphocytes, NKT cells, and cord blood-derived hematopoietic stem cells, offer unique advantages in developing the next-generation CAR-T cell-based therapies. Future research should focus on optimizing T-cell-enhancing approaches and developing strategies to potentially cure patients with hematological diseases and solid tumors.

5.
Front Immunol ; 15: 1412378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114666

RESUMEN

Production of large amounts of functional NK and CAR-NK cells represents one of the bottlenecks for NK-based immunotherapy. In this study, we developed a large-scale, reliable, and practicable NK and CAR-NK production using G-Rex 100M bioreactors, which depend on a gas-permeable membrane technology. This system holds large volumes of medium with enhanced oxygen delivery, creating conditions conducive to large-scale PBNK and CAR-NK expansions for cancer therapy. Both peripheral blood NK cells (PBNKs) and CAR-NKs expanded in these bioreactors retained similar immunophenotypes and exhibited comparable cytotoxicity towards hepatocellular carcinoma (HCC) cells akin to that of NK and CAR-NK cells expanded in G-Rex 6 well bioreactors. Importantly, cryopreservation minimally affected the cytotoxicity of NK cells expanded using the G-Rex 100M bioreactors, establishing a robust platform for scaled-up NK and CAR-NK cell production. This method is promising for the development of "off-the-shelf" NK cells, supporting the future clinical implementation of NK cell immunotherapy.


Asunto(s)
Reactores Biológicos , Inmunoterapia Adoptiva , Células Asesinas Naturales , Receptores Quiméricos de Antígenos , Células Asesinas Naturales/inmunología , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Técnicas de Cultivo de Célula/métodos , Citotoxicidad Inmunológica , Línea Celular Tumoral , Proliferación Celular , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/terapia
6.
Mol Immunol ; 174: 11-17, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128414

RESUMEN

Microglia play a major role in the immune defense system of the central nervous system and are activated in many neurological diseases. The immunomodulatory cytokine interleukin (IL)-15 is known to be involved in microglia response and inflammatory factors release. Neoprzewaquinone A (NEO) is an active compound isolated from Salvia miltiorrhiza Bunge. Our previous study has shown that NEO significantly inhibit the proliferation of IL-15-treated Mo7e cells. However, the role of NEO in the structure and function of IL-15-treated human microglial cells (HMC3) remains unclear. Thus, our study aimed to quantitatively analyze the beneficial effects of NEO on HMC3 cells following IL-15 treatment. The cell viability, phagocytosis, migration and energy metabolism were evaluated by Cell Counting Kit-8 (CCK8), scratch assay, pHrodo™ Red Zymosan BioParticles™ Conjugate, and Agilent Seahorse XF Cell Mito Test. Cephalothin (CEP) was selected as a positive drug because it has obvious inhibitory effect on IL-15 and IL-15Rɑ. Our results showed that IL-15 stimulated the proliferation, migration and phagocytosis of HMC3 cells in a time-dependent manner. Interestingly, NEO exhibited significant suppressive effects on these IL-15-induced changes, which were even superior to those observed with the CEP. Moreover, IL-15 treatment did not significantly alter energy metabolism, including glycolysis and mitochondrial respiration. NEO and CEP alone effectively reduced glycolysis, non-mitochondrial respiration, basal respiration, ATP turnover, respiration capacity, and H+ leak in HMC3 cells. Furthermore, NEO displayed a partial regulatory effect on mitochondrial function in IL-15-treated HMC3 cells. Our study confirms the effectively inhibition of NEO on IL-15-induced microglial activation and provides valuable insights into the therapeutic prospects of NEO in neuropsychiatric disorders associated with IL-15 and microglia.

7.
Cancer Immunol Immunother ; 73(9): 179, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960949

RESUMEN

Adoptive cellular therapy (ACT) using memory-like (ML) natural killer (NK) cells, generated through overnight ex vivo activation with IL-12, IL-15, and IL-18, has shown promise for treating hematologic malignancies. We recently reported that a multifunctional fusion molecule, HCW9201, comprising IL-12, IL-15, and IL-18 domains could replace individual cytokines for priming human ML NK cell programming ("Prime" step). However, this approach does not include ex vivo expansion, thereby limiting the ability to test different doses and schedules. Here, we report the design and generation of a multifunctional fusion molecule, HCW9206, consisting of human IL-7, IL-15, and IL-21 cytokines. We observed > 300-fold expansion for HCW9201-primed human NK cells cultured for 14 days with HCW9206 and HCW9101, an IgG1 antibody, recognizing the scaffold domain of HCW9206 ("Expand" step). This expansion was dependent on both HCW9206 cytokines and interactions of the IgG1 mAb with CD16 receptors on NK cells. The resulting "Prime and Expand" ML NK cells exhibited elevated metabolic capacity, stable epigenetic IFNG promoter demethylation, enhanced antitumor activity in vitro and in vivo, and superior persistence in NSG mice. Thus, the "Prime and Expand" strategy represents a simple feeder cell-free approach to streamline manufacturing of clinical-grade ML NK cells to support multidose and off-the-shelf ACT.


Asunto(s)
Memoria Inmunológica , Células Asesinas Naturales , Proteínas Recombinantes de Fusión , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Humanos , Animales , Proteínas Recombinantes de Fusión/genética , Ratones , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Inmunoterapia Adoptiva/métodos , Interleucina-15/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-39041621

RESUMEN

Cytokines are key mediators of immune regulation, orchestrate communication between immune cells, and play a pivotal role in shaping the immune landscape during chronic infection and cancer. The therapeutic potential of IL-15/IL-15Rα and IL-12 has been explored individually in various immunotherapeutic strategies, though not as a combination. Therefore, we investigated whether the combination of IL-15/IL-15Rα and IL-12 treatment would enhance the potency and quality of either NK cells, SIV-specific CD8 T cells, or both, compared with single cytokine treatment. Our findings reveal that in vitro IL-15/IL-15Rα and IL-15/IL-15Rα plus IL-12 treatment results in an expansion of functional CD8 T cells and NK cells from uninfected and chronically infected macaques with simian/human immunodeficiency virus. Additionally, the cytokine combination significantly reduced CCR5 expression on total CD4 T cells, limiting the number of viral targets. This study supports the potential utilization of combined IL-15/IL-15Rα plus IL-12 treatment for chronic viral infections and cancer.

9.
Cardiovasc Res ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850163

RESUMEN

AIMS: The widespread use of immune checkpoint inhibitors (ICIs) has demonstrated significant survival benefits for cancer patients and also carry the risk of immune-related adverse events (irAEs). ICIs-associated myocarditis is a rare and serious adverse event with a high mortality rate. Here, we explored the mechanism underlying ICIs-associated myocarditis. METHODS AND RESULTS: Using the peripheral blood of patients with ICIs therapy and ICIs treated mice with transplanted tumors, we dissect the immune cell subsets and inflammatory factors associated with myocarditis. Compared to the control group, patients with myocarditis after ICIs therapy showed an increase in NK cells and myeloid cells in peripheral blood, while T cells significantly decreased. Among T cells, there was an imbalance of CD4/CD8 ratio in the peripheral blood of myocarditis patients, with a significant decrease in central memory CD4+ T (CD4+ TCM) cells. RNA-Seq revealed that CD4+ TCM cells in myocarditis patients were an immunosuppressive cell subset, which highly express the immunosuppressive factor IL4I1. To elucidate the potential mechanism of the decrease in CD4+ TCM cells, protein array was performed and revealed that several inflammatory factors gradually increased with the severity of myocarditis in the myocarditis group, such as IL-1B/CXCL13/CXCL9, while the myocardial protective factor IL-15 decreased. Correlation analysis indicated a positive correlation between IL-15 and CD4+ TCM cells, with high expression of IL-15 receptor IL15RA. Furthermore, in vivo studies using an anti-PDL1 antibody in a mouse tumor model indicated a reduction in CD4+ TCM cells and an increase in CD8+ TEMRA cells, alongside evidence of cardiac fibrosis. Conversely, combining anti-PDL1 antibody treatment with IL-15 led to a resurgence of CD4+ TCM cells, a reduction in CD8+ TEMRA cells, and a mitigated risk of cardiac fibrosis. CONCLUSIONS: Our data highlight CD4+ TCM cells as a crucial role in cardiac protection during ICIs therapy. IL-15, IL4I1 and CD4+ TCM cells can serve as therapeutic targets to reduce ICIs-associated myocarditis in cancer patients.

10.
Mol Ther Oncol ; 32(2): 200820, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38933492

RESUMEN

The prognosis for children with recurrent and/or refractory neuroblastoma (NB) is dismal. The receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is highly expressed on the surface of NB cells, provides a potential target for novel immunotherapeutics. Anti-ROR1 chimeric antigen receptor engineered ex vivo expanded peripheral blood natural killer (anti-ROR1 CAR exPBNK) cells represent this approach. N-803 is an IL-15 superagonist with enhanced biological activity. In this study, we investigated the in vitro and in vivo anti-tumor effects of anti-ROR1 CAR exPBNK cells with or without N-803 against ROR1+ NB models. Compared to mock exPBNK cells, anti-ROR1 CAR exPBNK cells had significantly enhanced cytotoxicity against ROR1+ NB cells, and N-803 further increased cytotoxicity. High-dimensional analysis revealed that N-803 enhanced Stat5 phosphorylation and Ki67 levels in both exPBNK and anti-ROR1 CAR exPBNK cells with or without NB cells. In vivo, anti-ROR1 CAR exPBNK plus N-803 significantly (p < 0.05) enhanced survival in human ROR1+ NB xenografted NSG mice compared to anti-ROR1 CAR exPBNK alone. Our results provide the rationale for further development of anti-ROR1 CAR exPBNK cells plus N-803 as a novel combination immunotherapeutic for patients with recurrent and/or refractory ROR1+ NB.

11.
Sci Rep ; 14(1): 14892, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937503

RESUMEN

Accurate screening of COVID-19 infection status for symptomatic patients is a critical public health task. Although molecular and antigen tests now exist for COVID-19, in resource-limited settings, screening tests are often not available. Furthermore, during the early stages of the pandemic tests were not available in any capacity. We utilized an automated machine learning (ML) approach to train and evaluate thousands of models on a clinical dataset consisting of commonly available clinical and laboratory data, along with cytokine profiles for patients (n = 150). These models were then further tested for generalizability on an out-of-sample secondary dataset (n = 120). We were able to develop a ML model for rapid and reliable screening of patients as COVID-19 positive or negative using three approaches: commonly available clinical and laboratory data, a cytokine profile, and a combination of the common data and cytokine profile. Of the tens of thousands of models automatically tested for the three approaches, all three approaches demonstrated > 92% sensitivity and > 88 specificity while our highest performing model achieved 95.6% sensitivity and 98.1% specificity. These models represent a potential effective deployable solution for COVID-19 status classification for symptomatic patients in resource-limited settings and provide proof-of-concept for rapid development of screening tools for novel emerging infectious diseases.


Asunto(s)
COVID-19 , Citocinas , Aprendizaje Automático , Humanos , COVID-19/diagnóstico , Citocinas/sangre , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , Tamizaje Masivo/métodos , Masculino , Femenino , Sensibilidad y Especificidad , Persona de Mediana Edad , Adulto , Anciano
12.
Front Immunol ; 15: 1404891, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919611

RESUMEN

Background: Inflammatory cytokines play key pathogenic roles in liver fibrosis. IL-15 is a proinflammatory cytokine produced by myeloid cells. IL-15 promotes pathogenesis of several chronic inflammatory diseases. However, increased liver fibrosis has been reported in mice lacking IL-15 receptor alpha chain (IL-15Rα), suggesting an anti-fibrogenic role for IL-15. As myeloid cells are key players in liver fibrosis and IL-15 signaling can occur independently of IL-15Rα, we investigated the requirement of IL-15 and IL-15Rα in liver fibrosis. Methods: We induced liver fibrosis in Il15-/- , Il15ra-/- and wildtype C57BL/6 mice by the administration of carbon tetrachloride (CCl4). Liver fibrosis was evaluated by Sirius red and Mason's trichrome staining and α-smooth muscle acting immunostaining of myofibroblasts. Gene expression of collagens, matrix modifying enzymes, cytokines and chemokines was quantified by RT-qPCR. The phenotype and the numbers of intrahepatic lymphoid and myeloid cell subsets were evaluated by flow cytometry. Results: Both Il15-/- and Il15ra-/- mice developed markedly reduced liver fibrosis compared to wildtype control mice, as revealed by reduced collagen deposition and myofibroblast content. Il15ra-/- mice showed further reduction in collagen deposition compared to Il15-/- mice. However, Col1a1 and Col1a3 genes were similarly induced in the fibrotic livers of wildtype, Il15-/- and Il15ra-/- mice, although notable variations were observed in the expression of matrix remodeling enzymes and chemokines. As expected, Il15-/- and Il15ra-/- mice showed markedly reduced numbers of NK cells compared to wildtype mice. They also showed markedly less staining of CD45+ immune cells and CD68+ macrophages, and significantly reduced inflammatory cell infiltration into the liver, with fewer pro-inflammatory and anti-inflammatory monocyte subsets compared to wildtype mice. Conclusion: Our findings indicate that IL-15 exerts its profibrogenic role in the liver by promoting macrophage activation and that this requires trans-presentation of IL-15 by IL-15Rα.


Asunto(s)
Tetracloruro de Carbono , Modelos Animales de Enfermedad , Subunidad alfa del Receptor de Interleucina-15 , Interleucina-15 , Cirrosis Hepática , Ratones Endogámicos C57BL , Ratones Noqueados , Animales , Interleucina-15/metabolismo , Interleucina-15/genética , Ratones , Subunidad alfa del Receptor de Interleucina-15/genética , Subunidad alfa del Receptor de Interleucina-15/metabolismo , Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/inducido químicamente , Masculino , Hígado/patología , Hígado/metabolismo , Hígado/inmunología , Citocinas/metabolismo , Receptores de Interleucina-15
13.
Nutrients ; 16(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38892530

RESUMEN

Anorexia nervosa (AN) is a severe eating disorder that predominantly affects females and typically manifests during adolescence. There is increasing evidence that serum cytokine levels are altered in individuals with AN. Previous research has largely focused on adult patients, assuming a low-grade pro-inflammatory state. The serum levels of the cytokine tumour necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, IL-6 and IL-15, which are pro-inflammatory, were examined in 63 female adolescents with AN and 41 age-matched healthy controls (HC). We included three time points (admission, discharge, and 1-year follow-up) and investigated the clinical data to assess whether the gut microbiota was associated with cytokine alterations. Relative to the HC group, serum levels of IL-1ß and IL-6 were significantly lower during the acute phase (admission) of AN. IL-1ß expression was normalised to control levels after weight recovery. TNF-α levels were not significantly different between the AN and HC groups. IL-15 levels were significantly elevated in patients with AN at all time points. We found associations between cytokines and bodyweight, illness duration, depressive symptoms, and the microbiome. In contrast to most findings for adults, we observed lower levels of the pro-inflammatory cytokines IL-1ß and IL-6 in adolescent patients, whereas the level of IL-15 was consistently increased. Thus, the presence of inflammatory dysregulation suggests a varied rather than uniform pro-inflammatory state.


Asunto(s)
Anorexia Nerviosa , Citocinas , Microbioma Gastrointestinal , Humanos , Anorexia Nerviosa/sangre , Anorexia Nerviosa/microbiología , Femenino , Adolescente , Citocinas/sangre , Estudios de Seguimiento , Alta del Paciente , Estudios de Casos y Controles , Interleucina-1beta/sangre , Factor de Necrosis Tumoral alfa/sangre , Admisión del Paciente , Interleucina-6/sangre
14.
Front Pharmacol ; 15: 1380000, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887559

RESUMEN

Introduction: Interleukin 15 (IL-15) is a potential anticancer agent and numerous engineered IL-15 agonists are currently under clinical investigation. Selective targeting of IL-15 to specific lymphocytes may enhance therapeutic effects while helping to minimize toxicities. Methods: We designed and built a heterodimeric targeted cytokine (TaCk) that consists of an anti-programmed cell death 1 receptor antibody (anti-PD-1) and an engineered IL-15. This "PD1/IL15" selectively delivers IL-15 signaling to lymphocytes expressing PD-1. We then investigated the pharmacokinetic (PK) and pharmacodynamic (PD) effects of PD1/IL15 TaCk on immune cell subsets in cynomolgus monkeys after single and repeat intravenous dose administrations. We used these results to determine the first-in-human (FIH) dose and dosing frequency for early clinical trials. Results: The PD1/IL15 TaCk exhibited a nonlinear multiphasic PK profile, while the untargeted isotype control TaCk, containing an anti-respiratory syncytial virus antibody (RSV/IL15), showed linear and dose proportional PK. The PD1/IL15 TaCk also displayed a considerably prolonged PK (half-life range ∼1.0-4.1 days) compared to wild-type IL-15 (half-life ∼1.1 h), which led to an enhanced cell expansion PD response. The PD was dose-dependent, durable, and selective for PD-1+ lymphocytes. Notably, the dose- and time-dependent PK was attributed to dynamic TMDD resulting from test article-induced lymphocyte expansion upon repeat administration. The recommended first-in-human (FIH) dose of PD1/IL15 TaCk is 0.003 mg/kg, determined based on a minimum anticipated biological effect level (MABEL) approach utilizing a combination of in vitro and preclinical in vivo data. Conclusion: This work provides insight into the complex PK/PD relationship of PD1/IL15 TaCk in monkeys and informs the recommended starting dose and dosing frequency selection to support clinical evaluation of this novel targeted cytokine.

15.
Mol Ther ; 32(8): 2728-2740, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38879754

RESUMEN

Despite the remarkable success of chimeric antigen receptor (CAR) T therapy in hematological malignancies, its efficacy in solid tumors remains limited. Cytokine-engineered CAR T cells offer a promising avenue, yet their clinical translation is hindered by the risks associated with constitutive cytokine expression. In this proof-of-concept study, we leverage the endogenous interferon (IFN)-γ promoter for transgenic interleukin (IL)-15 expression. We demonstrate that IFN-γ expression is tightly regulated by T cell receptor signaling. By introducing an internal ribosome entry site IL15 into the 3' UTR of the IFN-γ gene via homology directed repair-mediated knock-in, we confirm that IL-15 expression can co-express with IFN-γ in an antigen stimulation-dependent manner. Importantly, the insertion of transgenes does not compromise endogenous IFN-γ expression. In vitro and in vivo data demonstrate that IL-15 driven by the IFN-γ promoter dramatically improves CAR T cells' antitumor activity, suggesting the effectiveness of IL-15 expression. Last, as a part of our efforts toward clinical translation, we have developed an innovative two-gene knock-in approach. This approach enables the simultaneous integration of CAR and IL-15 genes into TRAC and IFN-γ gene loci using a single AAV vector. CAR T cells engineered to express IL-15 using this approach demonstrate enhanced antitumor efficacy. Overall, our study underscores the feasibility of utilizing endogenous promoters for transgenic cytokines expression in CAR T cells.


Asunto(s)
Inmunoterapia Adoptiva , Interferón gamma , Interleucina-15 , Regiones Promotoras Genéticas , Receptores Quiméricos de Antígenos , Interferón gamma/metabolismo , Humanos , Animales , Ratones , Inmunoterapia Adoptiva/métodos , Interleucina-15/genética , Interleucina-15/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/metabolismo , Linfocitos T/inmunología , Vectores Genéticos/genética , Línea Celular Tumoral , Transgenes , Citocinas/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Expresión Génica
16.
Front Immunol ; 15: 1252439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903513

RESUMEN

Antigen-driven human effector-memory CD8+ T cells expressing low levels of the CD8ß chain have been previously described. However, little is known on a possible antigen-independent trigger. We have examined the impact that IL-15 has on the expression of CD8ß on purified human naïve CD8+ T cells after CFSE labeling and culture with IL-15. As expected, IL-15 induced naïve CD8+ T cells to proliferate and differentiate. Remarkably, the process was associated with a cell-cycle dependent down-modulation of CD8ß from the cell surface, leading to the generation of CD8αßlow and CD8αß- (i.e., CD8αα) T cells. In contrast, expression of the CD8α chain remained steady or even increased. Neither IL-2 nor IL-7 reproduced the effect of IL-15. Determination of mRNA levels for CD8α and CD8ß isoforms by qPCR revealed that IL-15 promoted a significant decrease in mRNA levels of the CD8ß M-4 isoform, while levels of the M-1/M-2 isoforms and of CD8α increased. Noteworthy, CD8+ T cell blasts obtained after culture of CD8+ T cells with IL-15 showed a cell-cycle dependent increase in the level of the tyrosine kinase Lck, when compared to CD8+ T cells at day 0. This study has shown for the first time that IL-15 generates CD8αα+αßlow and CD8αα+αß- T cells containing high levels of Lck, suggesting that they may be endowed with unique functional features.


Asunto(s)
Antígenos CD8 , Linfocitos T CD8-positivos , Interleucina-15 , Activación de Linfocitos , Humanos , Interleucina-15/metabolismo , Interleucina-15/farmacología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Antígenos CD8/metabolismo , Activación de Linfocitos/inmunología , Células Cultivadas , Diferenciación Celular/inmunología , Proliferación Celular , Regulación hacia Abajo
17.
Kidney Int Rep ; 9(4): 1093-1106, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38765560

RESUMEN

Introduction: During glomerular diseases, podocyte-specific pathways can modulate the intensity of histological disease and prognosis. The therapeutic targeting of these pathways could thus improve the management and prognosis of kidney diseases. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway, classically described in immune cells, has been recently described in detail in intrinsic kidney cells. Methods: We describe STAT5 expression in human kidney biopsies from patients with focal segmental glomerulosclerosis (FSGS) and studied mice with a podocyte-specific Stat5 deletion in experimental glomerular diseases. Results: Here, we show, for the first time, that STAT5 is activated in human podocytes in FSGS. In addition, podocyte-specific Stat5 inactivation aggravates the structural and functional alterations in a mouse model of FSGS. This could be due, at least in part, to an inhibition of autophagic flux. Finally, interleukin 15 (IL-15), a classical activator of STAT5 in immune cells, increases STAT5 phosphorylation in human podocytes, and its administration alleviates glomerular injury in vivo by maintaining autophagic flux in podocytes. Conclusion: Activating podocyte STAT5 with commercially available IL-15 represents a potential new therapeutic avenue for FSGS.

18.
J Cell Sci ; 137(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38738282

RESUMEN

Advances in imaging, segmentation and tracking have led to the routine generation of large and complex microscopy datasets. New tools are required to process this 'phenomics' type data. Here, we present 'Cell PLasticity Analysis Tool' (cellPLATO), a Python-based analysis software designed for measurement and classification of cell behaviours based on clustering features of cell morphology and motility. Used after segmentation and tracking, the tool extracts features from each cell per timepoint, using them to segregate cells into dimensionally reduced behavioural subtypes. Resultant cell tracks describe a 'behavioural ID' at each timepoint, and similarity analysis allows the grouping of behavioural sequences into discrete trajectories with assigned IDs. Here, we use cellPLATO to investigate the role of IL-15 in modulating human natural killer (NK) cell migration on ICAM-1 or VCAM-1. We find eight behavioural subsets of NK cells based on their shape and migration dynamics between single timepoints, and four trajectories based on sequences of these behaviours over time. Therefore, by using cellPLATO, we show that IL-15 increases plasticity between cell migration behaviours and that different integrin ligands induce different forms of NK cell migration.


Asunto(s)
Movimiento Celular , Interleucina-15 , Células Asesinas Naturales , Humanos , Células Asesinas Naturales/citología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Interleucina-15/metabolismo , Programas Informáticos , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
19.
Cell Rep Med ; 5(5): 101531, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38697105

RESUMEN

The clinical applications of immunocytokines are severely restricted by dose-limiting toxicities. To address this challenge, here we propose a next-generation immunocytokine concept involving the design of LH05, a tumor-conditional anti-PD-L1/interleukin-15 (IL-15) prodrug. LH05 innovatively masks IL-15 with steric hindrance, mitigating the "cytokine sink" effect of IL-15 and reducing systemic toxicities associated with wild-type anti-PD-L1/IL-15. Moreover, upon specific proteolytic cleavage within the tumor microenvironment, LH05 releases an active IL-15 superagonist, exerting potent antitumor effects. Mechanistically, the antitumor efficacy of LH05 depends on the increased infiltration of CD8+ T and natural killer cells by stimulating the chemokines CXCL9 and CXCL10, thereby converting cold tumors into hot tumors. Additionally, the tumor-conditional anti-PD-L1/IL-15 can synergize with an oncolytic virus or checkpoint blockade in advanced and metastatic tumor models. Our findings provide a compelling proof of concept for the development of next-generation immunocytokines, contributing significantly to current knowledge and strategies of immunotherapy.


Asunto(s)
Antígeno B7-H1 , Interleucina-15 , Microambiente Tumoral , Interleucina-15/inmunología , Antígeno B7-H1/metabolismo , Antígeno B7-H1/inmunología , Antígeno B7-H1/genética , Animales , Humanos , Ratones , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inmunoterapia/métodos , Ratones Endogámicos C57BL , Femenino , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología
20.
Biomark Res ; 12(1): 40, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637902

RESUMEN

BACKGROUND: IL-15 plays a vital role in enhancing NK cell- and T-cell-mediated antitumor immune responses; however, the direct effect of IL-15 on tumor cells has not been fully elucidated. Herein, we investigated the effect of IL-15 on lung adenocarcinoma cells. METHODS: Silencing and overexpression techniques were used to modify endogenous IL-15 expression in tumor cells. Transwell assays were used to assess tumor cell migration and invasion; a live-cell analysis system was used to evaluate cell motility; cellular morphological changes were quantified by confocal fluorescence microscopy; the molecular mechanisms underlying the effect of IL-15 on tumor cells were analyzed by western blotting; and RhoA and Cdc42 activities were evaluated by a pulldown assay. NCG and C57BL/6 mouse models were used to evaluate the functions of IL-15 in vivo. RESULTS: Cancer cell-intrinsic IL-15 promoted cell motility and migration in vitro and metastasis in vivo via activation of the AKT-mTORC1 pathway; however, exogenous IL-15 inhibited cell motility and migration via suppression of the RhoA-MLC2 axis. Mechanistic analysis revealed that both the intracellular and extracellular IL-15-mediated effects required the expression of IL-15Rα by tumor cells. Detailed analyses revealed that the IL-2/IL-15Rß and IL-2Rγ chains were undetected in the complex formed by intracellular IL-15 and IL-15Rα. However, when exogenous IL-15 engaged tumor cells, a complex containing the IL-15Rα, IL-2/IL-15Rß, and IL-2Rγ chains was formed, indicating that the differential actions of intracellular and extracellular IL-15 on tumor cells might be caused by their distinctive modes of IL-15 receptor engagement. Using a Lewis lung carcinoma (LLC) metastasis model, we showed that although IL-15 overexpression facilitated the lung metastasis of LLC cells, IL-15-overexpressing LLC tumors were more sensitive to anti-PD-L1 therapy than were IL-15-wild-type LLC tumors via an enhanced antitumor immune response, as evidenced by their increased CD8+ T-cell infiltration compared to that of their counterparts. CONCLUSIONS: Cancer cell-intrinsic IL-15 and exogenous IL-15 differentially regulate cell motility and migration. Thus, cancer cell-intrinsic IL-15 acts as a double-edged sword in tumor progression. Additionally, high levels of IL-15 expressed by tumor cells might improve the responsiveness of tumors to immunotherapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA