Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Vet Res ; 55(1): 40, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532469

RESUMEN

The interaction between viral components and cellular proteins plays a crucial role in viral replication. In a previous study, we showed that the 3'-untranslated region (3'-UTR) is an essential element for the replication of duck hepatitis A virus type 1 (DHAV-1). However, the underlying mechanism is still unclear. To gain a deeper understanding of this mechanism, we used an RNA pull-down and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay to identify new host factors that interact with the 3'-UTR. We selected interleukin-2 enhancer binding factor 2 (ILF2) for further analysis. We showed that ILF2 interacts specifically with both the 3'-UTR and the 3D polymerase (3Dpol) of DHAV-1 through in vitro RNA pull-down and co-immunoprecipitation assays, respectively. We showed that ILF2 negatively regulates viral replication in duck embryo fibroblasts (DEFs), and that its overexpression in DEFs markedly suppresses DHAV-1 replication. Conversely, ILF2 silencing resulted in a significant increase in viral replication. In addition, the RNA-dependent RNA polymerase (RdRP) activity of 3Dpol facilitated viral replication by enhancing viral RNA translation efficiency, whereas ILF2 disrupted the role of RdRP in viral RNA translation efficiency to suppress DHAV-1 replication. At last, DHAV-1 replication markedly suppressed the expression of ILF2 in DEFs, duck embryo hepatocytes, and different tissues of 1 day-old ducklings. A negative correlation was observed between ILF2 expression and the viral load in primary cells and different organs of young ducklings, suggesting that ILF2 may affect the viral load both in vitro and in vivo.


Asunto(s)
Virus de la Hepatitis del Pato , Hepatitis Viral Animal , Infecciones por Picornaviridae , Enfermedades de las Aves de Corral , Animales , Interleucina-2/genética , ARN Polimerasa Dependiente del ARN/genética , Regulación de la Expresión Génica , ARN Viral/genética , Patos/genética , Infecciones por Picornaviridae/veterinaria
2.
Dev Comp Immunol ; 118: 103975, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33383068

RESUMEN

Alternative splicing is an essential molecular mechanism that increase the protein diversity of a species to regulate important biological processes. As a transcription factor, Interleukin-2 enhancer binding factor 2 (ILF2) regulates the functions of interleukin-2 (IL-2) at the levels of transcription, splicing and translation, and plays other critical roles in the immune system. ILF2 is well-documented in vertebrates, while little is currently known in crustacean species such as the Pacific white shrimp (Litopenaeus vannamei). In the present study, five cDNA for spliced isoforms of Lv-ILF2 were identified, in which four of them are the full-length long isoforms (Lv-ILF2-L1, Lv-ILF2-L2, Lv-ILF2-L3 and Lv-ILF2-L4) and one of them is a truncated short isoform (Lv-ILF2-S). The whole sequence of ILF2 gene from L. vannamei was obtained, which is 11,680 bp in length with 9 exons separated by 8 introns. All five isoforms contain a domain associated with zinc fingers (DZF). Two alternative splicing types (alternative 5' splice site and alternative 3' splice site) were identified in the five isoforms. The Lv-ILF2 mRNA showed a broad distribution in all detected tissues, and the Lv-ILF2-L transcript levels were higher than those of Lv-ILF2-S in corresponding tissues. The mRNA levels of Lv-ILF2-S in the hepatopancreas, heart, muscle and stomach, but not in the eyestalk, were significantly increased after challenges with Vibrio harveyi or lipopolysaccharide (LPS), while no significant changes were observed for the transcript levels of Lv-ILF2-L in these tissues under the same immune stimulants. On the contrary, the transcript levels of neither Lv-ILF2-S nor Lv-ILF2-L were affected by challenges of polyinosinic: polycytidylic acid [Poly (I:C)]. In addition, after knockdown of the Lv-ILF2 mRNA level by siRNA, the mortality of shrimp and the hepatopancreatic bacterial numbers were significantly increased under V. harveyi challenge, indicating that Lv-ILF2 might participate in the immune defenses against V. harveyi invasion. Collectively, our study here supplied the first evidence for a novel splicing mechanism of ILF2 transcripts, and provided a functional link between the Lv-ILF2 isoforms and the capacity against pathogenic Vibrio in penaeid shrimp.


Asunto(s)
Proteínas de Artrópodos/metabolismo , Inmunidad Innata/genética , Proteína del Factor Nuclear 45/metabolismo , Penaeidae/inmunología , Vibrio/inmunología , Empalme Alternativo/inmunología , Animales , Acuicultura , Proteínas de Artrópodos/genética , Técnicas de Silenciamiento del Gen , Proteína del Factor Nuclear 45/genética , Penaeidae/microbiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Virol J ; 14(1): 125, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28693575

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failures in sows and respiratory diseases in growing pigs, resulting in huge economic loss for the pig production worldwide. The nonstructural protein 9 (nsp9) and nonstructural protein 2 (nsp2) of PRRSV are known to play important roles in viral replication. Cellular interleukin-2 enhancer binding factor 2 (ILF2) participates in many cellular pathways and involves in life cycle of some viruses. In the present study, we analyzed the interaction of cellular ILF2 with the nsp9 and nsp2 of PRRSV in vitro and explored the effect of ILF2 on viral replication. METHODS: The interaction of ILF2 with the nsp9 or nsp2 of PRRSV was analyzed in 293FT cells and MARC-145 cells by co-immunoprecipitation (Co-IP) and the co-localization of ILF2 with the nsp9 or nsp2 of PRRSV in MARC-145 cell and pulmonary alveolar macrophages (PAMs) was examined by confocal immunofluorescence assay. The effect of ILF2 knockdown and over-expression on PRRSV replication was explored in MARC-145 cells by small interfering RNA (siRNA) and lentivirus transduction, respectively. RESULTS: The interaction of ILF2 with nsp9 or nsp2 was first demonstrated in 293FT cells co-transfected with ILF2-expressing plasmid and nsp9-expressing plasmid or nsp2-expressing plasmid. The interaction of endogenous ILF2 with the nsp9 or nsp2 of PRRSV was further confirmed in MARC-145 cells transduced with GFP-nsp9-expressing lentiviruses or infected with PRRSV JXwn06. The RdRp domain of nsp9 was shown to be responsible for its interaction with ILF2, while three truncated nsp2 were shown to interact with ILF2. Moreover, we observed that ILF2 partly translocated from the nucleus to the cytoplasm and co-localized with nsp9 and nsp2 in PRRSV-infected MARC-145 cells and PAMs. Finally, our analysis indicated that knockdown of ILF2 favored the replication of PRRSV, while over-expression of ILF2 impaired the viral replication in MARC-145 cells. CONCLUSION: Our findings are the first to confirm that the porcine ILF2 interacts with the nsp9 and nsp2 of PRRSV in vitro, and exerts negatively regulatory effect on the replication of PRRSV. Our present study provides more evidence for understanding the roles of the interactions between cellular proteins and viral proteins in the replication of PRRSV.


Asunto(s)
Interacciones Huésped-Patógeno , Proteína del Factor Nuclear 45/metabolismo , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Células Cultivadas , Células Epiteliales/virología , Macrófagos Alveolares/virología , Microscopía Confocal , Microscopía Fluorescente , Unión Proteica , Porcinos
4.
Dev Comp Immunol ; 42(2): 125-31, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24060504

RESUMEN

Nuclear factor 45 (NF45) is known to play an important role in regulating interleukin-2 expression in mammals. The function of fish NF45 is largely unknown. In a previous study, we reported the identification of a NF45 (named CsNF45) from half smooth tongue sole (Cynoglossus semilaevis). In the present study, we identified an isoform of CsNF45 (named CsNF45i) from half smooth tongue sole and examined its biological properties in comparison with CsNF45. We found that CsNF45i is a truncated version of CsNF45 and lacks the N-terminal 38 residues of CsNF45. Genetic analysis showed that the CsNF45 gene consists of 14 exons and 13 introns, and that CsNF45 and CsNF45i are the products of alternative splicing. Constitutive expression of CsNF45 and CsNF45i occurred in multiple tissues but differed in patterns. Experimental infection with viral and bacterial pathogens upregulated the expression of both isoforms but to different degrees, with potent induction of CsNF45 being induced by bacterial pathogen, while dramatic induction of CsNF45i being induced by viral pathogen. Transient transfection analysis showed that both isoforms were localized in the nucleus and able to stimulate the activity of IL-2 promoter to comparable extents. To examine their in vivo effects, the two isoforms were overexpressed in tongue sole. Subsequent analysis showed that following viral and bacterial infection, the viral loads in CsNF45i-overexpressing fish were significantly lower than those in CsNF45-overexpressing fish, whereas the bacterial loads in CsNF45-overexpressing fish were significantly lower than those in CsNF45i-overexpressing fish. These results indicate that both CsNF45 and CsNF45i possess immunoregulatory properties, however, the two isoforms most likely participate in different aspects of host immune defense that target different pathogens.


Asunto(s)
Infecciones por Virus ADN/inmunología , Infecciones por Enterobacteriaceae/inmunología , Peces Planos/inmunología , Proteína del Factor Nuclear 45/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células Cultivadas , Edwardsiella tarda/inmunología , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Peces Planos/genética , Expresión Génica , Interleucina-2/biosíntesis , Iridoviridae/inmunología , Datos de Secuencia Molecular , Proteína del Factor Nuclear 45/inmunología , Regiones Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Análisis de Secuencia de ADN , Pez Cebra
5.
Fish Shellfish Immunol ; 35(3): 972-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23872474

RESUMEN

Nuclear factor 45 (NF45) is a component of the protein complex called nuclear factor of activated T-cells (NFAT), which in mammals regulates interleukin (IL)-2 expression. To date very little is known about fish NF45. In this study, we identified a NF45 (named CsNF45) from half smooth tongue sole Cynoglossus semilaevis and examined its gene organization, expression profile, and regulatory function. We found that CsNF45 is composed of 387 residues and shares 90.3%-97.9% overall sequence identities with the NF45 of human and teleosts. Genetic analysis showed that the genomic sequence of the ORF region of CsNF45 consists of 14 exons and 13 introns. Constitutive expression of CsNF45 occurred in multiple tissues including gill, muscle, brain, heart, liver, head kidney, spleen, and gut. Experimental infection with viral and bacterial pathogens upregulated the expression of CsNF45 in head kidney and spleen in a time-dependent manner. Transient transfection analysis showed that CsNF45 was localized in the nucleus and able to stimulate the activity of mouse IL-2 promoter. These results indicate that CsNF45 possesses immunoregulatory property and is possibly involved in host immune defense against bacterial and viral infection.


Asunto(s)
Peces Planos/metabolismo , Regulación de la Expresión Génica/inmunología , Proteína del Factor Nuclear 45/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Peces Planos/genética , Riñón Cefálico , Datos de Secuencia Molecular , Proteína del Factor Nuclear 45/genética , Alineación de Secuencia , Especificidad de la Especie , Bazo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA