Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.287
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Neural Circuits ; 18: 1436915, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091993

RESUMEN

We provide a brief (and unabashedly biased) overview of the pre-transcriptomic history of somatostatin interneuron taxonomy, followed by a chronological summary of the large-scale, NIH-supported effort over the last ten years to generate a comprehensive, single-cell RNA-seq-based taxonomy of cortical neurons. Focusing on somatostatin interneurons, we present the perspective of experimental neuroscientists trying to incorporate the new classification schemes into their own research while struggling to keep up with the ever-increasing number of proposed cell types, which seems to double every two years. We suggest that for experimental analysis, the most useful taxonomic level is the subdivision of somatostatin interneurons into ten or so "supertypes," which closely agrees with their more traditional classification by morphological, electrophysiological and neurochemical features. We argue that finer subdivisions ("t-types" or "clusters"), based on slight variations in gene expression profiles but lacking clear phenotypic differences, are less useful to researchers and may actually defeat the purpose of classifying neurons to begin with. We end by stressing the need for generating novel tools (mouse lines, viral vectors) for genetically targeting distinct supertypes for expression of fluorescent reporters, calcium sensors and excitatory or inhibitory opsins, allowing neuroscientists to chart the input and output synaptic connections of each proposed subtype, reveal the position they occupy in the cortical network and examine experimentally their roles in sensorimotor behaviors and cognitive brain functions.


Asunto(s)
Interneuronas , Somatostatina , Animales , Somatostatina/metabolismo , Interneuronas/clasificación , Interneuronas/fisiología , Interneuronas/metabolismo , Interneuronas/citología , Humanos
2.
J Neurophysiol ; 132(2): 403-417, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106208

RESUMEN

Cholinergic interneurons (ChIs) provide the main source of acetylcholine in the striatum and have emerged as a critical modulator of behavioral flexibility, motivation, and associative learning. In the dorsal striatum (DS), ChIs display heterogeneous firing patterns. Here, we investigated the spontaneous firing patterns of ChIs in the nucleus accumbens (NAc) shell, a region of the ventral striatum. We identified four distinct ChI firing signatures: regular single-spiking, irregular single-spiking, rhythmic bursting, and a mixed-mode pattern composed of bursting activity and regular single spiking. ChIs from females had lower firing rates compared with males and had both a higher proportion of mixed-mode firing patterns and a lower proportion of regular single-spiking neurons compared with males. We further observed that across the estrous cycle, the diestrus phase was characterized by higher proportions of irregular ChI firing patterns compared with other phases. Using pooled data from males and females, we examined how the stress-associated neuropeptide corticotropin releasing factor (CRF) impacts these firing patterns. ChI firing patterns showed differential sensitivity to CRF. This translated into differential ChI sensitivity to CRF across the estrous cycle. Furthermore, CRF shifted the proportion of ChI firing patterns toward more regular spiking activity over bursting patterns. Finally, we found that repeated stressor exposure altered ChI firing patterns and sensitivity to CRF in the NAc core, but not the NAc shell. These findings highlight the heterogeneous nature of ChI firing patterns, which may have implications for accumbal-dependent motivated behaviors.NEW & NOTEWORTHY Cholinergic interneurons (ChIs) within the dorsal and ventral striatum can exert a major influence on network output and motivated behaviors. However, the firing patterns and neuromodulation of ChIs within the ventral striatum, specifically the nucleus accumbens (NAc) shell, are understudied. Here, we report that NAc shell ChIs have heterogeneous ChI firing patterns that are labile and can be modulated by the stress-linked neuropeptide corticotropin releasing factor (CRF) and by the estrous cycle.


Asunto(s)
Neuronas Colinérgicas , Hormona Liberadora de Corticotropina , Interneuronas , Núcleo Accumbens , Animales , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Femenino , Masculino , Interneuronas/fisiología , Interneuronas/metabolismo , Núcleo Accumbens/fisiología , Núcleo Accumbens/metabolismo , Núcleo Accumbens/citología , Neuronas Colinérgicas/fisiología , Neuronas Colinérgicas/metabolismo , Ciclo Estral/fisiología , Potenciales de Acción/fisiología , Ratones
3.
Front Cell Neurosci ; 18: 1421617, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994327

RESUMEN

The basolateral amygdala plays pivotal roles in the regulation of fear and anxiety and these processes are profoundly modulated by different neuromodulatory systems that are recruited during emotional arousal. Recent studies suggest activities of BLA interneurons and inhibitory synaptic transmission in BLA principal cells are regulated by neuromodulators to influence the output and oscillatory network states of the BLA, and ultimately the behavioral expression of fear and anxiety. In this review, we first summarize a cellular mechanism of stress-induced anxiogenesis mediated by the interaction of glucocorticoid and endocannabinoid signaling at inhibitory synapses in the BLA. Then we discuss cell type-specific activity patterns induced by neuromodulators converging on the Gq signaling pathway in BLA perisomatic parvalbumin-expressing (PV) and cholecystokinin-expressing (CCK) basket cells and their effects on BLA network oscillations and fear learning.

4.
Biol Psychiatry ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950809

RESUMEN

BACKGROUND: Exaggerated responses to sensory stimuli, a hallmark of Fragile X syndrome (FXS), contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of FXS. Recent studies in Fmr1 KO mice have demonstrated differences in activity of cortical interneurons and a delayed switch in the polarity of GABA signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide, could rescue synaptic circuit phenotypes in primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice. METHODS: We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos. RESULTS: We demonstrate that layer (L) 2/3 pyramidal neurons in S1 of Fmr1 KO mice show a higher frequency of synchronous events at postnatal day (P) 6 compared to wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (P5-P14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of L2/3 neurons in S1 and boosted the circuit participation of parvalbumin interneurons. CONCLUSIONS: This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the FDA-approved diuretic bumetanide.

5.
Elife ; 132024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012795

RESUMEN

Axo-axonic cells (AACs), also called chandelier cells (ChCs) in the cerebral cortex, are the most distinctive type of GABAergic interneurons described in the neocortex, hippocampus, and basolateral amygdala (BLA). AACs selectively innervate glutamatergic projection neurons (PNs) at their axon initial segment (AIS), thus may exert decisive control over PN spiking and regulate PN functional ensembles. However, the brain-wide distribution, synaptic connectivity, and circuit function of AACs remain poorly understood, largely due to the lack of specific and reliable experimental tools. Here, we have established an intersectional genetic strategy that achieves specific and comprehensive targeting of AACs throughout the mouse brain based on their lineage (Nkx2.1) and molecular (Unc5b, Pthlh) markers. We discovered that AACs are deployed across essentially all the pallium-derived brain structures, including not only the dorsal pallium-derived neocortex and medial pallium-derived hippocampal formation, but also the lateral pallium-derived claustrum-insular complex, and the ventral pallium-derived extended amygdaloid complex and olfactory centers. AACs are also abundant in anterior olfactory nucleus, taenia tecta, and lateral septum. AACs show characteristic variations in density across neocortical areas and layers and across subregions of the hippocampal formation. Neocortical AACs comprise multiple laminar subtypes with distinct dendritic and axonal arborization patterns. Retrograde monosynaptic tracing from AACs across neocortical, hippocampal, and BLA regions reveal shared as well as distinct patterns of synaptic input. Specific and comprehensive targeting of AACs facilitates the study of their developmental genetic program and circuit function across brain structures, providing a ground truth platform for understanding the conservation and variation of a bona fide cell type across brain regions and species.


Whether we are memorising facts or reacting to a loud noise, nerve cells in different brain areas must be able to communicate with one another through precise, meaningful signals. Specialized nerve cells known as interneurons act as "traffic lights" to precisely regulate when and where this information flows in neural circuits. Axo-axonic cells are a rare type of inhibitory interneuron that are thought to be particularly important for controlling the passage of information between different groups of excitatory neurons. This is because they only connect to one key part of their target cell ­ the axon-initial segment ­ where the electrical signals needed for brain communication (known as action potentials) are initiated. Since axo-axonic cells are inhibitory interneurons, this connection effectively allows them to 'veto' the generation of these signals at their source. Although axo-axonic cells have been identified in three brain regions using traditional anatomical methods, there were no 'tags' readily available that can reliably identify them. Therefore, much about these cells remained unknown, including how widespread they are in the mammalian brain. To solve this problem, Raudales et al. investigated which genes are switched on in axo-axonic cells but not in other cells, identifying a unique molecular signature that could be used to mark, record, and manipulate these cells. Microscopy imaging of brain tissue from mice in which axo-axonic cells had been identified revealed that they are present in many more brain areas than previously thought, including nearly all regions of the broadly defined cerebral cortex and even the hypothalamus, which controls many innate behaviors. Axo-axonic cells were also 'wired up' differently, depending on where they were located; for example, those in brain areas associated with memory and emotions had wider-ranging input connections than other areas. The finding of Raudales et al. provide, for the first time, a method to directly track and manipulate axo-axonic cells in the brain. Since dysfunction in axo-axonic cells is also associated with neurological disorders like epilepsy and schizophrenia, gaining an insight into their distribution and connectivity could help to develop better treatments for these conditions.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Animales , Interneuronas/fisiología , Interneuronas/metabolismo , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/metabolismo , Ratones , Encéfalo/fisiología , Encéfalo/citología , Sinapsis/fisiología , Sinapsis/metabolismo , Axones/fisiología , Axones/metabolismo , Masculino
6.
Cell Rep ; 43(8): 114519, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39018243

RESUMEN

Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here, we report inhibitory functional cell groups in CA1 of freely moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were grouped by their superficial or deep layer position differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest that hippocampal CA1 in freely moving macaques bears a sublayer-specific circuit organization that may shape its role in cognition.

7.
Eur J Neurosci ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080914

RESUMEN

Cholinergic interneurons (ChIs) act as master regulators of striatal output, finely tuning neurotransmission to control motivated behaviours. ChIs are a cellular target of many peptide and hormonal neuromodulators, including corticotropin-releasing factor, opioids, insulin and leptin, which can influence an animal's behaviour by signalling stress, pleasure, pain and nutritional status. However, little is known about how sex hormones via estrogen receptors influence the function of these other neuromodulators. Here, we performed in situ hybridisation on mouse striatal tissue to characterise the effect of sex and sex hormones on choline acetyltransferase (Chat), estrogen receptor alpha (Esr1) and corticotropin-releasing factor type 1 receptor (Crhr1) expression. Although we did not detect sex differences in ChAT protein levels in the dorsal striatum or nucleus accumbens, we found that female mice have more Chat mRNA-expressing neurons than males in both the dorsal striatum and nucleus accumbens. At the population level, we observed a sexually dimorphic distribution of Esr1- and Crhr1-expressing ChIs in the ventral striatum that was negatively correlated in intact females, which was abolished by ovariectomy and not present in males. Only in the NAc did we find a significant population of ChIs that co-express Crhr1 and Esr1 in females and to a lesser extent in males. At the cellular level, Crhr1 and Esr1 transcript levels were negatively correlated only during the estrus phase in females, indicating that changes in sex hormone levels can modulate the interaction between Crhr1 and Esr1 mRNA levels.

8.
bioRxiv ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39005261

RESUMEN

The CA3 region is central to hippocampal function during learning and memory because of its unique connectivity. CA3 pyramidal neurons are the targets of huge, excitatory mossy fiber synapses from DG axons and have an unusually high degree of excitatory recurrent connectivity. Thus, inhibition likely plays an outsized importance in constraining runaway excitation and shaping CA3 ensembles during learning and memory. Here, we investigate the function of a group of dendrite-targeting, hippocampal GABAergic neurons defined by expression of the synaptogenic adhesion molecule, Kirrel3. We discovered that activating Kirrel3-expressing GABAergic neurons impairs memory discrimination by inhibiting CA3 pyramidal neurons in novel contexts. Kirrel3 is required for DG-to-GABA synapse formation and variants in Kirrel3 are strong risk factors for neurodevelopmental disorders. Thus, our work suggests that Kirrel3-GABA neurons are a critical source of feed-forward inhibition from DG to CA3 during contextual memory whose activity may be specifically disrupted in some brain disorders.

9.
Neurosci Bull ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023844

RESUMEN

Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.

10.
eNeuro ; 11(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38969499

RESUMEN

The adult turtle spinal cord can generate multiple kinds of limb movements, including swimming, three forms of scratching, and limb withdrawal (flexion reflex), even without brain input and sensory feedback. There are many multifunctional spinal neurons, activated during multiple motor patterns, and some behaviorally specialized neurons, activated during only one. How do multifunctional and behaviorally specialized neurons each contribute to motor output? We analyzed in vivo intracellular recordings of multifunctional and specialized neurons. Neurons tended to spike in the same phase of the hip-flexor (HF) activity cycle during swimming and scratching, though one preferred opposite phases. During both swimming and scratching, a larger fraction of multifunctional neurons than specialized neurons were highly rhythmic. One group of multifunctional neurons was active during the HF-on phase and another during the HF-off phase. Thus, HF-extensor alternation may be generated by a subset of multifunctional spinal neurons during both swimming and scratching. Scratch-specialized neurons and flexion reflex-selective neurons may instead trigger their respective motor patterns, by biasing activity of multifunctional neurons. In phase-averaged membrane potentials of multifunctional neurons, trough phases were more highly correlated between swimming and scratching than peak phases, suggesting that rhythmic inhibition plays a greater role than rhythmic excitation. We also provide the first intracellular recording of a turtle swim-specialized neuron: tonically excited during swimming but inactive during scratching and flexion reflex. It displayed an excitatory postsynaptic potential following each swim-evoking electrical stimulus and thus may be an intermediary between reticulospinal axons and the swimming CPG they activate.


Asunto(s)
Reflejo , Médula Espinal , Natación , Tortugas , Animales , Tortugas/fisiología , Natación/fisiología , Médula Espinal/fisiología , Reflejo/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología , Neuronas Motoras/fisiología
11.
Cell Rep ; 43(8): 114540, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39058595

RESUMEN

Long-term synaptic plasticity at glutamatergic synapses on striatal spiny projection neurons (SPNs) is central to learning goal-directed behaviors and habits. Our studies reveal that SPNs manifest a heterosynaptic, nitric oxide (NO)-dependent form of long-term postsynaptic depression of glutamatergic SPN synapses (NO-LTD) that is preferentially engaged at quiescent synapses. Plasticity is gated by Ca2+ entry through CaV1.3 Ca2+ channels and phosphodiesterase 1 (PDE1) activation, which blunts intracellular cyclic guanosine monophosphate (cGMP) and NO signaling. Both experimental and simulation studies suggest that this Ca2+-dependent regulation of PDE1 activity allows for local regulation of dendritic cGMP signaling. In a mouse model of Parkinson disease (PD), NO-LTD is absent because of impaired interneuronal NO release; re-balancing intrastriatal neuromodulatory signaling restores NO release and NO-LTD. Taken together, these studies provide important insights into the mechanisms governing NO-LTD in SPNs and its role in psychomotor disorders such as PD.

12.
Cogn Neurodyn ; 18(3): 1047-1059, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38826655

RESUMEN

The medial dendrites (MDs) of granule cells (GCs) receive spatial information through the medial entorhinal cortex (MEC) from the entorhinal cortex in the rat hippocampus while the distal dendrites (DDs) of GCs receive non-spatial information (sensory inputs) through the lateral entorhinal cortex (LEC). However, it is unclear how information processing through the two pathways is managed in GCs. In this study, we investigated associative information processing between two independent inputs to MDs and DDs. First, in physiological experiments, to compare response characteristics between MDs and DDs, electrical stimuli comprising five pulses were applied to the MPP or LPP in rat hippocampal slices. These stimuli transiently decreased the excitatory postsynaptic potentials (EPSPs) of successive input pulses to MDs, whereas EPSPs to DDs showed sustained responses. Next, in computational experiments using a local network model obtained by fitting of the physiological experimental data, we compared associative information processing between DDs and MDs. The results showed that the temporal pattern sensitivity for burst inputs to MDs depended on the frequency of the random pulse inputs applied to DDs. On the other hand, with lateral inhibition to GCs from interneurons, the temporal pattern sensitivity for burst inputs to MDs was enhanced or tuned up according to the frequency of the random pulse inputs to the other cells. Thus, our results suggest that the temporal pattern sensitivity of spatial information depends on the non-spatial inputs to GCs.

13.
Cerebellum ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850484

RESUMEN

Spinocerebellar ataxia 34 (SCA34) is an autosomal dominant disease that arises from point mutations in the fatty acid elongase, Elongation of Very Long Chain Fatty Acids 4 (ELOVL4), which is essential for the synthesis of Very Long Chain-Saturated Fatty Acids (VLC-SFA) and Very Long Chain-Polyunsaturated Fatty Acids (VLC-PUFA) (28-34 carbons long). SCA34 is considered a neurodegenerative disease. However, a novel rat model of SCA34 (SCA34-KI rat) with knock-in of the W246G ELOVL4 mutation that causes human SCA34 shows early motor impairment and aberrant synaptic transmission and plasticity without overt neurodegeneration. ELOVL4 is expressed in neurogenic regions of the developing brain, is implicated in cell cycle regulation, and ELOVL4 mutations that cause neuroichthyosis lead to developmental brain malformation, suggesting that aberrant neuron generation due to ELOVL4 mutations might contribute to SCA34. To test whether W246G ELOVL4 altered neuronal generation or survival in the cerebellum, we compared the numbers of Purkinje cells, unipolar brush cells, molecular layer interneurons, granule and displaced granule cells in the cerebellum of wildtype, heterozygous, and homozygous SCA34-KI rats at four months of age, when motor impairment is already present. An unbiased, semi-automated method based on Cellpose 2.0 and ImageJ was used to quantify neuronal populations in cerebellar sections immunolabeled for known neuron-specific markers. Neuronal populations and cortical structure were unaffected by the W246G ELOVL4 mutation by four months of age, a time when synaptic and motor dysfunction are already present, suggesting that SCA34 pathology originates from synaptic dysfunction due to VLC-SFA deficiency, rather than aberrant neuronal production or neurodegeneration.

14.
Biochem Biophys Res Commun ; 725: 150272, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-38901224

RESUMEN

Ketamine, an N-methyl-d-aspartate (NMDA) receptor antagonist, induces deficits in cognition and information processing following chronic abuse. Adolescent ketamine misuse represents a significant global public health issue; however, the neurodevelopmental mechanisms underlying this phenomenon remain largely elusive. This study investigated the long-term effects of sub-chronic ketamine (Ket) administration on the medial prefrontal cortex (mPFC) and associated behaviors. In this study, Ket administration during early adolescence displayed a reduced density of excitatory synapses on parvalbumin (PV) neurons persisting into adulthood. However, the synaptic development of excitatory pyramidal neurons was not affected by ketamine administration. Furthermore, the adult Ket group exhibited hyperexcitability and impaired socialization and working memory compared to the saline (Sal) administration group. These results strongly suggest that sub-chronic ketamine administration during adolescence results in functional deficits that persist into adulthood. Bioinformatic analysis indicated that the gene co-expression module1 (M1) decreased expression after ketamine exposure, which is crucial for synapse development in inhibitory neurons during adolescence. Collectively, these findings demonstrate that sub-chronic ketamine administration irreversibly impairs synaptic development, offering insights into potential new therapeutic strategies.


Asunto(s)
Neuronas GABAérgicas , Interneuronas , Ketamina , Parvalbúminas , Corteza Prefrontal , Sinapsis , Animales , Ketamina/farmacología , Ketamina/administración & dosificación , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Parvalbúminas/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Masculino , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ratones , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Ratones Endogámicos C57BL , Antagonistas de Aminoácidos Excitadores/farmacología
15.
Biomimetics (Basel) ; 9(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38921237

RESUMEN

Recurrent neural networks (RNNs) transmit information over time through recurrent connections. In contrast, biological neural networks use many other temporal processing mechanisms. One of these mechanisms is the inter-neuron delays caused by varying axon properties. Recently, this feature was implemented in echo state networks (ESNs), a type of RNN, by assigning spatial locations to neurons and introducing distance-dependent inter-neuron delays. These delays were shown to significantly improve ESN task performance. However, thus far, it is still unclear why distance-based delay networks (DDNs) perform better than ESNs. In this paper, we show that by optimizing inter-node delays, the memory capacity of the network matches the memory requirements of the task. As such, networks concentrate their memory capabilities to the points in the past which contain the most information for the task at hand. Moreover, we show that DDNs have a greater total linear memory capacity, with the same amount of non-linear processing power.

16.
Hippocampus ; 34(8): 393-421, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38874439

RESUMEN

Synaptic excitation and inhibition are essential for neuronal communication. However, the variables that regulate synaptic excitation and inhibition in the intact brain remain largely unknown. Here, we examined how spike transmission and suppression between principal cells (PCs) and interneurons (INTs) are modulated by activity history, brain state, cell type, and somatic distance between presynaptic and postsynaptic neurons by applying cross-correlogram analyses to datasets recorded from the dorsal hippocampus and medial entorhinal cortex (MEC) of 11 male behaving and sleeping Long Evans rats. The strength, temporal delay, and brain-state dependency of the spike transmission and suppression depended on the subregions/layers. The spike transmission probability of PC-INT excitatory pairs that showed short-term depression versus short-term facilitation was higher in CA1 and lower in CA3. Likewise, the intersomatic distance affected the proportion of PC-INT excitatory pairs that showed short-term depression and facilitation in the opposite manner in CA1 compared with CA3. The time constant of depression was longer, while that of facilitation was shorter in MEC than in CA1 and CA3. During sharp-wave ripples, spike transmission showed a larger gain in the MEC than in CA1 and CA3. The intersomatic distance affected the spike transmission gain during sharp-wave ripples differently in CA1 versus CA3. A subgroup of MEC layer 3 (EC3) INTs preferentially received excitatory inputs from and inhibited MEC layer 2 (EC2) PCs. The EC2 PC-EC3 INT excitatory pairs, most of which showed short-term depression, exhibited higher spike transmission probabilities than the EC2 PC-EC2 INT and EC3 PC-EC3 INT excitatory pairs. EC2 putative stellate cells exhibited stronger spike transmission to and received weaker spike suppression from EC3 INTs than EC2 putative pyramidal cells. This study provides detailed comparisons of monosynaptic interaction dynamics in the hippocampal-entorhinal loop, which may help to elucidate circuit operations.


Asunto(s)
Potenciales de Acción , Corteza Entorrinal , Hipocampo , Interneuronas , Ratas Long-Evans , Transmisión Sináptica , Animales , Masculino , Corteza Entorrinal/fisiología , Corteza Entorrinal/citología , Interneuronas/fisiología , Transmisión Sináptica/fisiología , Hipocampo/fisiología , Potenciales de Acción/fisiología , Ratas , Inhibición Neural/fisiología , Células Piramidales/fisiología
17.
eNeuro ; 11(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38886063

RESUMEN

Persistent activity in excitatory pyramidal cells (PYRs) is a putative mechanism for maintaining memory traces during working memory. We have recently demonstrated persistent interruption of firing in fast-spiking parvalbumin-expressing interneurons (PV-INs), a phenomenon that could serve as a substrate for persistent activity in PYRs through disinhibition lasting hundreds of milliseconds. Here, we find that hippocampal CA1 PV-INs exhibit type 2 excitability, like striatal and neocortical PV-INs. Modeling and mathematical analysis showed that the slowly inactivating potassium current KV1 contributes to type 2 excitability, enables the multiple firing regimes observed experimentally in PV-INs, and provides a mechanism for robust persistent interruption of firing. Using a fast/slow separation of times scales approach with the KV1 inactivation variable as a bifurcation parameter shows that the initial inhibitory stimulus stops repetitive firing by moving the membrane potential trajectory onto a coexisting stable fixed point corresponding to a nonspiking quiescent state. As KV1 inactivation decays, the trajectory follows the branch of stable fixed points until it crosses a subcritical Hopf bifurcation (HB) and then spirals out into repetitive firing. In a model describing entorhinal cortical PV-INs without KV1, interruption of firing could be achieved by taking advantage of the bistability inherent in type 2 excitability based on a subcritical HB, but the interruption was not robust to noise. Persistent interruption of firing is therefore broadly applicable to PV-INs in different brain regions but is only made robust to noise in the presence of a slow variable, KV1 inactivation.


Asunto(s)
Interneuronas , Modelos Neurológicos , Parvalbúminas , Parvalbúminas/metabolismo , Interneuronas/fisiología , Interneuronas/metabolismo , Animales , Potenciales de Acción/fisiología , Región CA1 Hipocampal/fisiología , Región CA1 Hipocampal/metabolismo , Inhibición Neural/fisiología , Células Piramidales/fisiología , Células Piramidales/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Corteza Entorrinal/fisiología , Corteza Entorrinal/metabolismo , Masculino
18.
J Neurosci ; 44(29)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886057

RESUMEN

Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506), are commonly used immunosuppressants for preserving transplanted organs and tissues. However, these drugs can cause severe and persistent pain. GluA2-lacking, calcium-permeable AMPA receptors (CP-AMPARs) are implicated in various neurological disorders, including neuropathic pain. It is unclear whether and how constitutive calcineurin, a Ca2+/calmodulin protein phosphatase, controls synaptic CP-AMPARs. In this study, we found that blocking CP-AMPARs with IEM-1460 markedly reduced the amplitude of AMPAR-EPSCs in excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2), but not in inhibitory neurons expressing vesicular GABA transporter, in the spinal cord of FK506-treated male and female mice. FK506 treatment also caused an inward rectification in the current-voltage relationship of AMPAR-EPSCs specifically in VGluT2 neurons. Intrathecal injection of IEM-1460 rapidly alleviated pain hypersensitivity in FK506-treated mice. Furthermore, FK506 treatment substantially increased physical interaction of α2δ-1 with GluA1 and GluA2 in the spinal cord and reduced GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of spinal cords. Correspondingly, inhibiting α2δ-1 with pregabalin, Cacna2d1 genetic knock-out, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide reversed inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons caused by FK506 treatment. In addition, CK2 inhibition reversed FK506 treatment-induced pain hypersensitivity, α2δ-1 interactions with GluA1 and GluA2, and inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons. Thus, the increased prevalence of synaptic CP-AMPARs in spinal excitatory neurons plays a major role in calcineurin inhibitor-induced pain hypersensitivity. Calcineurin and CK2 antagonistically regulate postsynaptic CP-AMPARs through α2δ-1-mediated GluA1/GluA2 heteromeric assembly in the spinal dorsal horn.


Asunto(s)
Calcineurina , Quinasa de la Caseína II , Receptores AMPA , Médula Espinal , Tacrolimus , Animales , Receptores AMPA/metabolismo , Ratones , Calcineurina/metabolismo , Masculino , Femenino , Tacrolimus/farmacología , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacos , Quinasa de la Caseína II/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones Endogámicos C57BL , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/fisiología , Inhibidores de la Calcineurina/farmacología , Fenotipo , Canales de Calcio
19.
Brain ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748482

RESUMEN

ATP-sensitive potassium (KATP) channels couple cell metabolism to cellular electrical activity. Humans affected by severe activating mutations in KATP channels suffer from developmental delay, epilepsy, and neonatal diabetes (DEND syndrome). While the aetiology of diabetes in DEND syndrome is well understood, the pathophysiology of the neurological symptoms remains unclear. We hypothesised that impaired activity of parvalbumin-positive interneurons (PV-INs) may result in seizures and cognitive problems. We found, by performing electrophysiological experiments, that expressing the DEND mutation Kir6.2-V59M selectively in mouse PV-INs reduced intrinsic gamma frequency preference and short-term depression as well as disturbed cognition-associated gamma oscillations and hippocampal sharp waves. Furthermore, the risk of seizures was increased and the day-night shift in gamma activity disrupted. Blocking KATP channels with tolbutamide partially rescued the network oscillations. The non-reversible part may, to some extent, result from observed altered PV-IN dendritic branching and PV-IN arrangement within CA1. In summary, PV-INs play a key role in DEND syndrome, and this provides a framework for establishing treatment options.

20.
Biochem Pharmacol ; : 116298, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38782077

RESUMEN

The intricate balance between excitation and inhibition (E/I) in the brain plays a crucial role in normative information processing. Dysfunctions in the E/I balance have been implicated in various psychiatric disorders, including schizophrenia (SCZ). In particular, abnormalities in GABAergic signaling, specifically in parvalbumin (PV)-containing interneurons, have been consistently observed in SCZ pathophysiology. PV interneuron function is vital for maintaining an ideal E/I balance, and alterations in PV interneuron-mediated inhibition contribute to circuit deficits observed in SCZ, including hippocampus hyperactivity and midbrain dopamine system overdrive. While current antipsychotic medications primarily target D2 dopamine receptors and are effective primarily in treating positive symptoms, novel therapeutic strategies aiming to restore the E/I balance could potentially mitigate not only positive symptoms but also negative symptoms and cognitive deficits. This could involve, for instance, increasing the inhibitory drive onto excitatory neurons or decreasing the putative enhanced pyramidal neuron activity due to functional loss of PV interneurons. Compounds targeting the glycine site at glutamate NMDA receptors and muscarinic acetylcholine receptors on PV interneurons that can increase PV interneuron drive, as well as drugs that increase the postsynaptic action of GABA, such as positive allosteric modulators of α5-GABA-A receptors, and decrease glutamatergic output, such as mGluR2/3 agonists, represent promising approaches. Preventive strategies aiming at E/I balance also represent a path to reduce the risk of transitioning to SCZ in high-risk individuals. Therefore, compounds with novel mechanisms targeting E/I balance provide optimism for more effective and tailored interventions in the management of SCZ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA