Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.893
Filtrar
Más filtros

Intervalo de año de publicación
1.
Front Oncol ; 14: 1413610, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011474

RESUMEN

Patients with radiation-induced meningioma (RIM), most of whom had received head radiation therapy or had been exposed to ionizing radiation during childhood or adolescence, are at risk of developing cranial meningiomas throughout their lifetimes because of the long latency period. Although intermediate-to-high-dose ionizing radiation exposure is an established risk factor for RIM, risk factors for low-dose RIM remain incompletely defined. This study presents the case of a 56-year-old woman diagnosed with radiation-induced giant meningioma 2.5 years after undergoing an interventional embolization procedure for a brain aneurysm. This is the first report of RIM attributable to a brain intervention with an extremely short latency period. The total radiation dose received by the patient during the operation was 1367.3 mGy, representing a low dose. Our case report strengthens the evidence that even low radiation doses can increase the risk of RIM. These findings provide a realistic basis for the theoretical study of RIM and suggest some new ideas for RIM treatment. The need for caution in the use of radioactive treatments and optimization of interventional procedures is highlighted.

2.
ACS Nano ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016679

RESUMEN

Nanocatalytic therapy is an emerging technology that uses synthetic nanoscale enzyme mimics for biomedical treatment. However, in the field of neuroscience, achieving neurological protection while simultaneously killing tumor cells is a technical challenge. Herein, we synthesized a biomimic and translational cerium vanadate (CeVO4) nanozyme for glioblastoma (GBM) therapy and the repair of brain damage after GBM ionizing radiation (IR). This system exhibited pH dependence: it showed potent Superoxide dismutase (SOD) enzyme activity in a neutral environment and Peroxidase (POD) enzyme activity in an acidic environment. In GBM cells, this system acted in lysosomes, causing cellular damage and reactive oxygen species (ROS) accumulation; in neuronal cells, this nanozyme could undergo lysosomal escape and nanozyme aggregation with mitochondria, reversing the mitochondrial damage caused by IR and restoring the expression level of the antiapoptotic BCL-2 protein. Mechanistically, we believe that this distribution difference is related to the specific uptake internalization mechanism and lysosomal repair pathway in neurons, and ultimately led to the dual effect of tumor killing and nerve repair in the in vivo model. In summary, this study provides insight into the repair of brain damage after GBM radiation therapy.

3.
Elife ; 132024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980300

RESUMEN

Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades' radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , Radiación Ionizante , Tardigrada , Transcriptoma , Tardigrada/genética , Tardigrada/metabolismo , Animales , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Daño del ADN , Tolerancia a Radiación/genética
4.
Sci Total Environ ; 947: 174540, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977089

RESUMEN

OBJECTIVE: The cardiovascular system effects of environmental low-dose radiation exposure on radiation practitioners remain uncertain and require further investigation. The aim of this study was to initially investigate and explore the mechanisms by which low-dose radiation may contribute to atherosclerosis through a multi-omics joint comprehensive basic experiment. METHODS: We used WGCNA and differential analyses to identify shared genes and potential pathways between radiation injury and atherosclerosis sequencing datasets, as well as tissue transcriptome immune infiltration level extrapolation and single-cell transcriptome data correction using the CIBERSORT deconvolution algorithm. Animal models were constructed by combining a high-fat diet with 5 Gy γ-ray whole-body low-dose ionizing radiation. The detection of NETs release was validated by enzyme-linked immunosorbent assay. RESULTS: Analysis reveals shared genes in both datasets of post-irradiation and atherosclerosis, suggesting that immune system neutrophils may be a key node connecting radiation to atherosclerosis. NETs released by neutrophil death can influence the development of atherosclerosis. Animal experiments showed that the number of neutrophils decreased (P < 0.05) and the concentration of NETs reduced after low-dose radiation compared with the control group, and the concentration of NETs significantly increased (P < 0.05) in the HF group. Endothelial plaques were significantly increased in the high-fat feed group and significantly decreased in the low-dose radiation group compared with the control group. CONCLUSIONS: Long-term low-dose ionizing radiation exposure stimulates neutrophils and inhibits their production of NETs, resulting in inhibition of atherosclerosis.

5.
Rev Environ Health ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38981511

RESUMEN

We examined one of the first published of the several systematic reviews being part of WHO's renewed initiative to assess the evidence of associations between man-made radiofrequency electromagnetic radiation (RF-EMF) and adverse health effects in humans. The examined review addresses experimental studies of pregnancy and birth outcomes in non-human mammals. The review claims that the analyzed data did not provide conclusions certain enough to inform decisions at a regulatory level. Our objective was to assess the quality of this systematic review and evaluate the relevance of its conclusions to pregnant women and their offspring. The quality and relevance were checked on the review's own premises: e.g., we did not question the selection of papers, nor the chosen statistical methods. While the WHO systematic review presents itself as thorough, scientific, and relevant to human health, we identified numerous issues rendering the WHO review irrelevant and severely flawed. All flaws found skew the results in support of the review's conclusion that there is no conclusive evidence for nonthermal effects. We show that the underlying data, when relevant studies are cited correctly, support the opposite conclusion: There are clear indications of detrimental nonthermal effects from RF-EMF exposure. The many identified flaws uncover a pattern of systematic skewedness aiming for uncertainty hidden behind complex scientific rigor. The skewed methodology and low quality of this review is highly concerning, as it threatens to undermine the trustworthiness and professionalism of the WHO in the area of human health hazards from man-made RF-EMF.

6.
J Clin Med ; 13(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38999430

RESUMEN

Exposure to ionizing radiation (IR) is inevitable in various X-ray imaging examinations, with computed tomography (CT) being a major contributor to increased human radiation exposure. Ionizing radiation may cause structural damage to macromolecules, particularly DNA, mostly through an indirect pathway in diagnostic imaging. The indirect pathway primarily involves the generation of reactive oxygen species (ROS) due to water radiolysis induced by IR, leading to DNA damage, including double-strand breaks (DSB), which are highly cytotoxic. Antioxidants, substances that prevent oxidative damage, are proposed as potential radioprotective agents. This Study Protocol article presents the rationale for selecting vitamin C as a preventive measure against CT-associated IR-induced DNA damage, to be investigated in a randomized placebo-controlled trial, with a full in vivo design, using an oral easy-to-use schedule administration in the outpatient setting, for the single CT examination with the highest total global IR dose burden (contrast-enhanced abdomen and pelvis CT). The study also aims to explore the mediating role of oxidative stress, and it has been written in adherence to the Standard Protocol Items recommendations.

7.
Environ Toxicol Chem ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980263

RESUMEN

The long-term impacts of radiocontaminants (and the associated risks) for ecosystems are still subject to vast societal and scientific debate while wildlife is chronically exposed to various sources and levels of either environmental or anthropogenic ionizing radiation from the use of nuclear energy. The present study aimed to assess induced phenotypical responses in both male and female gammarids after short-term continuous γ-irradiation, acting as a typical well-characterized genotoxic stressor that can interact directly with living matter. In particular, we started characterizing the effects using standardized measurements for biological effects on few biological functions for this species, especially feeding inhibition tests, molting, and reproductive ability, which have already been proven for chemical substances and are likely to be disturbed by ionizing radiation. The results show no significant differences in terms of the survival of organisms (males and females), of their short-term food consumption which is linked to the general health status (males and females), and of the molting cycle (females). In contrast, exposure significantly affected fecundity (number of embryos produced) at the highest dose rates for irradiated females (51 mGy h-1) and males (5 and 51 mGy h-1). These results showed that, in gammarids, reproduction, which is a critical endpoint for population dynamics, is the most radiosensitive phenotypic endpoint, with significant effects recorded on male reproductive capacity, which is more sensitive than in females. Environ Toxicol Chem 2024;00:1-9. © 2024 SETAC.

8.
Biomed Eng Online ; 23(1): 67, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003472

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is a subtype of breast cancer with the worst prognosis. Radiotherapy (RT) is one of the core modalities for the disease; however, the ionizing radiation of RT has severe side effects. The consistent development direction of RT is to achieve better therapeutic effect with lower radiation dose. Studies have demonstrated that synergistic effects can be achieved by combining RT with non-ionizing radiation therapies such as light and magnetic therapy, thereby achieving the goal of dose reduction and efficacy enhancement. METHODS: In this study, we applied FeCo NPs with magneto thermal function and phototherapeutic agent IR-780 to construct an ionizing and non-ionizing radiation synergistic nanoparticle (INS NPs). INS NPs are first subjected to morphology, size, colloidal stability, loading capacity, and photothermal conversion tests. Subsequently, the cell inhibitory and cellular internalization were evaluated using cell lines in vitro. Following comprehensive assessment of the NPs' in vivo biocompatibility, tumor-bearing mouse model was established to evaluate their distribution, targeted delivery, and anti-tumor effects in vivo. RESULTS: INS NPs have a saturation magnetization exceeding 72 emu/g, a hydrodynamic particle size of approximately 40 nm, a negatively charged surface, and good colloidal stability and encapsulation properties. INS NPs maintain the spectral characteristics of IR-780 at 808 nm. Under laser irradiation, the maximum temperature was 92 °C, INS NPs also achieved the effective heat temperature in vivo. Both in vivo and in vitro tests have proven that INS NPs have good biocompatibility. INS NPs remained effective for more than a week after one injection in vivo, and can also be guided and accumulated in tumors through permanent magnets. Later, the results exhibited that under low-dose RT and laser irradiation, the combined intervention group showed significant synergetic effects, and the ROS production rate was much higher than that of the RT and phototherapy-treated groups. In the mice model, 60% of the tumors were completely eradicated. CONCLUSIONS: INS NPs effectively overcome many shortcomings of RT for TNBC and provide experimental basis for the development of novel clinical treatment methods for TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/radioterapia , Neoplasias de la Mama Triple Negativas/terapia , Animales , Línea Celular Tumoral , Ratones , Humanos , Femenino , Nanopartículas/química , Radiación Ionizante , Portadores de Fármacos/química , Terapia Combinada , Indoles
9.
Genetics ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963803

RESUMEN

Radiotherapy is a key treatment option for a wide variety of human tumors, employed either alone or alongside with other therapeutic interventions. Radiotherapy uses high-energy particles to destroy tumor cells, blocking their ability to divide and proliferate. The effectiveness of radiotherapy is due to genetic and epigenetic factors that determine how tumor cells respond to ionizing radiation. These factors contribute to the establishment of resistance to radiotherapy, which increases the risk of poor clinical prognosis of patients. Although the mechanisms by which tumor cells induce radioresistance are unclear, evidence points out several contributing factors including the overexpression of DNA repair systems, increased levels of reactive oxygen species, alterations in the tumor microenvironment, and enrichment of cancer stem cell populations. In this context, dysregulation of microRNAs or miRNAs, critical regulators of gene expression, may influence how tumors respond to radiation. There is increasing evidence that miRNAs may act as sensitizers or enhancers of radioresistance, regulating key processes such as the DNA damage response and the cell death signaling pathway. Furthermore, expression and activity of miRNAs have shown informative value in overcoming radiotherapy and long-term radiotoxicity, revealing their potential as biomarkers. In this review, we will discuss the molecular mechanisms associated with the response to radiotherapy and highlight the central role of miRNAs in regulating the molecular mechanisms responsible for cellular radioresistance. We will also review radio-miRs, radiotherapy-related miRNAs, either as sensitizers or enhancers of radioresistance that hold promise as biomarkers or pharmacological targets to sensitize radioresistant cells.

10.
Sci Total Environ ; 946: 174246, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955266

RESUMEN

The ionizing radiation (IR) represents a formidable challenge as an environmental factor to mitochondria, leading to disrupt cellular energy metabolism and posing health risks. Although the deleterious impacts of IR on mitochondrial function are recognized, the specific molecular targets remain incompletely elucidated. In this study, HeLa cells subjected to γ-rays exhibited concomitant oxidative stress, mitochondrial structural alterations, and diminished ATP production capacity. The γ-rays induced a dose-dependent induction of mitochondrial fission, simultaneously manifested by an elevated S616/S637 phosphorylation ratio of the dynamin-related protein 1 (DRP1) and a reduction in the expression of the mitochondrial fusion protein mitofusin 2 (MFN2). Knockdown of DRP1 effectively mitigated γ-rays-induced mitochondrial network damage, implying that DRP1 phosphorylation may act as an effector of radiation-induced mitochondrial damage. The mitochondrial outer membrane protein voltage-dependent anion channel 1 (VDAC1) was identified as a crucial player in IR-induced mitochondrial damage. The VDAC1 inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), counteracts the excessive mitochondrial fission induced by γ-rays, consequently rebalancing the glycolytic and oxidative phosphorylation equilibrium. This metabolic shift was uncovered to enhance glycolytic capacity, thus fortifying cellular resilience and elevating the radiosensitivity of cancer cells. These findings elucidate the intricate regulatory mechanisms governing mitochondrial morphology under radiation response. It is anticipated that the development of targeted drugs directed against VDAC1 may hold promise in augmenting the sensitivity of tumor cells to radiotherapy and chemotherapy.

11.
Elife ; 132024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963418

RESUMEN

Tiny animals known as tardigrades use a combination of DNA repair machinery and a novel protein to mend their genome after intense ionizing radiation.


Asunto(s)
Reparación del ADN , Animales , Tardigrada/fisiología , Tardigrada/efectos de la radiación , Radiación Ionizante , Daño del ADN/efectos de la radiación
12.
Expert Rev Endocrinol Metab ; : 1-9, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975697

RESUMEN

INTRODUCTION: The global incidence of thyroid cancer (TC) has increased in the last decades. While improvements in diagnosis may contribute, overdiagnosis is also a possibility. This review focuses on the epidemiology, risk factors, and immune microenvironment associated with differentiated TC (DTC). AREAS COVERED: A search was conducted in Scielo, Scopus, and EMBASE databases, involving 72 articles. TC is the most common endocrine neoplasm, with DTC form being predominant. Its incidence has globally risen, particularly among women aged over 45. Endogenous risk factors for DTC include genetic disorders, race, age, female gender, obesity, and type 2 diabetes mellitus. Environmental risks involve ionizing radiation, whether through therapeutic treatment or environmental contamination from nuclear accidents, iodine deficiency, endocrine disruptors, residence in volcanic areas, environmental pollution, and stress. The use of anti-obesity medications remains controversial. The tumor's immune microenvironment is the histological space where tumor cells interact with host cells, crucial for understanding aggressiveness. Immunotherapy emerges as a promising intervention. EXPERT OPINION: Recent advances in DTC management offer transformative potential, requiring collaborative efforts for implementation. Emerging areas like precision medicine, molecular profiling, and immunotherapy present exciting prospects for future exploration, shaping the next era of diagnostic and therapeutic strategies in thyroid cancer research.


The global incidence of thyroid cancer (TC) has significantly increased, attributed partly to improved diagnosis and potentially to overdiagnosis. This review focuses on the epidemiology, risk factors, and immune microenvironment associated with differentiated TC (DTC). DTC is the most common endocrine neoplasm, and predominantly affects women over 45 years old. Endogenous risk factors include genetic disorders, race, age, female gender, obesity, and type 2 diabetes mellitus (T2DM). Environmental risks encompass ionizing radiation, iodine deficiency, endocrine disruptors, volcanic residence, pollution, and stress. The use of glucagon-like peptide 1 agonists remains controversial. The tumor's immune microenvironment is crucial for understanding aggressiveness, with immunotherapy showing promise. Understanding both macro and microenvironmental factors is crucial for devising effective prevention and treatment strategies for DTC.

13.
J Biomed Phys Eng ; 14(3): 287-298, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39027706

RESUMEN

Background: Radiotherapy, a highly effective method of radiation-based treating cancers, can reduce the size of tumors and affect healthy tissues. Radiation-induced lymphopenia as a side effect of radiation therapy can reduce the effectiveness of the treatment. Objective: This study aimed to examine how taurine can protect peripheral blood lymphocytes from radiation-based apoptosis. Material and Methods: In this experimental study, the effects of the taurine on lymphocytes were studied, and blood samples were divided into three groups: a negative control group that was not treated, a positive control group that was treated with cysteine (100 µg/ml), and a group that was treated with taurine (100 µg. mL-1) in three different doses (4, 8 & 12 Gy) before irradiation. The percentage of apoptotic and necrotic lymphocytes was measured using flow cytometry 48 and 72 hours after the irradiation, respectively. Results: According to the groups treated with taurine, the number of lymphocytes undergoing apoptosis was lower and higher compared to the negative and positive control groups, respectively. The decrease in this value was more pronounced 48 hours after radiation compared to 72 hours. Furthermore, there was a slight increase in the number of apoptotic lymphocytes with increasing radiation dose. Conclusion: Taurine effectively protects human peripheral blood lymphocytes from radiation-based apoptosis.

14.
Public Health ; 234: 84-90, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38968928

RESUMEN

OBJECTIVE: The importance of health literacy in medical imaging is well recognized, yet the current landscape remains inadequately understood. This study aims to explore the extent of health literacy studies contextualized to medical imaging. STUDY DESIGN: Scoping review. METHODS: A scoping review was conducted using three online bibliographic databases namely, PubMed, ScienceDirect, and CINAHL. We have adopted the concept of health literacy, as a clinical risk and personal asset, to guide this review. RESULTS: Of 311 unique articles, 39 met our selection criteria. Five themes (categories) were identified by the authors: appropriate communication with patients who receive medical imaging test results, appropriate usage of medical imaging, classes and characteristics of eHealth literacy, disease/deterioration prevention, and patient education. Additionally, 17 health literacy assessment tools were identified, including 11 original creations. Finally, 11 recommendations have emerged from this scoping review, offering valuable insights into methods, considerations, and strategies for promoting health literacy. CONCLUSIONS: Health literacy studies in medical imaging cover both clinical and public health perspectives, benefiting diverse populations, regardless of underlying medical conditions. Notably, the majority of assessment tools used in these studies were author-generated, hindering cross-study comparisons. Given the innate capacity of medical images to convey intuitive information, those images do not solely benefit the patients who are given medical imaging examinations, but they also hold significant potential to enhance public health literacy. Health literacy and medical imaging are closely associated and mutually reinforce each other.

15.
Astrobiology ; 24(7): 698-709, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023275

RESUMEN

Europa and Enceladus are key targets to search for evidence of life in our solar system. However, the surface and shallow subsurface of both airless icy moons are constantly bombarded by ionizing radiation that could degrade chemical biosignatures. Therefore, sampling of icy surfaces in future life detection missions to Europa and Enceladus requires a clear understanding of the necessary ice depth where unaltered organic biomolecules might be present. We conducted radiolysis experiments by exposing individual amino acids in ices and amino acids from dead microorganisms in ices to gamma radiation to simulate conditions on these icy worlds. In the pure amino acid samples, glycine did not show a detectable decrease in abundance, whereas the abundance of isovaline decreased by 40% after 4 MGy of exposure. Amino acids in dead Escherichia coli (E. coli) organic matter exhibited a gradual decline in abundances with the increase of exposure dosage, although at much slower rates than individual amino acids. The majority of amino acids in dead A. woodii samples demonstrated a step function decline as opposed to a gradual decline. After the initial drop in abundance with 1 MGy of exposure, those amino acids did not display further decreases in abundance after exposure up to 4 MGy. New radiolysis constants for isolated amino acids and amino acids in dead E. coli material for Europa/Enceladus-like conditions have been derived. Slow rates of amino acid destruction in biological samples under Europa and Enceladus-like surface conditions bolster the case for future life detection measurements by Europa and Enceladus lander missions. Based on our measurements, the "safe" sampling depth on Europa is ∼20 cm at high latitudes of the trailing hemisphere in the area of little impact gardening. Subsurface sampling is not required for the detection of amino acids on Enceladus-these molecules will survive radiolysis at any location on the Enceladus surface. If the stability of amino acids observed in A. woodii organic materials is confirmed in other microorganisms, then the survival of amino acids from a potential biosphere in Europa ice would be significantly increased.


Asunto(s)
Aminoácidos , Escherichia coli , Exobiología , Medio Ambiente Extraterrestre , Rayos gamma , Hielo , Aminoácidos/análisis , Medio Ambiente Extraterrestre/química , Escherichia coli/efectos de la radiación , Exobiología/métodos , Hielo/análisis , Júpiter
16.
Dokl Biochem Biophys ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023669

RESUMEN

Radiosensitivity to low and medium doses of X-ray radiation and the ability to induce a radiation adaptive response (RAR) of lymphocytes during in vitro irradiation of peripheral blood of patients with cancer were studied. The criterion for cytogenetic damage was the frequency of micronuclei (MN) in cytochalasin-blocked binucleate lymphocytes in culture. It was found that the spontaneous level of cytogenetic damage in the lymphocytes of patients was 2.6 times higher than in healthy volunteers, and there was also significant interindividual variability in values compared to the control cohort. There were no differences in mean values for radiosensitivity to low and medium doses of X-ray between the study groups. There was no correlation between the spontaneous level of MN in lymphocytes and the radiosensitivity of individuals in both groups. RAR was induced with the same frequency and to the same extent in lymphocytes from both patients and healthy individuals.

17.
Cell Mol Immunol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849539

RESUMEN

The key role of structural cells in immune modulation has been revealed with the advent of single-cell multiomics, but the underlying mechanism remains poorly understood. Here, we revealed that the transcriptional activation of interferon regulatory factor 1 (IRF1) in response to ionizing radiation, cytotoxic chemicals and SARS-CoV-2 viral infection determines the fate of structural cells and regulates communication between structural and immune cells. Radiation-induced leakage of mtDNA initiates the nuclear translocation of IRF1, enabling it to regulate the transcription of inflammation- and cell death-related genes. Novel posttranslational modification (PTM) sites in the nuclear localization sequence (NLS) of IRF1 were identified. Functional analysis revealed that mutation of the acetylation site and the phosphorylation sites in the NLS blocked the transcriptional activation of IRF1 and reduced cell death in response to ionizing radiation. Mechanistically, reciprocal regulation between the single-stranded DNA sensors SSBP1 and IRF1, which restrains radiation-induced and STING/p300-mediated PTMs of IRF1, was revealed. In addition, genetic deletion or pharmacological inhibition of IRF1 tempered radiation-induced inflammatory cell death, and radiation mitigators also suppressed SARS-CoV-2 NSP-10-mediated activation of IRF1. Thus, we revealed a novel cytoplasm-oriented mechanism of IRF1 activation in structural cells that promotes inflammation and highlighted the potential effectiveness of IRF1 inhibitors against immune disorders.

18.
Curr Pharm Des ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38874044

RESUMEN

INTRODUCTION: It has been hypothesized that piperine, the main alkaloid component of black pepper, possesses a unique radioprotective effect. This study aimed to investigate the protective effect of piperine against Radiation-Induced Lung Injury (RILI) in mice. METHOD: Firstly, eighty male mice were divided into eight groups; the control group did not receive any dosage of piperine and radiation (6 Gy), and the other groups received piperine alone at doses 10, 25, and 50 mg/kg, radiation, and radiation-piperine combination (6 Gy + 10, 25, and 50 mg/kg). Animals received piperine by gavage for 7 consecutive days. To investigate the effect of piperine pretreatment in mice that were exposed to radiation, histopathological and biochemical evaluations (markers of oxidative stress) were performed. Irradiation led to an increase in oxidative stress (increase in MDA and PC). Pretreatment of piperine in all three doses in irradiated mice was able to reduce oxidative stress compared to mice that were only exposed to radiation. RESULTS: Piperine at a dose of 25 mg/kg exhibited the highest protective effect as compared to other doses. Also, in the histopathological examination, it was seen that pretreatment with piperine was able to improve the infiltration of inflammatory cells and reduce the thickness of the alveolar septum and air sac damage. CONCLUSION: The outcomes completely proved significant lung protection by piperine in mice through reducing oxidative stress. This natural compound could be considered a protective agent against lung injury induced by ionizing radiation.

19.
J Environ Health Sci Eng ; 22(1): 53-64, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887763

RESUMEN

This paper represents the reviews of recent advancements in different physicochemical methods for disinfecting contaminated surfaces, which are considered to be responsible for transmitting different bacterial, viral, and fungal infectious diseases. Surface disinfection can be achieved by applying chemicals, UV-based processes, ionization radiation (gamma-ray, X-ray and electron beam), application of self-disinfecting surfaces, no-touch room disinfection methods, and robotic disinfection methods for built-in settings. Application of different chemicals, such as alcohols, hydrogen peroxide, peracetic acid, quaternary ammonium salts, phenol, and iodine solution, are common and economical. However, the process is time-consuming and less efficient. The use of UVC light (wavelength: 200-280 nm, generated by low vapor mercury lamps or pulse xenon light) has gained much attention for disinfecting fomites worldwide. In recent times, the combination of UV and H2O2, based on the principle of the advanced oxidation process, has been applied for disinfecting inanimate surfaces. The process is very efficient and faster than chemical and UV processes. Heavy metals like copper, silver, zinc, and other metals can inactivate microbes and are used for surface modification to produce self-disinfecting surfaces and used in healthcare facilities. In combination with UVB (280-315 nm) and UVA (315-400 nm), titanium oxide has been utilized for disinfecting contaminated surfaces. Ionization radiation, one of the advanced methods, can be used in disinfecting medical devices and drugs. Post-COVID-19 pandemic, the no-touch and robotic disinfection methods utilizing chemicals or UVC lights have received much importance in built-in settings. Among these methods, surface disinfection by applying chemicals by fogging/vaporization and UV radiation methods has been widely reported in the literature compared to other methods. Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-024-00893-2.

20.
Appl Environ Microbiol ; : e0010824, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864629

RESUMEN

The extremophile Deinococcus radiodurans maintains a highly organized and condensed nucleoid as its default state, possibly contributing to its high tolerance to ionizing radiation (IR). Previous studies of the D. radiodurans nucleoid were limited by reliance on manual image annotation and qualitative metrics. Here, we introduce a high-throughput approach to quantify the geometric properties of cells and nucleoids using confocal microscopy, digital reconstructions of cells, and computational modeling. We utilize this novel approach to investigate the dynamic process of nucleoid condensation in response to IR stress. Our quantitative analysis reveals that at the population level, exposure to IR induced nucleoid compaction and decreased the size of D. radiodurans cells. Morphological analysis and clustering identified six distinct sub-populations across all tested experimental conditions. Results indicate that exposure to IR induced fractional redistributions of cells across sub-populations to exhibit morphologies associated with greater nucleoid condensation and decreased the abundance of sub-populations associated with cell division. Nucleoid-associated proteins (NAPs) may link nucleoid compaction and stress tolerance, but their roles in regulating compaction in D. radiodurans are unknown. Imaging of genomic mutants of known and suspected NAPs that contribute to nucleoid condensation found that deletion of nucleic acid-binding proteins, not previously described as NAPs, can remodel the nucleoid by driving condensation or decondensation in the absence of stress and that IR increased the abundance of these morphological states. Thus, our integrated analysis introduces a new methodology for studying environmental influences on bacterial nucleoids and provides an opportunity to further investigate potential regulators of nucleoid condensation.IMPORTANCEDeinococcus radiodurans, an extremophile known for its stress tolerance, constitutively maintains a highly condensed nucleoid. Qualitative studies have described nucleoid behavior under a variety of conditions. However, a lack of quantitative data regarding nucleoid organization and dynamics has limited our understanding of the regulatory mechanisms controlling nucleoid organization in D. radiodurans. Here, we introduce a quantitative approach that enables high-throughput quantitative measurements of subcellular spatial characteristics in bacterial cells. Applying this to wild-type or single-protein-deficient populations of D. radiodurans subjected to ionizing radiation, we identified significant stress-responsive changes in cell shape, nucleoid organization, and morphology. These findings highlight this methodology's adaptability and capacity for quantitatively analyzing the cellular response to stressors for screening cellular proteins involved in bacterial nucleoid organization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA