Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Rep Biochem Mol Biol ; 12(4): 586-595, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39086588

RESUMEN

Background: Pancreatic cancer and colon cancer pose significant challenges in treatment, with poor prognoses. Natural products have long been explored for their potential as anticancer agents. Iso-mukaadial acetate has shown promise in inducing apoptosis in breast and ovarian cancer cells. The objective of this study was to investigate the effect of Iso-mukaadial acetate on pancreatic (MIA-PACA2) and colon (HT29) cancer cell lines. Methods: Pancreatic (MIA-PACA2) cancer cells, colon (HT29) cancer cells, normal embryonic kidney cells (HEK 293), and normal lung cells (MRC5) were cultured and treated with Iso-mukaadial acetate (IMA) for 24 hours. The viability assays were conducted using Alamarblue reagent and a real-time cell viability monitoring system, xCELLigence. The IC50 values were determined, followed by assessments of ATP production, caspase 3/7 activation, mitochondrial function, morphological changes using a light microscope, and gene expression changes via RT-PCR. Results: This study indicates that Iso-mukaadial acetate exhibited concentration-dependent cytotoxic effects, slowing cellular proliferation in both cancer cell lines. Activation of the mitochondrial apoptotic pathway and caspase 3/7 suggests induction of apoptosis. Reduced ATP production and altered gene expression further support its anticancer properties. Morphological changes after treatment with Iso-mukaadial acetate showed apoptotic characteristics which may suggest that apoptosis was induced. Conclusions: According to the results obtained, Iso-mukaadial acetate shows potential as an anticancer agent, evidenced by its effects on cellular viability, mitochondrial function, ATP production, caspase activation, and gene expression in pancreatic and colon cancer cells. These findings highlight its promise for further investigation and potential in the development of therapeutic agents.

2.
Sci Rep ; 14(1): 13744, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877067

RESUMEN

Antitumor drugs used today have shown significant efficacy and are derived from natural products such as plants. Iso-mukaadial acetate (IMA) has previously been shown to possess anticancer properties by inducing apoptosis. The purpose of this study was to investigate the therapeutic effect of IMA in the breast cancer xenograft mice model. Female athymic nude mice were used and inoculated with breast cancer cells subcutaneously. Untreated group one served as a negative control and positive control group two (cisplatin) was administered intravenously. IMA was administered orally to group three (100 mg/kg) and group four (300 mg/kg). Blood was collected (70 µL) from the tail vein on day zero, day one and day three. Tumor regression was measured every second day and body mass was recorded each day. Estimation of serum parameters for renal indices was examined using a creatinine assay. Histopathological analysis was conducted to evaluate morphological changes of liver, kidney, and spleen tissues before and after compound administration under a fluorescence light microscope. Histopathological analysis of tumors was conducted before and after compound administration. Apoptotic analysis using the TUNEL system was conducted on liver, kidney, and spleen tissues. Tumor shrinkage and reduction in body mass were observed after treatment with IMA. Serum creatinine was slightly elevated after treatment with IMA at a dosage of 100 and 300 mg/kg. Histopathological results of the liver exhibited no changes before and after IMA while the kidney and spleen tissues showed changes in the cellular structure. IMA showed no cytotoxic effect on the tumor cells, and cell proliferation was observed. Apoptotic assay stain with TUNEL showed apoptotic cells in spleen tissue and kidney but no apoptotic cells were observed in liver tissue section treated with IMA. IMA showed clinical toxic signs that resulted in the suffering and death of the mice immediately after IMA administration. Histopathology of tumor cells showed that IMA did not inhibit cell proliferation and no cellular damage was observed. Therefore, based on the results obtained, we cannot make any definitive conclusion on the complete effect of IMA in vivo. IMA is toxic, poorly soluble, and not safe to use in animal studies. The objective of the study was not achieved, and the hypothesis was rejected.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Femenino , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Apoptosis/efectos de los fármacos , Células MCF-7 , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos
3.
BMC Chem ; 18(1): 55, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500145

RESUMEN

Plasmodium falciparum is the most lethal malaria parasite. P. falciparum Hsp70 (PfHsp70) is an essential molecular chaperone (facilitates protein folding) and is deemed a prospective antimalarial drug target. The present study investigates the binding capabilities of select plant derivatives, iso-mukaadial acetate (IMA) and ursolic acid acetate (UAA), against P. falciparum using an in silico docking approach. The interaction between the ligands and PfHsp70 was evaluated using plasmon resonance (SPR) analysis. Molecular docking, binding free energy analysis and molecular dynamics simulations were conducted towards understanding the mechanisms by which the compounds bind to PfHsp70. The molecular docking results revealed ligand flexibilities, conformations and positions of key amino acid residues and protein-ligand interactions as crucial factors accounting for selective inhibition of Hsp70. The simulation results also suggest protein-ligand van der Waals forces as the driving force guiding the interaction of these compounds with PfHsp70. Of the two compounds, UAA and IMA bound to PfHsp70 within the micromolar range based on surface plasmon resonance (SPR) based binding assay. Our findings pave way for future rational design of new selective compounds targeting PfHsp70.

4.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 5179-5192, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38252299

RESUMEN

Plasmodium falciparum is the most lethal malaria parasite. Increasing incidences of drug resistance of P. falciparum have prompted the need for discovering new and effective antimalarial compounds with an alternative mode of action. Heat shock protein 90 (PfHsp90) facilitates protein folding and is a promising antimalarial drug target. We have previously reported that iso-mukaadial acetate (IMA) and ursolic acid acetate (UAA) exhibit antimalarial activity. We investigated the abilities of IMA and UAA to bind PfHsp90 by molecular docking and dynamics simulations. The in silico predictions were validated by biochemical assays conducted on recombinant PfHsp90. The interaction between the ligands and PfHsp90 was evaluated using ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FTIR), and surface plasmon resonance (SPR) analysis. The results obtained by docking calculations and MD dynamics simulation predicted that UAA and IMA preferentially bound to PfHsp90 via the N-terminal domain, with UAA binding more stable than IMA. UV-vis-based data suggest that PfHsp90 harbors buried aromatic amino acids, which were exposed in the presence of either IMA or UAA. In addition, data obtained using FTIR suggested that IMA and UAA destabilized the secondary structure of PfHsp90. Of the two compounds, UAA bound to PfHsp90 within the micromolar range based on surface plasmon resonance (SPR)-based binding assay. Furthermore, both compounds disrupted the holdase chaperone function of PfHsp90 as the chaperone failed to suppress heat-induced aggregation of the model proteins, malate dehydrogenase (MDH), luciferase, and citrate synthase in vitro. In addition, both compounds lowered the ATPase activity of PfHsp90. The molecular dynamics simulation analysis indicated that the docked complexes were mostly stable for 100 ns, validating the data obtained through the biochemical assays. Altogether, this study expands the repository of antiplasmodial compounds that have PfHsp90 among their possible targets.


Asunto(s)
Acetatos , Antimaláricos , Proteínas HSP90 de Choque Térmico , Plasmodium falciparum , Acetatos/química , Acetatos/farmacología , Antimaláricos/farmacología , Proteínas HSP90 de Choque Térmico/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Plasmodium falciparum/efectos de los fármacos , Unión Proteica , Proteínas Protozoarias/metabolismo , Resonancia por Plasmón de Superficie , Triterpenos/farmacología , Triterpenos/química , Ácido Ursólico/química
5.
Cell Stress Chaperones ; 26(4): 685-693, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34023985

RESUMEN

Plasmodium falciparum is the most lethal malaria parasite. The present study investigates the interaction capabilities of select plant derivatives, iso-mukaadial acetate (IMA) and ursolic acid acetate (UAA), against P. falciparum Hsp70-1 (PfHsp70-1) using in vitro approaches. PfHsp70-1 facilitates protein folding in the parasite and is deemed a prospective antimalarial drug target. Recombinant PfHsp70-1 protein was expressed in E. coli BL21 cells and homogeneously purified by affinity chromatography. The interaction between the compounds and PfHsp70-1 was evaluated using malate dehydrogenase (MDH), and luciferase aggregation assay, ATPase activity assay, and Fourier transform infrared (FTIR). PfHsp70-1 prevented the heat-induced aggregation of MDH and luciferase. However, the PfHsp70-1 chaperone role was inhibited by IMA or UAA, leading to both MDH and luciferase's thermal aggregation. The basal ATPase activity of PfHsp70-1 (0.121 nmol/min/mg) was closer to UAA (0.131 nmol/min/mg) (p = 0.0675) at 5 mM compound concentration, suggesting that UAA has no effect on PfHsp70-1 ATPase activity. However, ATPase activity inhibition was similar between IMA (0.068 nmol/min/mg) (p < 0.0001) and polymyxin B (0.083 nmol/min/mg) (p < 0.0001). The lesser the Pi values, the lesser ATP hydrolysis observed due to compound binding to the ATPase domain. FTIR spectra analysis of IMA and UAA resulted in PfHsp70-1 structural alteration for ß-sheets shifting the amide I band from 1637 cm-1 to 1639 cm-1, and for α-helix from 1650 cm-1 to 1652 cm-1, therefore depicting secondary structural changes with an increase in secondary structure percentage suggesting that these compounds interact with PfHsp70-1.


Asunto(s)
Proteínas HSP70 de Choque Térmico/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Plasmodium falciparum/metabolismo , Triterpenos/farmacología , Adenosina Trifosfatasas/metabolismo , Antimaláricos/química , Antimaláricos/metabolismo , Antimaláricos/farmacología , Escherichia coli/metabolismo , Plasmodium falciparum/efectos de los fármacos , Estudios Prospectivos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ácido Ursólico
6.
Biomolecules ; 9(12)2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835879

RESUMEN

To date, Plasmodium falciparum is one of the most lethal strains of the malaria parasite. P. falciparum lacks the required enzymes to create its own purines via the de novo pathway, thereby making Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPT) a crucial enzyme in the malaria life cycle. Recently, studies have described iso-mukaadial acetate and ursolic acid acetate as promising antimalarials. However, the mode of action is still unknown, thus, the current study sought to investigate the selective inhibitory and binding actions of iso-mukaadial acetate and ursolic acid acetate against recombinant PfHGXPT using in-silico and experimental approaches. Recombinant PfHGXPT protein was expressed using E. coli BL21 cells and homogeneously purified by affinity chromatography. Experimentally, iso-mukaadial acetate and ursolic acid acetate, respectively, demonstrated direct inhibitory activity towards PfHGXPT in a dose-dependent manner. The binding affinity of iso-mukaadial acetate and ursolic acid acetate on the PfHGXPT dissociation constant (KD), where it was found that 0.0833 µM and 2.8396 µM, respectively, are indicative of strong binding. The mode of action for the observed antimalarial activity was further established by a molecular docking study. The molecular docking and dynamics simulations show specific interactions and high affinity within the binding pocket of Plasmodium falciparum and human hypoxanthine-guanine phosphoribosyl transferases. The predicted in silico absorption, distribution, metabolism and excretion/toxicity (ADME/T) properties predicted that the iso-mukaadial acetate ligand may follow the criteria for orally active drugs. The theoretical calculation derived from ADME, molecular docking and dynamics provide in-depth information into the structural basis, specific bonding and non-bonding interactions governing the inhibition of malarial. Taken together, these findings provide a basis for the recommendation of iso-mukaadial acetate and ursolic acid acetate as high-affinity ligands and drug candidates against PfHGXPT.


Asunto(s)
Antimaláricos/farmacología , Inhibidores Enzimáticos/farmacología , Pentosiltransferasa/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Acetatos/química , Acetatos/farmacología , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Ligandos , Modelos Moleculares , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/enzimología , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacología , Relación Estructura-Actividad , Triterpenos/química , Triterpenos/farmacología , Ácido Ursólico
7.
Biomolecules ; 9(10)2019 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-31546691

RESUMEN

Diabetes mellitus (DM) is a chronic metabolic disorder which has become a major risk to the health of humankind, as its global prevalence is increasing rapidly. Currently available treatment options in modern medicine have several adverse effects. Thus, there is an urgent need to develop alternative cost-effective, safe, and active treatments for diabetes. In this regard, medicinal plants provide the best option for new therapeutic remedies desired to be effective and safe. Recently, we focused our attention on drimane sesquiterpenes as potential sources of antimalarial and antidiabetic agents. In this study, iso-mukaadial acetate (Iso) (1), a drimane-type sesquiterpenoid from the ground stem bark of Warburgia salutaris, was investigated for glucose uptake enhancement in the L6 rat myoblast cell line. In vitro assays with L6 skeletal muscle cells were used to test for cytotoxicity, glucose utilisation, and western blot analysis. Additionally, the inhibition of carbohydrate digestive enzymes and 1,1-diphenyl-2- picrylhydrazyl (DPPH) scavenging activity were analysed in vitro. The cell viability effect of iso-mukaadial acetate was the highest at 3 µg/mL with a percentage of 98.4. Iso-mukaadial acetate also significantly and dose-dependently increased glucose utilisation up to 215.18% (12.5 µg/mL). The increase in glucose utilisation was accompanied by enhanced 5' adenosine monophosphate-activated protein kinase (AMPK)and protein kinase B (AKT) in dose-dependent manner. Furthermore, iso-mukaadial acetate dose-dependently inhibited the enzymes α-amylase and α-glucosidase. Scavenging activity against DPPH was displayed by iso-mukaadial acetate in a concentration-dependent manner. The findings indicate the apparent therapeutic efficacy of iso-mukaadial acetate isolated from W. salutaris as a potential new antidiabetic agent.


Asunto(s)
Glucosa/metabolismo , Magnoliopsida/química , Mioblastos Esqueléticos/citología , Sesquiterpenos Policíclicos/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/metabolismo , Corteza de la Planta/química , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
8.
Malar J ; 17(1): 296, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111328

RESUMEN

BACKGROUND: Malaria continues to be a global burden as the efficacy of most commercial anti-malarial drugs has been compromised by the evolution of parasite resistance. With the urgent need created for the development of alternative and more efficient anti-malarial drugs, this study focused on the evaluation of anti-malarial agents of the Warburgia salutaris stem bark. METHODS: The stem bark was extracted with dichloromethane followed by silica gel column chromatography that led to the isolation of iso-mukaadial acetate, a drimanoid sesquiterpene. This compound was characterized by spectroscopic analysis (1H NMR, 13C NMR, IR and MS), and its structure was confirmed by X-ray crystallography. In vitro anti-plasmodial activity was investigated using a chloroquine sensitive NF54 Plasmodium falciparum strain. Cytotoxicity was measured using the MTT assay on HEK239 and HEPG2 cell lines. Chloroquine-sensitive Plasmodium berghei was used to infect Sprague-Dawley rats for in vivo studies. The W. salutaris crude extract and iso-mukaadial acetate were administered orally at 0.5; 1.5, 2.5 and 5 mg/kg, chloroquine was used as the reference drug. Determination of percentage parasitaemia, haematological parameters, and rat body weights was done throughout the experimental study period. RESULTS: The crude extract and iso-mukaadial acetate showed very good activity on the inhibition of parasite growth (IC50 0.01 ± 0.30 µg/ml) and (IC50 0.44 ± 0.10 µg/ml), respectively, with iso-mukaadial acetate having cytotoxicity activity of 36.7 ± 0.8 and 119.2 ± 8.8 (µg/ml) on HEK293 and HEPG2 cells, respectively. The crude extract and iso-mukaadial acetate reduced percentage parasitaemia in a dose-dependent manner in comparison to the control. There were no significant differences in the haematological parameters in all the experimental groups in comparison to control group. This study proves that W. salutaris contains components (including iso-mukaadial acetate) that exhibit anti-malarial activity. This study scientifically validates the use of this plant in folk medicine. CONCLUSIONS: This study proves that Warburgia salutaris contains components (including iso-mukaadial acetate) that exhibit anti-malarial activity and scientifically validates the use of this plant in folk medicine.


Asunto(s)
Antimaláricos/farmacología , Magnoliopsida/química , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Sesquiterpenos/farmacología , Animales , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Masculino , Medicinas Tradicionales Africanas , Corteza de la Planta/química , Extractos Vegetales/aislamiento & purificación , Tallos de la Planta/química , Sesquiterpenos Policíclicos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA