Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.292
Filtrar
Más filtros

Intervalo de año de publicación
1.
Pharmacol Res ; : 107332, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089398

RESUMEN

The endoplasmic reticulum (ER) plays a pivotal role in protein folding and secretion, Ca2+ storage, and lipid synthesis in eukaryotic cells. When the burden of protein synthesis and folding required to be handled exceeds the processing capacity of the ER, the accumulation of misfolded/unfolded proteins triggers ER stress. In response to short-term ER stress, the unfolded protein response (UPR) is activated to allow cells to survive. When ER stress is severe and sustained, it typically provokes cell death through multiple approaches. It is well documented that ER stress and metabolic deregulation are functionally intertwined, both are considered contributing factors to the pathogenesis of liver diseases, including non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), ischemia/reperfusion (I/R) injury, viral hepatitis, liver fibrosis, and hepatocellular carcinoma (HCC). Hepatocytes are rich in smooth and rough ER, which harbor metabolic enzymes that are capable of sensing alterations in various nutritional status and external stimuli. Extensive research has focused on the molecular mechanism linking ER stress with metabolic enzymes. The purpose of this review is to summarize the current knowledge regarding the effects of ER stress on metabolic enzymes in various liver diseases and to provide potential therapeutic strategies for chronic liver diseases via targeting UPR.

2.
Carcinogenesis ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39086220

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is a rare disease associated with a poor prognosis, primarily due to early recurrence and metastasis. An important feature of this condition is microvascular invasion (MVI). However, current predictive models based on imaging have limited efficacy in this regard. This study employed a random forest model to construct a predictive model for MVI identification and uncover its biological basis. Single-cell transcriptome sequencing, whole exome sequencing, and proteome sequencing were performed. The area under the curve of the prediction model in the validation set was 0.93. Further analysis indicated that MVI-associated tumor cells exhibited functional changes related to epithelial-mesenchymal transition and lipid metabolism due to alterations in the NF-kappa B and MAPK signaling pathways. Tumor cells were also differentially enriched for the IL-17 signaling pathway. There was less infiltration of SLC30A1+ CD8+ T cells expressing cytotoxic genes in MVI-associated ICC, whereas there was more infiltration of myeloid cells with attenuated expression of the MHC II pathway. Additionally, MVI-associated intercellular communication was closely related to the SPP1-CD44 and ANXA1-FPR1 pathways. These findings resulted in a brilliant predictive model and fresh insights into MVI.

3.
J Leukoc Biol ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087951

RESUMEN

Lipid droplets (LD) are crucial for maintaining lipid and energy homeostasis within cells. LDs are highly dynamic organelles that present a phospholipid monolayer rich in neutral lipids. Additionally, LDs are associated with structural and non-structural proteins, rapidly mobilizing lipids for various biological processes. Lipids play a pivotal role during viral infection, participating during viral membrane fusion, viral replication, and assembly, endocytosis, and exocytosis. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection often induces LD accumulation, which is used as a source of energy for the replicative process. These findings suggest that LDs are a hallmark of viral infection, including SARS-CoV-2 infection. Moreover, LD participates in the inflammatory process and cell signaling, activating pathways related to innate immunity and cell death. Accumulating evidence demonstrates that LD induction by SARS-CoV-2 is a highly coordinated process, aiding replication and evading the immune system, and may contribute to the different cell death process observed in various studies. Nevertheless, recent research in the field of LDs suggests these organelles according to the pathogen and infection conditions may also play roles in immune and inflammatory responses, protecting the host against viral infection. Understanding how SARS-CoV-2 influences LD biogenesis is crucial for developing novel drugs or repurposing existing ones. By targeting host lipid metabolic pathways exploited by the virus, it is possible to impact viral replication and inflammatory responses. This review seeks to discuss and analyze the role of LDs during SARS-CoV-2 infection, specifically emphasizing their involvement in viral replication and the inflammatory response.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39093349

RESUMEN

In this study, 39 strains of lactic acid bacteria were screened from several fermented foods. Based on the evaluation of functional and prebiotic properties, Lactiplantibacillus plantarum SDJ09 was selected as a promising candidate. It gave a 48.16% cholesterol reduction and 33.73% pancreatic lipase inhibition in cells; exhibited high resistance to acid, bile salts, and gastrointestinal fluid; and had strong antibacterial activity and high adhesion capabilities. More importantly, the lipid-lowering effect of L. plantarum SDJ09 was also investigated using 3T3-L1 mature adipocytes and HepG2 nonalcoholic fatty liver disease models. L. plantarum SDJ09 effectively decreased triglyceride accumulation by more than 50% in both cell models, in which the expression of PPARγ, C/EBPα, aP2, and LPL in 3T3-L1 cells was significantly downregulated by L. plantarum SDJ09. L. plantarum SDJ09 also improved lipid metabolism by downregulating the expression of HMGCR, SREBP-1c, ACC, and FAS and upregulating the expression of CYP7A1 in HepG2 nonalcoholic steatohepatitis cells. Therefore, L. plantarum SDJ09 has the potential to effectively decrease obesity and non-alcoholic fatty liver disease (NAFLD) by inhibiting lipid accumulation, providing a prospective probiotic agent for anti-obesity.

5.
Fish Physiol Biochem ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088110

RESUMEN

To investigate the influences of dietary protein and lipid levels on the growth, feed utilization, morphometric parameters, body composition, serum biochemical parameters, and lipid metabolism of golden pompano (Trachinotus ovatus), nine test diets containing three protein levels (35%, 40%, and 45%) and three lipid levels (8%, 13%, and 18%) were designed in the present study. Each diet (named D1-D9) was randomly assigned to feed triplicate groups of golden pompano juvenile (initial weight ~ 70 g) for 50 days. The results showed that the dietary lipid levels positively correlated with weight gain, specific growth rate, and protein efficiency ratio (PER), suggesting that the high lipid diets (18%) can be efficiently utilized in this fish species. The dietary protein levels have no significant influences on the growth and feed utilization except for the PER. Increasing dietary protein levels resulted in a decrease in hepatosomatic index (HSI), viscerosomatic index (VSI), and intestinal somatic index (ISI), while the dietary lipid level did not have a significant impact on morphological indices except for ISI. The dietary protein and lipid levels had no significant influences on the contents of crude lipid, crude ash, and moisture of whole body, while the crude protein contents was significantly affected by the dietary protein levels. Serum biochemical indexes, including cholesterol (CHO), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL), as well as HDL/LDL ratio were significantly affected by the dietary lipid levels, but not by the dietary protein levels. The expression levels of genes and their associated proteins involved in hepatic lipogenesis (Srebp-1c and Fas) and fatty acids ß-oxidation (Pparα and Cpt-1) were up-regulated with increasing dietary lipid levels, while the former was up-regulated, and the latter was down-regulated with increasing dietary protein levels. Considering the present results in terms of growth performance, feed utilization, morphometric parameters, and lipid metabolism, the recommended dietary protein and lipid levels for golden pompano are 40% and 18%, respectively. The findings suggested that this species exhibits a significant protein-sparing effect on lipid utilization.

6.
J Proteome Res ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39091241

RESUMEN

Liver oncogenesis is accompanied by discernible protein changes in the bloodstream. By employing plasma proteomic profiling, we can delve into the molecular mechanisms of liver cancer and pinpoint potential biomarkers. In this nested case-control study, we applied liquid chromatography-tandem mass spectrometry for proteome profiling in baseline plasma samples. Differential protein expression was determined and was subjected to functional enrichment, network, and Mendelian randomization (MR) analyses. We identified 193 proteins with notable differential levels between the groups. Of these proteins, MR analysis offered a compelling negative association between apolipoprotein B (APOB) and liver cancer. This association was further corroborated in the UK Biobank cohort: genetically predicted APOB levels were associated with a 31% (95% CI 19-42%) decreased risk of liver cancer; and phenotypic analysis indicated an 11% (95% CI 8-14%) decreased liver cancer risk for every 0.1 g/L increase of circulating APOB levels. Multivariable MR analysis suggested that the hepatic fat content might fully mediate the APOB-liver cancer connection. In summary, we identified some plasma proteins, particularly APOB, as potential biomarkers of liver cancer. Our findings underscore the intricate link between lipid metabolism and liver cancer, offering hints for targeted prophylactic strategies and early detection.

7.
Front Immunol ; 15: 1414594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091506

RESUMEN

Hepatitis B Virus (HBV) is a stealthy and insidious pathogen capable of inducing chronic necro-inflammatory liver disease and hepatocellular carcinoma (HCC), resulting in over one million deaths worldwide per year. The traditional understanding of Chronic Hepatitis B (CHB) progression has focused on the complex interplay among ongoing virus replication, aberrant immune responses, and liver pathogenesis. However, the dynamic progression and crucial factors involved in the transition from HBV infection to immune activation and intrahepatic inflammation remain elusive. Recent insights have illuminated HBV's exploitation of the sodium taurocholate co-transporting polypeptide (NTCP) and manipulation of the cholesterol transport system shared between macrophages and hepatocytes for viral entry. These discoveries deepen our understanding of HBV as a virus that hijacks hepatocyte metabolism. Moreover, hepatic niche macrophages exhibit significant phenotypic and functional diversity, zonal characteristics, and play essential roles, either in maintaining liver homeostasis or contributing to the pathogenesis of chronic liver diseases. Therefore, we underscore recent revelations concerning the importance of hepatic niche macrophages in the context of viral hepatitis. This review particularly emphasizes the significant role of HBV-induced metabolic changes in hepatic macrophages as a key factor in the transition from viral infection to immune activation, ultimately culminating in liver inflammation. These metabolic alterations in hepatic macrophages offer promising targets for therapeutic interventions and serve as valuable early warning indicators, shedding light on the disease progression.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Hígado , Macrófagos , Humanos , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/fisiología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Animales , Hígado/inmunología , Hígado/virología , Hígado/metabolismo , Hígado/patología , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/metabolismo , Hepatitis B Crónica/virología , Inflamación/inmunología , Inflamación/metabolismo , Hepatocitos/metabolismo , Hepatocitos/inmunología , Hepatocitos/virología
8.
J Alzheimers Dis ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39093068

RESUMEN

Background: Recent advances linking gut dysbiosis with neurocognitive disorders such as Alzheimer's disease (AD) suggest that the microbiota-gut-brain axis could be targeted for AD prevention, management, or treatment. Objective: We sought to identify probiotics that can delay Aß-induced paralysis. Methods: Using C. elegans expressing human amyloid-ß (Aß)1-42 in body wall muscles (GMC101), we assessed the effects of several probiotic strains on paralysis. Results: We found that Lacticaseibacillus rhamnosus HA-114 and Bacillus subtilis R0179, but not their supernatants or heat-treated forms, delayed paralysis and prolonged lifespan without affecting the levels of amyloid-ß aggregates. To uncover the mechanism involved, we explored the role of two known pathways involved in neurogenerative diseases, namely mitophagy, via deletion of the mitophagy factor PINK-1, and fatty acid desaturation, via deletion of the Δ9 desaturase FAT-5. Pink-1 deletion in GMC101 worms did not modify the life-prolonging and anti-paralysis effects of HA-114 but reduced the protective effect of R0179 against paralysis without affecting its life-prolonging effect. Upon fat5 deletion in GMC101 worms, the monounsaturated C14:1 and C16:1 FAs conserved their beneficial effect while the saturated C14:0 and C16:0 FAs did not. The beneficial effects of R0179 on both lifespan and paralysis remained unaffected by fat-5 deletion, while the beneficial effect of HA-114 on paralysis and lifespan was significantly reduced. Conclusions: Collectively with clinical and preclinical evidence in other models, our results suggest that HA-114 or R0179 could be studied as potential therapeutical adjuncts in neurodegenerative diseases such as AD.

9.
Plant Cell Environ ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946254

RESUMEN

Plant pathogens cause devastating diseases, leading to serious losses to agriculture. Mechanistic understanding of pathogenesis of plant pathogens lays the foundation for the development of fungicides for disease control. Mitophagy, a specific form of autophagy, is important for fungal virulence. The role of cardiolipin, mitochondrial signature phospholipid, in mitophagy and pathogenesis is largely unknown in plant pathogenic fungi. The functions of enzymes involved in cardiolipin biosynthesis and relevant inhibitors were assessed using a set of assays, including genetic deletion, plant infection, lipidomics, chemical-protein interaction, chemical inhibition, and field trials. Our results showed that the cardiolipin biosynthesis-related gene MoGEP4 of the rice blast fungus Magnaporthe oryzae regulates growth, conidiation, cardiolipin biosynthesis, and virulence. Mechanistically, MoGep4 regulated mitophagy and Mps1-MAPK phosphorylation, which are required for virulence. Chemical alexidine dihydrochloride (AXD) inhibited the enzyme activity of MoGep4, cardiolipin biosynthesis and mitophagy. Importantly, AXD efficiently inhibited the growth of 10 plant pathogens and controlled rice blast and Fusarium head blight in the field. Our study demonstrated that MoGep4 regulates mitophagy, Mps1 phosphorylation and pathogenesis in M. oryzae. In addition, we found that the MoGep4 inhibitor, AXD, displays broad-spectrum antifungal activity and is a promising candidate for fungicide development.

10.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000541

RESUMEN

Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, and immune-enhancing properties. However, their physicochemical characteristics and their role in fighting diabetes have not been previously reported. In the current study, TFCPs were isolated and structurally characterized. The yield of TFCPs was determined to be 2.76%, and it was found to be composed of a diverse array of polysaccharides with varying molecular weights. The hypoglycemic and hypolipidemic effects of TFCPs, as well as their potential mechanisms of action, were investigated in a T2D mouse model. The results demonstrated that oral administration of TFCPs could alleviate fasting blood glucose levels, insulin resistance, hyperlipidemia, and the dysfunction of pancreatic islets in T2D mice. In terms of mechanisms, the TFCPs enhanced hepatic glycogenesis and glycolysis while inhibiting gluconeogenesis. Additionally, the TFCPs suppressed hepatic de novo lipogenesis and promoted fatty acid oxidation. Furthermore, the TFCPs altered the composition of the gut microbiota in the T2D mice, increasing the abundance of beneficial bacteria such as Allobaculum and Faecalibaculum, while reducing the levels of pathogens like Mailhella and Acetatifactor. Overall, these findings suggest that TFCPs may exert anti-diabetic effects by regulating hepatic glucose and lipid metabolism and the composition of the gut microbiota. These findings suggest that TFCPs can be used as a promising functional ingredient for the prevention and treatment of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglucemia , Hiperlipidemias , Metabolismo de los Lípidos , Hígado , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratones , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Polisacáridos Fúngicos/farmacología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Termitomyces/metabolismo , Glucemia/metabolismo , Polisacáridos/farmacología , Ratones Endogámicos C57BL
11.
Insect Mol Biol ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39005109

RESUMEN

Metamorphosis plays an important role in the evolutionary success of insects. Accumulating evidence indicated that microRNAs (miRNAs) are involved in the regulation of processes associated with insect metamorphosis. However, the miRNAs coordinated with juvenile hormone (JH)-regulated metamorphosis remain poorly reported. In the present study, using high-throughput miRNA sequencing combined with Drosophila genetic approaches, we demonstrated that miR-iab-8, which primarily targets homeotic genes to modulate haltere-wing transformation and sterility was up-regulated by JH and involved in JH-mediated metamorphosis. Overexpression of miR-iab-8 in the fat body resulted in delayed development and failure of larval-pupal transition. Furthermore, metabolomic analysis results revealed that overexpression of miR-iab-8 caused severe energy metabolism defects especially the lipid metabolism, resulting in significantly reduced triacylglycerol (TG) content and glycerophospholipids but enhanced accumulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In line with this, Nile red staining demonstrated that during the third larval development, the TG content in the miR-iab-8 overexpression larvae was continuously decreased, which is opposite to the control. Additionally, the transcription levels of genes committed to TG synthesis and breakdown were found to be significantly increased and the expression of genes responsible for glycerophospholipids metabolism were also altered. Overall, we proposed that JH induced miR-iab-8 expression to perturb the lipid metabolism homeostasis especially the TG storage in the fat body, which in turn affected larval growth and metamorphosis.

12.
Curr Nutr Rep ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008211

RESUMEN

PURPOSE OF REVIEW: This review aims to critically examine how VLCKD affects plasma lipoprotein, lipid and cholesterol metabolism. Cardiovascular disease is a worldwide health problem affecting millions of people and leading to high rates of mortality and morbidity. There is a well-established association between cardiovascular disease and circulating cholesterol. Various dietary recommendations are currently available for the management of dyslipidemia. RECENT FINDINGS: The very low-calorie ketogenic diet (VLCKD) is becoming increasingly popular as a treatment option for several pathological conditions, including dyslipidemia. In addition to being low in calories, the VLCKD's main feature is its unique calorie distribution, emphasizing a reduction in carbohydrate consumption in favor of fat as the primary calorie source. Lowering calorie intake through a VLCKD can reduce the endogenous production of cholesterol. However, if the foods consumed are from animal sources, dietary cholesterol intake may increase due to the higher fat content of animal products. When combined, these dietary practices may have opposing effects on plasma cholesterol levels. Studies investigating the impact of VLCKD on plasma cholesterol and low-density lipoprotein cholesterol levels report contradictory findings. While some studies found an increase in low-density lipoprotein cholesterol levels, others showed a decrease in total cholesterol and low-density lipoprotein cholesterol, along with an increase in high-density lipoprotein cholesterol.

13.
Am J Cancer Res ; 14(6): 3130-3141, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005676

RESUMEN

To investigate the dynamics of inflammation and lipid-related indicators in lung cancer patients and their impact on treatment efficacy. A retrospective analysis was conducted on 133 lung cancer patients who seek for primary treatment at Wujin Hospital Affiliated to Jiangsu University from January 2019 to August 2022. The inflammation and blood lipid-related indicators were collected 1 week before treatment and after 2 cycles of treatment. We compared the changes in these indicators among patients with different treatment methods and outcomes. The diagnostic value of the dynamic changes in each index for disease progression was calculated using the ROC curve. The risk factors influencing disease development were identified using multifactorial logistic regression analysis. After 2 cycles of treatment, the white blood cell count (WBC, P<0.001), neutrophil count (NC, P<0.001), neutrophil-to-lymphocyte ratio (NLR, P<0.001) in the disease progression (PD) group were significantly increased, triglyceride (TG, P=0.023), apolipoprotein A1 (APO-A1, P=0.009) was significantly decreased. The results showed that ∆NC had the highest sensitivity (88.24%) in predicting disease progression, and ∆WBC had the best specificity (77.78%). Multivariate regression analysis showed that ΔWBC (P<0.001), ΔTG (P=0.041), and treatment method (P=0.010) were independent risk factors for disease progression (PD). The changes of WBC and TG before and after treatment are promising indicators for predicting the progression of lung cancer and may offer a new direction for lung cancer treatment.

14.
Cureus ; 16(6): e62224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39006590

RESUMEN

Colonic xanthomas are a rare finding, particularly when combined with a tubular adenoma in a single polyp. While transformation to malignancy is not thought to be higher than that of a tubular adenoma alone, there is still concern as to the pathophysiology of xanthoma formation within the colon and what that may mean for patient outcomes. Here, we present a patient undergoing a routine screening colonoscopy with the removal of a rectosigmoid polyp consistent with xanthoma and tubular adenoma histopathology. Proper follow-up for identification of possible metabolic derangements and increased colonic surveillance is recommended to mitigate the risk of further xanthoma or adenocarcinoma formation.

15.
J Anim Sci Biotechnol ; 15(1): 100, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997768

RESUMEN

BACKGROUND: Liver lipid dysregulation is one of the major factors in the decline of production performance in late-stage laying hens. Silymarin (SIL), a natural flavonolignan extracted from milk thistle, is known for its hepatoprotective and lipid-lowering properties in humans. This study evaluates whether SIL can provide similar benefits to late-stage laying hens. A total of 480 68-week-old Lohmann Pink laying hens were randomly assigned into 5 groups, each group consisting of 6 replicates with 16 hens each. The birds received a basal diet either without silymarin (control) or supplemented with silymarin at concentrations of 250, 500, 750, or 1,000 mg/kg (SIL250, SIL500, SIL750, SIL1000) over a 12-week period. RESULTS: The CON group exhibited a significant decline in laying rates from weeks 9 to 12 compared to the initial 4 weeks (P = 0.042), while SIL supplementation maintained consistent laying rates throughout the study (P > 0.05). Notably, the SIL500 and SIL750 groups showed higher average egg weight than the CON group during weeks 5 to 8 (P = 0.049). The SIL750 group had a significantly higher average daily feed intake across the study period (P < 0.05), and the SIL500 group saw a marked decrease in the feed-to-egg ratio from weeks 5 to 8 (P = 0.003). Furthermore, the SIL500 group demonstrated significant reductions in serum ALT and AST levels (P < 0.05) and a significant decrease in serum triglycerides and total cholesterol at week 12 with increasing doses of SIL (P < 0.05). SIL also positively influenced liver enzyme expression (FASN, ACC, Apo-VLDL II, FXR, and CYP7A1; P < 0.05) and altered the cecal microbiota composition, enhancing species linked to secondary bile acid synthesis. Targeted metabolomics identified 9 metabolites predominantly involved in thiamin metabolism that were significantly different in the SIL groups (P < 0.05). CONCLUSIONS: Our study demonstrated that dietary SIL supplementation could ameliorate egg production rate in late stage laying hens, mechanistically, this effect was via improving hepatic lipid metabolism and cecal microbiota function to achieve. Revealed the potentially of SIL as a feed supplementation to regulate hepatic lipid metabolism dysregulation. Overall, dietary 500 mg/kg SIL had the best effects.

16.
Plants (Basel) ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999621

RESUMEN

The Sapindus saponaria (soapberry) kernel is rich in oil that has antibacterial, anti-inflammatory, and antioxidant properties, promotes cell proliferation, cell migration, and stimulates skin wound-healing effects. S. saponaria oil has excellent lubricating properties and is a high-quality raw material for biodiesel and premium lubricants, showing great potential in industrial and medical applications. Metabolite and transcriptome analysis revealed patterns of oil accumulation and composition and differentially expressed genes (DEGs) during seed development. Morphological observations of soapberry fruits at different developmental stages were conducted, and the oil content and fatty acid composition of the kernels were determined. Transcriptome sequencing was performed on kernels at 70, 100, and 130 days after flowering (DAF). The oil content of soapberry kernels was lowest at 60 DAF (5%) and peaked at 130 DAF (31%). Following soapberry fruit-ripening, the primary fatty acids in the kernels were C18:1 (oleic acid) and C18:3 (linolenic acid), accounting for an average proportion of 62% and 18%, respectively. The average contents of unsaturated fatty acids and saturated fatty acids in the kernel were 86% and 14%, respectively. Through the dynamic changes in fatty acid composition and DEGs analysis of soapberry kernels, FATA, KCR1, ECR, FAD2 and FAD3 were identified as candidate genes contributing to a high proportion of C18:1 and C18:3, while DGAT3 emerged as a key candidate gene for TAG biosynthesis. The combined analysis of transcriptome and metabolism unveiled the molecular mechanism of oil accumulation, leading to the creation of a metabolic pathway pattern diagram for oil biosynthesis in S. saponaria kernels. The study of soapberry fruit development, kernel oil accumulation, and the molecular mechanism of oil biosynthesis holds great significance in increasing oil yield and improving oil quality.

17.
Nutrients ; 16(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38999751

RESUMEN

To investigate the effects of rapeseed diacylglycerol oil (RDG) intake on lipid accumulation and metabolism in C57BL/6J mice, obese mice were fed a high-fat diet in which 45% of the total energy content came from RDG (RDGM group) or rapeseed triacylglycerol oil (RTGM group). This diet intervention was conducted for 12 weeks following the establishment of the obese mouse model. By the end of the experiment, the serum glucose levels of the mice in the RTGM and RDGM groups were 13.0 ± 1.3 mmol/L and 9.7 ± 1.5 mmol/L, respectively. Meanwhile, the serum triglyceride level in the RDGM group was 26.3% lower than that in the RTGM group. The weight-loss effect in the RDGM group was accompanied by a significant decrease in the white adipose tissue (WAT) index. The RDG intervention did not significantly change the antioxidant and anti-inflammatory properties of the rapeseed oil in vivo. The RDG diet improved the liver lipid metabolism abnormalities induced by a high-fat diet, leading to decreased liver damage index values (AST and ALT). Additionally, compared to that in the RTGM group, the expression of the adipogenic genes PPAR-γ and DGAT decreased in both the liver and intestine by 21.7% and 16.7% and by 38.7% and 47.2%, respectively, in the RDGM group. Further, most lipolytic genes in BAT showed no significant change after the RDG intervention. This implies that RDG regulates lipid metabolism by altering the expression of adipogenic genes in the liver, intestine, and adipose tissue, thereby reducing the accumulation of WAT. Furthermore, the RDG diet enhanced gut flora diversity, increasing the relative levels of unclassified Muribaculaceae and decreasing the levels of Dubosiella and Faecalibaculum in the mouse gut, potentially accelerating lipid metabolism. Thus, a three-month RDG diet intervention in obese mice exhibited benefits in regulating the somatotype, serum obesity-related indices, gut flora structure, and lipid metabolism in the adipose tissue, liver, and intestine.


Asunto(s)
Fármacos Antiobesidad , Dieta Alta en Grasa , Diglicéridos , Metabolismo de los Lípidos , Hígado , Ratones Endogámicos C57BL , Obesidad , Aceite de Brassica napus , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/metabolismo , Diglicéridos/farmacología , Dieta Alta en Grasa/efectos adversos , Masculino , Aceite de Brassica napus/farmacología , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones , Fármacos Antiobesidad/farmacología , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Triglicéridos/sangre , Diacilglicerol O-Acetiltransferasa/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Microbioma Gastrointestinal/efectos de los fármacos , PPAR gamma/metabolismo , Ratones Obesos
18.
Nutrients ; 16(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38999903

RESUMEN

Lipids are primarily transported in the bloodstream by lipoproteins, which are macromolecules of lipids and conjugated proteins also known as apolipoproteins. The processes of lipoprotein assembly, secretion, transportation, modification, and clearance are crucial components of maintaining a healthy lipid metabolism. Disruption in any of these steps results in pathophysiological abnormalities such as dyslipidemia, obesity, insulin resistance, inflammation, atherosclerosis, peripheral artery disease, and cardiovascular diseases. By studying these genetic mutations, researchers can gain valuable insights into the underlying mechanisms that govern the relationship between protein structure and its physiological role. These lipoproteins, including HDL, LDL, lipoprotein(a), and VLDL, mainly serve the purpose of transporting lipids between tissues and organs. However, studies have provided evidence that apo(a) also possesses protective properties against pathogens. In the future, the field of study will be significantly influenced by the integration of recombinant DNA technology and human site-specific mutagenesis for treating hereditary disorders. Several medications are available for the treatment of dyslipoproteinemia. These include statins, fibrates, ezetimibe, niacin, PCSK9 inhibitors, evinacumab, DPP 4 inhibitors, glucagon-like peptide-1 receptor agonists GLP1RAs, GLP-1, and GIP dual receptor agonists, in addition to SGLT2 inhibitors. This current review article exhibits, for the first time, a comprehensive reflection of the available body of publications concerning the impact of lipoproteins on metabolic well-being across various pathological states.


Asunto(s)
Dislipidemias , Lipoproteínas , Humanos , Lipoproteínas/metabolismo , Metabolismo de los Lípidos , Enfermedades Cardiovasculares/prevención & control , Resistencia a la Insulina , Obesidad/metabolismo , Animales
19.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000044

RESUMEN

Kidney diseases, including chronic kidney disease (CKD), diabetic nephropathy, and acute kidney injury (AKI), represent a significant global health burden. The kidneys are metabolically very active organs demanding a large amount of ATP. They are composed of highly specialized cell types in the glomerulus and subsequent tubular compartments which fine-tune metabolism to meet their numerous and diverse functions. Defective renal cell metabolism, including altered fatty acid oxidation or glycolysis, has been linked to both AKI and CKD. Mitochondria play a vital role in renal metabolism, and emerging research has identified mitochondrial sirtuins (SIRT3, SIRT4 and SIRT5) as key regulators of renal cell metabolic adaptation, especially SIRT3. Sirtuins belong to an evolutionarily conserved family of mainly NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their dependence on NAD+, used as a co-substrate, directly links their enzymatic activity to the metabolic status of the cell. In the kidney, SIRT3 has been described to play crucial roles in the regulation of mitochondrial function, and the antioxidative and antifibrotic response. SIRT3 has been found to be constantly downregulated in renal diseases. Genetic or pharmacologic upregulation of SIRT3 has also been associated with beneficial renal outcomes. Importantly, experimental pieces of evidence suggest that SIRT3 may act as an important energy sensor in renal cells by regulating the activity of key enzymes involved in metabolic adaptation. Activation of SIRT3 may thus represent an interesting strategy to ameliorate renal cell energetics. In this review, we discuss the roles of SIRT3 in lipid and glucose metabolism and in mediating a metabolic switch in a physiological and pathological context. Moreover, we highlight the emerging significance of other mitochondrial sirtuins, SIRT4 and SIRT5, in renal metabolism. Understanding the role of mitochondrial sirtuins in kidney diseases may also open new avenues for innovative and efficient therapeutic interventions and ultimately improve the management of renal injuries.


Asunto(s)
Enfermedades Renales , Riñón , Mitocondrias , Sirtuina 3 , Sirtuinas , Humanos , Sirtuinas/metabolismo , Sirtuina 3/metabolismo , Sirtuina 3/genética , Mitocondrias/metabolismo , Animales , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Riñón/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
20.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000236

RESUMEN

Thyroid cancer (TC) is a neoplasm with an increasing incidence worldwide. Its etiology is complex and based on a multi-layered interplay of factors. Among these, disorders of lipid metabolism have emerged as an important area of investigation. Cancer cells are metabolically reprogrammed to promote their rapid growth, proliferation, and survival. This reprogramming is associated with significant changes at the level of lipids, mainly fatty acids (FA), as they play a critical role in maintaining cell structure, facilitating signaling pathways, and providing energy. These lipid-related changes help cancer cells meet the increased demands of continued growth and division while adapting to the tumor microenvironment. In this review, we examine lipid metabolism at different stages, including synthesis, transport, and oxidation, in the context of TC and the effects of obesity and hormones on TC development. Recent scientific efforts have revealed disturbances in lipid homeostasis that are specific to thyroid cancer, opening up potential avenues for early detection and targeted therapeutic interventions. Understanding the intricate metabolic pathways involved in FA metabolism may provide insights into potential interventions to prevent cancer progression and mitigate its effects on surrounding tissues.


Asunto(s)
Metabolismo de los Lípidos , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/etiología , Trastornos del Metabolismo de los Lípidos/metabolismo , Animales , Ácidos Grasos/metabolismo , Microambiente Tumoral , Transducción de Señal , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA