Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Acta Neurochir (Wien) ; 165(8): 2309-2319, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37354286

RESUMEN

INTRODUCTION: The cerebrospinal fluid (CSF) production rate in humans is not clearly defined but is estimated to be 18-24 ml/h (Trevisi et al Croat Med J 55(4):377-387 (24); Casey and Vries Childs Nerv Syst 5(5):332-334 (8)). A frequent clinical observation is that patients often drain higher volumes of CSF than can be explained by the assumed 'normal' CSF production rate (PRcsf). In the National Hospital for Neurology and Neurosurgery PRcsf was recorded in a variety of common neurosurgical pathologies using LiquoGuard7, an automated peristaltic pump that accurately controls CSF drainage and maintains a pre-set CSF pressure. METHODS: A prospective observational study was performed from September 2021 onwards, on all patients in the National Hospital for Neurology and Neurosurgery who required CSF drainage as part of their ongoing treatment. The external drain was connected to a LiquoGuard7 pump (Möller Medical GmbH, Fulda, Germany), and the internal software of LiquoGuard7 was used to measure PRcsf. Statistical analysis used SPSS (version 25.0, IBM) by paired t test, comparing measured rates to hypothetical 'normal' CSF production rates calculated and published by Ekstedt (16-34ml/h) (Ekstedt J Neurol Neurosurg Psychiatry 41(4):345-353 (14)), assuming a similar distribution. RESULTS: PRcsf was calculated in 164 patients. Suspected normal pressure hydrocephalus (n=41): PRcsf of 79ml/h±20SD (p<0.0001). Post-surgical CSF leak (n=26): PRcsf of 90ml/h±20SD (p<0.0001). Subarachnoid haemorrhage (n=34): PRcsf of 143ml/h±9SD (p<0.0001). Intracerebral haemorrhage (n=22): PRcsf of 137ml/h±20SD (p<0.0001). Spinal lesions (n=7): PRcsf of 130ml/h±20SD (p<0.0032). Pituitary adenomas (n=10): PRcsf of 29 ml/h±9SD (p<0.049). Idiopathic intracranial hypertension (n=15): PRcsf of 86ml/h±10SD (p<0.0001). Decompensated long-standing overt ventriculomegaly (n=4): PRcsf of 65ml/h±10SD (p<0.0001). Cerebral infection (n=5): PRcsf of 90ml/h±20SD (p<0.0001). CONCLUSION: Net CSF production rate may be higher than expected in many conditions, as measured with new device LiquoGuard7 through the study of net flow rate, which may have implications for clinical decisions on CSF diversion. The conventional understanding of CSF production and circulation does not explain the findings of this study. More extensive studies are needed to validate this technique.


Asunto(s)
Hidrocéfalo Normotenso , Hidrocefalia , Hemorragia Subaracnoidea , Humanos , Hidrocefalia/cirugía , Presión del Líquido Cefalorraquídeo , Pérdida de Líquido Cefalorraquídeo , Estudios Prospectivos , Líquido Cefalorraquídeo
2.
Brain Sci ; 11(6)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067446

RESUMEN

BACKGROUND: Automated cerebrospinal fluid (CSF) drainage systems allow for the mobilization of patients with an external CSF drain. The aim of this study is to describe the implementation of an automated CSF drainage system in neurosurgical patients with external CSF drains. METHODS: A feasibility study was performed using an automated CSF drainage system (LiquoGuard®7, Möller Medical GmbH, Fulda, Germany) in adult neurosurgical patients treated with external lumbar or external ventricular drains between December 2017 and June 2020. Limited mobilization was allowed-patients were allowed to adjust their inclined beds, sit in chairs and walk under the supervision of a nurse or physical therapist. The primary outcome was the number of prematurely terminated drainage sessions. RESULTS: Twenty-three patients were included. Drainage was terminated prematurely in eight (35%) patients. In three (13%) of these patients, drainage was terminated due to signs of hydrocephalus. Pressure-controlled drainage in patients with external lumbar drains (ELD) showed inaccurate pressure curves, which was solved by using volume-controlled drainage in ELD patients. CONCLUSION: The implementation of an automated CSF drainage system (LiquoGuard®7) for CSF drainage allows for early mobilization in a subset of patients with external CSF drains. External lumbar drains require volume-based drainage rather than differential pressure-dependent drainage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA