Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Aging Cell ; : e14301, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118304

RESUMEN

Defects in the splicing machinery are implicated in various diseases, including cancer. We observed a general reduction in the expression of spliceosome components and splicing regulators in human cell lines undergoing replicative, stress-induced, and telomere uncapping-induced senescence. Supporting the view that defective splicing contributes to senescence, splicing inhibitors herboxidiene, and pladienolide B induced senescence in normal and cancer cell lines. Furthermore, depleting individual spliceosome components also promoted senescence. All senescence types were associated with an alternative splicing transition from the MDM4-FL variant to MDM4-S. The MDM4 splicing shift was reproduced when splicing was inhibited, and spliceosome components were depleted. While decreasing the level of endogenous MDM4 promoted senescence and cell survival independently of the MDM4-S expression status, cell survival was also improved by increasing MDM4-S. Overall, our work establishes that splicing defects modulate the alternative splicing of MDM4 to promote senescence and cell survival.

2.
Cell Rep ; 43(8): 114622, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146182

RESUMEN

Microsatellite instability-high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion and cell proliferation and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses the expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.

3.
Stem Cell Reports ; 19(8): 1217-1232, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38964325

RESUMEN

Culture-acquired variants in human pluripotent stem cells (hPSCs) hinder their applications in research and clinic. However, the mechanisms that underpin selection of variants remain unclear. Here, through analysis of comprehensive karyotyping datasets from over 23,000 hPSC cultures of more than 1,500 lines, we explored how culture conditions shape variant selection. Strikingly, we identified an association of chromosome 1q gains with feeder-free cultures and noted a rise in its prevalence in recent years, coinciding with increased usage of feeder-free regimens. Competition experiments of multiple isogenic lines with and without a chromosome 1q gain confirmed that 1q variants have an advantage in feeder-free (E8/vitronectin), but not feeder-based, culture. Mechanistically, we show that overexpression of MDM4, located on chromosome 1q, drives variants' advantage in E8/vitronectin by alleviating genome damage-induced apoptosis, which is lower in feeder-based conditions. Our study explains condition-dependent patterns of hPSC aberrations and offers insights into the mechanisms of variant selection.


Asunto(s)
Cromosomas Humanos Par 1 , Células Madre Pluripotentes , Humanos , Cromosomas Humanos Par 1/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Técnicas de Cultivo de Célula/métodos , Apoptosis/genética , Células Nutrientes/citología , Línea Celular , Células Cultivadas
4.
Clin Exp Metastasis ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796806

RESUMEN

Colorectal cancer (CRC) presents a growing concern globally, marked by its escalating incidence and mortality rates, thus imposing a substantial health burden. This investigation delves into the role of nuclear receptor subfamily 3 group C member 1 (NR3C1) in CRC metastasis and explores the associated mechanism. Through a comprehensive bioinformatics analysis, NR3C1 emerged as a gene with diminished expression levels in CRC. This finding was corroborated by observations of a low-expression pattern of NR3C1 in both CRC tissues and cells. Furthermore, experiments involving NR3C1 knockdown revealed an exacerbation of proliferation, migration, and invasion of CRC cells in vitro. Subsequent assessments in mouse xenograft tumor models, established by injecting human HCT116 cells either through the tail vein or at the cecum termini, demonstrated a reduction in tumor metastasis to the lung and liver, respectively, upon NR3C1 knockdown. Functionally, NR3C1 (glucocorticoid receptor) suppressed SET binding protein 1 (SETBP1) transcription by binding to its promoter region. Notably, mouse double minute 4 (MDM4) was identified as an upstream regulator of NR3C1, orchestrating its downregulation via ubiquitination-dependent proteasomal degradation. Further investigations unveiled that SETBP1 knockdown suppressed migration and invasion, and epithelial to mesenchymal transition of CRC cells, consequently impeding in vivo metastasis in murine models. Conversely, upregulation of MDM4 exacerbated the metastatic phenotype of CRC cells, a propensity mitigated upon additional upregulation of NR3C1. In summary, this study elucidates a cascade wherein MDM4-mediated ubiquitination of NR3C1 enables the transcriptional activation of SETBP1, thereby propelling the dissemination of CRC cells.

5.
Molecules ; 29(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38792257

RESUMEN

Glioblastoma multiforme, a highly aggressive and lethal brain tumor, is a substantial clinical challenge and a focus of increasing concern globally. Hematological toxicity and drug resistance of first-line drugs underscore the necessity for new anti-glioma drug development. Here, 43 anthracenyl skeleton compounds as p53 activator XI-011 analogs were designed, synthesized, and evaluated for their cytotoxic effects. Five compounds (13d, 13e, 14a, 14b, and 14n) exhibited good anti-glioma activity against U87 cells, with IC50 values lower than 2 µM. Notably, 13e showed the best anti-glioma activity, with an IC50 value up to 0.53 µM, providing a promising lead compound for new anti-glioma drug development. Mechanistic analyses showed that 13e suppressed the MDM4 protein expression, upregulated the p53 protein level, and induced cell cycle arrest at G2/M phase and apoptosis based on Western blot and flow cytometry assays.


Asunto(s)
Antracenos , Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Proteína p53 Supresora de Tumor , Humanos , Antracenos/farmacología , Antracenos/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
7.
Biomark Res ; 12(1): 34, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481290

RESUMEN

Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) originate from preleukemic hematopoietic conditions, such as clonal hematopoiesis of indeterminate potential (CHIP) or clonal cytopenia of undetermined significance (CCUS) and have variable outcomes despite the successful implementation of targeted therapies. The prognosis differs depending on the molecular subgroup. In patients with TP53 mutations, the most inferior outcomes across independent studies were observed. Myeloid malignancies with TP53 mutations have complex cytogenetics and extensive structural variants. These factors contribute to worse responses to induction therapy, demethylating agents, or venetoclax-based treatments. Survival of patients with biallelic TP53 gene mutations is often less than one year but this depends on the type of treatment applied. It is still controversial whether the allelic state of mutant TP53 impacts the outcomes in patients with AML and high-risk MDS. Further studies are needed to justify estimating TP53 LOH status for better risk assessment. Yet, TP53-mutated MDS, MDS/AML and AML are now classified separately in the International Consensus Classification (ICC). In the clinical setting, the wild-type p53 protein is reactivated pharmacologically by targeting p53/MDM2/MDM4 interactions and mutant p53 reactivation is achieved by refolding the DNA binding domain to wild-type-like conformation or via targeted degradation of the mutated protein. This review discusses our current understanding of p53 biology in MDS and AML and the promises and failures of wild-type and mutant p53 reactivation in the clinical trial setting.

8.
Eur J Med Res ; 29(1): 79, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38281029

RESUMEN

MDM4 is one of the MDM protein family and is generally recognized as the key negative regulator of p53. As a cancer-promoting factor, it plays a non-negligible role in tumorigenesis and development. In this article, we analyzed the expression levels of MDM4 in pan-cancer through multiple databases. We also investigated the correlations between MDM4 expression and prognostic value, immune features, genetic mutation, and tumor-related pathways. We found that MDM4 overexpression is often accompanied by adverse clinical features, poor prognosis, oncogenic mutations, tumor-immune infiltration and aberrant activation of oncogenic signaling pathways. We also conducted transcriptomic sequencing to investigate the effect of MDM4 on transcript levels in colon cancer and performed qPCR to verify this. Finally, we carried out some in vitro experiments including colony formation assay, chemoresistance and senescence-associated ß-galactosidase activity assay to study the anti-tumor treatment effect of small molecule MDM4 inhibitor, NSC146109. Our research confirmed that MDM4 is a prognostic biomarker and potential therapeutic target for a variety of malignancies.


Asunto(s)
Proteínas Nucleares , Proteínas Proto-Oncogénicas , Humanos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/metabolismo , Carcinogénesis/genética , Pronóstico , Proteína p53 Supresora de Tumor/genética
9.
Mod Pathol ; 37(2): 100385, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37992967

RESUMEN

Accurate diagnosis and treatment of hepatocellular neoplasm, not otherwise specified (HCN-NOS), poses significant challenges. Our study aimed to investigate the clinicopathologic and genomic similarities and differences between HCN-NOS and hepatoblastoma (HB) to guide diagnostic and treatment strategies. The clinicopathologic characteristics of 16 patients with HCN-NOS and 23 patients with HB were compared. Molecular studies, including the OncoKids DNA- and RNA-based next-generation sequencing panel, chromosomal microarray, and targeted Sanger sequencing analyses of CTNNB1 and TERT promoters, were employed. We found that patients with HCN-NOS were older (P < .001) and more frequently classified as high risk (P < .01), yet they showed no significant differences in alpha fetoprotein levels or survival outcomes compared with those with HB. HCN-NOS and HB had a comparable frequency of sequence variants, with CTNNB1 mutations being predominant in both groups. Notably, TERT promoter mutations (37.5%) and rare clinically significant variants (BRAF, NRAS, and KMT2D) were exclusive to HCN-NOS. HCN-NOS demonstrated a higher prevalence of gains in 1q, encompassing the MDM4 locus (17/17 vs 11/24; P < .001), as well as loss/loss of heterozygosity (LOH) of 1p (11/17 vs 6/24; P < .05) and chromosome 11 (7/17 vs 1/24; P < .01) when compared with HB. Furthermore, the recurrent loss/LOH of chromosomes 3, 4p, 9, 15q, and Y was only observed in HCN-NOS. However, no significant differences were noted in gains of chromosomes 2, 8, and 20, or loss/LOH of 4q and 11p between the 2 groups. Notably, no clinically significant gene fusions were detected in either group. In conclusion, our study reveals that HCN-NOS exhibits high-risk clinicopathologic features and greater structural complexity compared with HB. However, patients with HCN-NOS exhibit comparable alpha fetoprotein levels at diagnosis, CTNNB1 mutation rates, and survival outcomes when subjected to aggressive treatment, as compared with those with HB. These findings have the potential to enhance diagnostic accuracy and inform more effective treatments for HCN-NOS.


Asunto(s)
Carcinoma Hepatocelular , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Hepatoblastoma/genética , Hepatoblastoma/patología , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , alfa-Fetoproteínas , Genómica , Proteínas Proto-Oncogénicas , Proteínas de Ciclo Celular
10.
Drug Chem Toxicol ; : 1-11, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990515

RESUMEN

Microcystin (MC) is the byproduct of cyanobacteria metabolism that is associated with oxidative stress and heart damage. This study aimed to investigate the effect of ginsenoside Rg3 on MC-induced cardiotoxicity. A mouse model of myocardial infarction was constructed by oral MC administration. H9C2 cells were used for in vitro analysis. Cellular oxidative stress, apoptosis, and the relationship between miR-128-3p and double minute 4 protein (MDM4) were analyzed. MiR-128-3p expression was upregulated in vitro and in vivo after MC treatment, which was downregulated after Rg3 treatment. Left ventricular ejection fraction (LVEF) and left ventricular systolic pressure (LVSP) were increased and left ventricular end-diastolic pressure (LVEDP) was decreased after Rg3 treatment. Moreover, Rg3 alleviated MC-induced pathological changes and apoptosis in myocardial tissues. Meanwhile, Rg3 treatment decreased the lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels and inhabited cell apoptosis and oxidative stress in MC-treated myocardial cells. MiR-128-3p overexpression attenuated the protective effect of Rg3 on MC-induced cardiotoxicity. MiR-128-3p negatively regulated MDM4 expression. This study revealed that Rg3 alleviated MC-induced cardiotoxicity through the miR-128-3p/MDM4 axis, which emphasized the potential of Rg3 as a therapeutic agent for MC-induced cardiotoxicity, and miR-128-3p as a target for the Rg3 therapy.

11.
J Pharm Pharmacol ; 75(12): 1521-1529, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37846109

RESUMEN

PURPOSE: Pirarubicin (THP) is an antitumour drug widely used in clinical practice, but its cardiotoxicity limits its application. THP cardiotoxicity must be treated as soon as possible. There is an urgent need to find drugs that alleviate THP cardiotoxicity. The purpose of this study was to investigate the effects and mechanisms of Astaxanthin (AST) on THP-induced cardiomyocytes. METHODS: Rat cardiomyocytes H9c2 were induced with THP. The effects of AST on THP-induced H9c2 and its mechanism were investigated by CCK8, reactive oxygen species assay, tunnel assay, flow cytometry, RT-qPCR, and Western blot. RESULTS: AST increased cell viability, inhibited apoptosis and accelerated cell cycle progression, reduced oxidative damage and inflammatory response in THP-induced H9c2; down-regulated miR-494-3p expression, promoted MDM4 expression, inhibited p53 activation, and suppressed apoptosis-related protein expression. Overexpression of MiR-494-3p reversed the above effects of AST. CONCLUSIONS: AST can inhibit H9c2 apoptosis induced by THP and attenuate H9c2 damage by THP, which may be achieved by downregulating miR-494-3p, upregulating MDM4, and inhibiting p53.


Asunto(s)
MicroARNs , Proteína p53 Supresora de Tumor , Ratas , Animales , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular , MicroARNs/metabolismo , Miocitos Cardíacos , Cardiotoxicidad/prevención & control , Apoptosis
12.
Environ Toxicol ; 38(10): 2499-2508, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37421283

RESUMEN

OBJECTIVE: Pirarubicin (THP) is a widely used antitumor drug in clinical practice, but its cardiotoxicity limits its use. There is an urgent need to find drugs to alleviate the cardiotoxicity of THP. This study aimed to investigate the effect and mechanism of miR-494-3p on THP-induced cardiomyocytes. METHODS: THP induced immortalized mouse cardiomyocytes HL-1, silenced or overexpressed miR-494-3p. The effects of miR-494-3p on HL-1 contained in THP were investigated by CCK8, flow cytometry, ROS detection, JC-1 mitochondrial membrane potential detection, TUNEL cell apoptosis detection, RT-qPCR, and Western blot. RESULTS: miR-494-3p could reduce cell viability, increase oxidative damage, and promote cell apoptosis; at the same time, it inhibited the expression of MDM4, promoted the activation of p53, and promoted the expression of apoptosis-related proteins. MiR-494-3p inhibitors have the opposite effect. CONCLUSION: miR-494-3p can aggravate THP damage to HL-1, which may be achieved by downregulating MDM4 and promoting p53. miR-494-3p is one of the important miRNAs in THP-induced cardiotoxicity, which provides theoretical support for its possible use as a therapeutic target for THP-induced cardiovascular disease.


Asunto(s)
MicroARNs , Transducción de Señal , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Miocitos Cardíacos , Cardiotoxicidad/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Apoptosis
13.
Cancers (Basel) ; 15(10)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37345045

RESUMEN

MDM2-SNP309 (rs2279744), a common genetic modifier of cancer incidence in Li-Fraumeni syndrome, modifies risk, age of onset, or prognosis in a variety of cancers. Melanoma incidence and outcomes vary by sex, and although SNP309 exerts an effect on the estrogen receptor, no consensus exists on its effect on melanoma. MDM2 and MDM4 restrain p53-mediated tumor suppression, independently or together. We investigated SNP309, an a priori MDM4-rs4245739, and two coinherited variants, in a population-based cohort of 3663 primary incident melanomas. Per-allele and per-haplotype (MDM2_SNP309-SNP285; MDM4_rs4245739-rs1563828) odds ratios (OR) for multiple-melanoma were estimated with logistic regression models. Hazard ratios (HR) for melanoma death were estimated with Cox proportional hazards models. In analyses adjusted for covariates, females carrying MDM4-rs4245739*C were more likely to develop multiple melanomas (ORper-allele = 1.25, 95% CI 1.03-1.51, and Ptrend = 0.03), while MDM2-rs2279744*G was inversely associated with melanoma-death (HRper-allele = 0.63, 95% CI 0.42-0.95, and Ptrend = 0.03). We identified 16 coinherited expression quantitative loci that control the expression of MDM2, MDM4, and other genes in the skin, brain, and lungs. Our results suggest that MDM4/MDM2 variants are associated with the development of subsequent primaries and with the death of melanoma in a sex-dependent manner. Further investigations of the complex MDM2/MDM4 motif, and its contribution to the tumor microenvironment and observed associations, are warranted.

14.
Theranostics ; 13(9): 2787-2799, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284444

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease of unknown etiology with no cure. A better understanding of the disease processes and identification of druggable targets will benefit the development of effective therapies for IPF. We previously reported that MDM4 promoted lung fibrosis through the MDM4-p53-dependent pathway. However, it remained unclear whether targeting this pathway would have any therapeutic potential. In this study, we evaluated the efficacy of XI-011, a small molecular inhibitor of MDM4, for treating lung fibrosis. We found that XI-011 significantly reduced MDM4 expression and increased the expression of total and acetylated p53 in primary human myofibroblasts and a murine fibrotic model. XI-011 treatment resulted in the resolution of lung fibrosis in mice with no notable impact on normal fibroblast death or the morphology of healthy lungs. Based on these findings, we propose that XI-011 might be a promising therapeutic drug candidate for treating pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Antracenos/farmacología , Pulmón/metabolismo , Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Ciclo Celular/metabolismo
15.
Cell Rep ; 42(3): 112230, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36897777

RESUMEN

Inactivation of the p53 tumor suppressor, either by mutations or through hyperactivation of repressors such as MDM2 and MDM4, is a hallmark of cancer. Although many inhibitors of the p53-MDM2/4 interaction have been developed, such as Nutlin, their therapeutic value is limited by highly heterogeneous cellular responses. We report here a multi-omics investigation of the cellular response to MDM2/4 inhibitors, leading to identification of FAM193A as a widespread regulator of p53 function. CRISPR screening identified FAM193A as necessary for the response to Nutlin. FAM193A expression correlates with Nutlin sensitivity across hundreds of cell lines. Furthermore, genetic codependency data highlight FAM193A as a component of the p53 pathway across diverse tumor types. Mechanistically, FAM193A interacts with MDM4, and FAM193A depletion stabilizes MDM4 and inhibits the p53 transcriptional program. Last, FAM193A expression is associated with better prognosis in multiple malignancies. Altogether, these results identify FAM193A as a positive regulator of p53.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Apoptosis , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Neoplasias/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982536

RESUMEN

CircRNAs are newly identified special endogenous RNA molecules that covalently close a loop by back-splicing with pre-mRNA. In the cytoplasm, circRNAs would act as molecular sponges to bind with specific miRNA to promote the expression of target genes. However, knowledge of circRNA functional alternation in skeletal myogenesis is still in its infancy. In this study, we identified a circRNA-miRNA-mRNA interaction network in which the axis may be implicated in the progression of chicken primary myoblasts' (CPMs) myogenesis by multi-omics (i.e., circRNA-seq and ribo-seq). In total, 314 circRNA-miRNA-mRNA regulatory axes containing 66 circRNAs, 70 miRNAs, and 24 mRNAs that may be relevant to myogenesis were collected. With these, the circPLXNA2-gga-miR-12207-5P-MDM4 axis aroused our research interest. The circPLXNA2 is highly differentially expressed during differentiation versus proliferation. It was demonstrated that circPLXNA2 inhibited the process of apoptosis while at the same time stimulating cell proliferation. Furthermore, we demonstrated that circPLXNA2 could inhibit the repression of gga-miR-12207-5p to MDM4 by directing binding to gga-miR-12207-5p, thereby restoring MDM4 expression. In conclusion, circPLXNA2 could function as a competing endogenous RNA (ceRNA) to recover the function of MDM4 by directing binding to gga-miR-12207-5p, thereby regulating the myogenesis.


Asunto(s)
MicroARNs , ARN Circular , ARN Circular/genética , ARN Circular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Mioblastos/metabolismo , Apoptosis/genética , Proliferación Celular/genética
17.
Genes Chromosomes Cancer ; 62(6): 367-372, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36744846

RESUMEN

Adipocytic tumors are the most common mesenchymal tumors in soft tissues. Among them, a diagnostic challenge relies in the distinction between lipoma and atypical lipomatous tumor (ALT)/well differentiated liposarcoma (WDLPS), as both entities are often undistinguishable not only from a radiological point of view, but also at the microscopic level and particularly when dealing with small tumor specimen. Thus, detection of recurrent MDM2 amplifications may be the only criteria to discriminate malignant tumors from lipomas. In this study, we report the case of a patient diagnosed with a well differentiated, adipocytic tumor located in the inferior limb and lacking MDM2 amplification, whose diagnosis was reclassified for ALT/WDLPS after identification of an alternative MDM4 amplification by comparative genomic hybridization profiling, whole exome sequencing and fluorescence in situ hybridization (FISH). Screening of a cohort of 37 large, deep-seated, well-differentiated adipocytic tumors previously classified as lipomas using RT-qPCR and FISH failed to detect other cases of MDM4-amplified ALT/WDLPS. This report shows that MDM4 amplification is an exceptional molecular event alternative to MDM2 amplification in ALT/WDLPS. This alteration should be considered and looked for in suspicious adipocytic tumors to optimize their surgical management.


Asunto(s)
Lipoma , Liposarcoma , Humanos , Liposarcoma/diagnóstico , Liposarcoma/genética , Liposarcoma/patología , Amplificación de Genes , Hibridación Fluorescente in Situ , Hibridación Genómica Comparativa , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Lipoma/diagnóstico , Lipoma/genética , Lipoma/patología , Biomarcadores de Tumor/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Ciclo Celular/genética
18.
Cancers (Basel) ; 15(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36831624

RESUMEN

Genome-wide association studies have reported link between SNPs and risk of breast cancer. This study investigated the association of the selected gene variants by predicting them as possible target genes. Molecular technique advances with the availability of whole-exome sequencing (WES), now offer opportunities for simultaneous investigations of many genes. The experimental protocol for PI3K, AKT-1, KLF-14, MDM4, miRNAs 27a, and miR-196a genotyping was done by ARMS-PCR and sanger sequencing. The novel and known gene variants were studied by Whole-exome sequencing using Illumina NovaSeq 6000 platform. This case control study reports significant association between BC patients, healthy controls with the polymorphic variants of PI3K C > T, AKT-1 G > A KLF 14 C > T, MDM4 A > G, miR-27a A > G, miR-196a-2 C > T genes (p < 0.05). MDM4 A > G genotypes were strongly associated with BC predisposition with OR 2.08 & 2.15, p < 0.05) in codominant and dominant models respectively. MDM4 A allele show the same effective (OR1.76, p < 0.05) whereas it remains protective in recessive model for BC risk. AKT1G > A genotypes were strongly associated with the BC susceptibility in all genetic models whereas PI3K C > T genotypes were associated with breast cancer predisposition in recessive model OR 6.96. Polymorphic variants of KLF-14 A > G, MDM4G > A, MiR-27aA >G, miR-196a-C > T were strongly associated with stage, tamoxifen treatment. Risk variants have been reported by whole exome sequencing in our BC patients. It was concluded that a strong association between the PI3K-AKT signaling pathway gene variants with the breast cancer susceptibility and progression. Similarly, KLF 14-AA, MDM4-GA, miR27a-GG and miR-196a-CT gene variants were associated with the higher risk probability of BC and were strongly correlated with staging of the BC patients. This study also reported Low, novel, and intermediate-genetic-risk variants of PI3K, AKT-1, MDM4G & KLF-14 by utilizing whole-exome sequencing. These variants should be further investigated in larger cohorts' studies.

19.
Cell Stem Cell ; 30(2): 153-170.e9, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736290

RESUMEN

Fanconi anemia (FA) patients experience chromosome instability, yielding hematopoietic stem/progenitor cell (HSPC) exhaustion and predisposition to poor-prognosis myeloid leukemia. Based on a longitudinal cohort of 335 patients, we performed clinical, genomic, and functional studies in 62 patients with clonal evolution. We found a unique pattern of somatic structural variants and mutations that shares features of BRCA-related cancers, the FA-hallmark being unbalanced, microhomology-mediated translocations driving copy-number alterations. Half the patients developed chromosome 1q gain, driving clonal hematopoiesis through MDM4 trisomy downmodulating p53 signaling later followed by secondary acute myeloid lukemia genomic alterations. Functionally, MDM4 triplication conferred greater fitness to murine and human primary FA HSPCs, rescued inflammation-mediated bone marrow failure, and drove clonal dominance in FA mouse models, while targeting MDM4 impaired leukemia cells in vitro and in vivo. Our results identify a linear route toward secondary leukemogenesis whereby early MDM4-driven downregulation of basal p53 activation plays a pivotal role, opening monitoring and therapeutic prospects.


Asunto(s)
Anemia de Fanconi , Leucemia , Humanos , Ratones , Animales , Anemia de Fanconi/genética , Hematopoyesis Clonal , Trisomía/genética , Proteína p53 Supresora de Tumor/genética , Leucemia/genética , Cromosomas , Hematopoyesis/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Ciclo Celular/genética
20.
Vascular ; 31(3): 608-618, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35226569

RESUMEN

OBJECTIVE: Atherosclerosis is a chronic cardiovascular disease associated with oxidative stress damage, which is caused by excessive oxidation of low-density lipoprotein (ox-LDL). The role of microRNA miR-34a-5p on oxidative stress in ox-LDL-treated macrophages was investigated in this study. METHODS: Flow cytometry was prepared for assessing THP1-derived macrophage apoptosis. The protein and expression levels of miR-34a-5p and MDM4 were examined by Western blot and RT-qPCR, respectively. We also measured the levels of total cholesterol (TC) and triglyceride to determine the lipid accumulation. Subsequently, the activities of superoxide dismutase, malondialdehyde, and reactive oxygen species revealed the level of oxidative stress injury after miR-34a-5p and MDM4 knockdown. RESULTS: After ox-LDL treatment, cell apoptosis of macrophages increased in a dose-dependent and time-dependent manner. With the increase of ox-LDL treatment and the prolongation of treatment time, the expression level of miR-34a-5p was upregulated. Next, interfering with miR-34a-5p inhibited lipid accumulation and oxidative stress injury in ox-LDL-stimulated macrophages. MDM4 was a target gene of miR-34a-5p and was upregulated in ox-LDL-stimulated macrophages. With the increase of ox-LDL treatment and the prolongation of treatment time, the expression level of MDM4 was downregulated. Importantly, MDM4 knockdown partially counteracted the inhibitory effect of miR-34a-5p on oxidative stress injury. CONCLUSION: MicroRNA miR-34a-5p knockdown suppressed oxidative stress injury via MDM4 in ox-LDL-treated macrophages.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , Estrés Oxidativo , Macrófagos/metabolismo , Apoptosis , Lípidos , Lipoproteínas LDL/toxicidad , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/farmacología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA