Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Chem ; 12: 1403473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911993

RESUMEN

Staple peptides, which have a significantly enhanced pharmacological profile, are promising therapeutic molecules due to their remarkable resistance to proteolysis and cell-penetrating properties. In this study, we designed and synthesized a series of PMI-M3-based dual-targeting MDM2/MDMX staple peptides and compared them with straight-chain peptides. The staple peptide SM3-4 screened in the study induced apoptosis of tumor cells in vitro at low µM concentrations, and the helix was significantly increased. Studies have shown that the enhancement of staple activity is related to the increase in helicity, and SM3-4 provides an effective research basis for dual-targeted anti-tumor staple peptides.

2.
Cancer Cell ; 42(6): 946-967, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729160

RESUMEN

p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Animales , Ferroptosis/genética , Transducción de Señal , Apoptosis , Procesamiento Proteico-Postraduccional
3.
Eur J Med Chem ; 272: 116506, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38761584

RESUMEN

MDM2 genes amplification or altered expression is commonly observed in various cancers bearing wild-type TP53. Directly targeting the p53-binding pocket of MDM2 to activate the p53 pathway represents a promising therapeutic approach. Despite the development of numerous potent MDM2 inhibitors that have advanced into clinical trials, their utility is frequently hampered by drug resistance and hematologic toxicity such as neutropenia and thrombocytopenia. The emergence of PROTAC technology has revolutionized drug discovery and development, with applications in both preclinical and clinical research. Harnessing the power of PROTAC molecules to achieve MDM2 targeted degradation and p53 reactivation holds significant promise for cancer therapy. In this review, we summarize representative MDM2 PROTAC degraders and provide insights for researchers investigating MDM2 proteins and the p53 pathway.


Asunto(s)
Antineoplásicos , Neoplasias , Proteínas Proto-Oncogénicas c-mdm2 , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Estructura Molecular , Animales , Quimera Dirigida a la Proteólisis
4.
Cell Commun Signal ; 22(1): 221, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594674

RESUMEN

VEGFR2 (Vascular endothelial growth factor receptor 2) is a central regulator of placental angiogenesis. The study of the VEGFR2 proteome of chorionic villi at term revealed its partners MDMX (Double minute 4 protein) and PICALM (Phosphatidylinositol-binding clathrin assembly protein). Subsequently, the oxytocin receptor (OT-R) and vasopressin V1aR receptor were detected in MDMX and PICALM immunoprecipitations. Immunogold electron microscopy showed VEGFR2 on endothelial cell (EC) nuclei, mitochondria, and Hofbauer cells (HC), tissue-resident macrophages of the placenta. MDMX, PICALM, and V1aR were located on EC plasma membranes, nuclei, and HC nuclei. Unexpectedly, PICALM and OT-R were detected on EC projections into the fetal lumen and OT-R on 20-150 nm clusters therein, prompting the hypothesis that placental exosomes transport OT-R to the fetus and across the blood-brain barrier. Insights on gestational complications were gained by univariable and multivariable regression analyses associating preeclampsia with lower MDMX protein levels in membrane extracts of chorionic villi, and lower MDMX, PICALM, OT-R, and V1aR with spontaneous vaginal deliveries compared to cesarean deliveries before the onset of labor. We found select associations between higher MDMX, PICALM, OT-R protein levels and either gravidity, diabetes, BMI, maternal age, or neonatal weight, and correlations only between PICALM-OT-R (p < 2.7 × 10-8), PICALM-V1aR (p < 0.006), and OT-R-V1aR (p < 0.001). These results offer for exploration new partnerships in metabolic networks, tissue-resident immunity, and labor, notably for HC that predominantly express MDMX.


Asunto(s)
Diabetes Mellitus , Preeclampsia , Femenino , Humanos , Recién Nacido , Embarazo , Número de Embarazos , Oxitocina/metabolismo , Placenta/metabolismo , Preeclampsia/metabolismo , Proteómica , Receptores de Oxitocina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Genes Cells ; 29(6): 451-455, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38553254

RESUMEN

The 10th International MDM2 Workshop was held at the National Cancer Center Research Institute (NCCRI) in Tokyo, Japan, from October 15 to 18, 2023. It attracted 166 participants from 12 countries. The meeting featured 52 talks and 41 poster presentations. In the first special session, six invited speakers gave educational and outstanding talks on breakthroughs in MDM2 research. Three keynote speakers presented emerging p53-independent functions of MDM2/MDM4, functional association of MDM2/p53 with cancer immunity, and drug discovery targeting the MDM2/MDM4-p53 pathway. Additionally, 19 invited speakers introduced their new findings. Twenty-one presenters, many of whom were young investigators, postdocs, and students, were selected from submitted abstracts and reported their exciting and unpublished results. For poster presenters, outstanding poster awards were given to the best presenters. There were many inspiring questions and discussions throughout the meeting. Social events like a welcome party, a workshop dinner, and an optional tour enabled further scientific interactions among the participants. The meeting successfully provided an exciting platform for scientific exchange. The experience gained from organizing this meeting will be handed over to the next organizers of the 11th International MDM2 Workshop.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Animales , Humanos , Asia , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética
6.
Biologics ; 18: 61-78, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318098

RESUMEN

The p53 tumor suppressor protein plays an important role in physiological and pathological processes. MDM2 and its homolog MDMX are the most important negative regulators of p53. Many studies have shown that MDMX promotes the growth of cancer cells by influencing the regulation of the downstream target gene of tumor suppressor p53. Studies have found that inhibiting the MDMX-p53 interaction can effectively restore the tumor suppressor activity of p53. MDMX has growth-promoting activities without p53 or in the presence of mutant p53. Therefore, it is extremely important to study the function of MDMX in tumorigenesis, progression and prognosis. This article mainly reviews the current research progress and mechanism on MDMX function, summarizes known MDMX inhibitors and provides new ideas for the development of more specific and effective MDMX inhibitors for cancer treatment.

7.
Funct Integr Genomics ; 24(2): 37, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38374244

RESUMEN

Benign airway stenosis (BAS) means airway stenosis or obstruction that results from a variety of non-malignant factors, including tuberculosis, trauma, benign tumors, etc. In consideration of the currently limited research on microRNAs in BAS, this study aimed to explore the role and mechanism of miR-34c-5p in BAS. The expression of miR-34c-5p in BAS granulation tissues showed a significant down-regulation compared with the normal control group. Moreover, miR-34c-5p mimics suppressed the proliferation and differentiation of human bronchial fibroblasts (HBFs) and the epithelial-mesenchymal transition (EMT) of human bronchial epithelial cells (HBE). Conversely, miR-34c-5p inhibitors aggravated those effects. A dual-luciferase reporter assay confirmed that miR-34c-5p can target MDMX rather than Notch1. The over-expression of MDMX can reverse the inhibiting effect of miR-34c-5p on HBFs proliferation, differentiation and EMT. Furthermore, the expressions of tumor protein (p53) and PTEN were down-regulated following the over-expression of MDMX. In addition, the expressions of PI3K and AKT showed an up-regulation. In conclusion, miR-34c-5p was down-regulated in BAS and may inhibit fibroblast proliferation differentiation and EMT in BAS via the MDMX/p53 signaling axis. These findings expand the understanding of the role of miR-34c-5p and will help develop new treatment strategies for BAS.


Asunto(s)
Transición Epitelial-Mesenquimal , MicroARNs , Proteína p53 Supresora de Tumor , Humanos , Línea Celular Tumoral , Proliferación Celular , Constricción Patológica , Transición Epitelial-Mesenquimal/genética , Fibroblastos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Proto-Oncogénicas c-mdm2 , Obstrucción de las Vías Aéreas/genética , Obstrucción de las Vías Aéreas/patología
8.
Eur J Med Chem ; 267: 116156, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38295687

RESUMEN

Murine double minute 2 (MDM2) and homologous protein murine double minute X (MDMX) are p53 negative regulators that perform significant driving effects in tumorigenesis, and targeting these oncoproteins has became an efficient strategy in treating cancers. However, the definite antitumor activity and significance ordering of each protein in MDM family is still unclear due to the similar structure and complicated regulation. Herein, we identified two G-rich sequences (G1 and G5) located in the promoter that could assemble the G-quadruplex to respectively inhibit and promote the transcription of the MDM2 and MDMX. Based on this target, we designed and synthesized a novel G-quadruplex ligand A3f and achieved the differentiated regulation of MDM protein. In triple-negative breast cancer (TNBC) cells, A3f could induce MDM2-dependent proliferation arrest and exhibit additive therapeutic effect with MDMX inhibitors. Overall, this study provided a novel strategy to regulate the transcription of MDM genes by targeting certain G-rich sequences, and discovered an active antitumor molecule for use in TNBC treatment.


Asunto(s)
Proteínas Proto-Oncogénicas c-mdm2 , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas , Proteínas Nucleares/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Proteínas de Ciclo Celular/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
9.
Fukushima J Med Sci ; 70(1): 11-24, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-37952978

RESUMEN

Acute myeloid leukemia (AML) arises from preleukemic conditions. We have investigated the pathogenesis of typical preleukemia, myeloproliferative neoplasms, and clonal hematopoiesis. Hematopoietic stem cells in both preleukemic conditions harbor recurrent driver mutations; additional mutation provokes further malignant transformation, leading to AML onset. Although genetic alterations are defined as the main cause of malignant transformation, non-genetic factors are also involved in disease progression. In this review, we focus on a non-histone chromatin protein, high mobility group AT-hook2 (HMGA2), and a physiological p53 inhibitor, murine double minute X (MDMX). HMGA2 is mainly overexpressed by dysregulation of microRNAs or mutations in polycomb components, and provokes expansion of preleukemic clones through stem cell signature disruption. MDMX is overexpressed by altered splicing balance in myeloid malignancies. MDMX induces leukemic transformation from preleukemia via suppression of p53 and p53-independent activation of WNT/ß-catenin signaling. We also discuss how these non-genetic factors can be targeted for leukemia prevention therapy.


Asunto(s)
Leucemia Mieloide Aguda , Preleucemia , Animales , Ratones , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación , Preleucemia/genética , Preleucemia/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
J Enzyme Inhib Med Chem ; 39(1): 2288810, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38059334

RESUMEN

Disruption of p53-MDM2/MDMX interaction by smaller inhibitors is a promising therapeutic intervention gaining tremendous interest. However, no MDM2/MDMX inhibitors have been marketed so far. Drug repurposing is a validated, practical approach to drug discovery. In this regard, we employed structure-based virtual screening in a reservoir of marketed drugs and identified nintedanib as a new MDM2/MDMX dual inhibitor. The computational structure analysis and biochemical experiments uncover that nintedanib binds MDM2/MDMX similarly to RO2443, a dual MDM2/MDMX inhibitor. Furthermore, the mechanistic study reveals that nintedanib disrupts the physical interaction of p53-MDM2/MDMX, enabling the transcriptional activation of p53 and the subsequent cell cycle arrest and growth inhibition in p53+/+ cancer cells. Lastly, structural minimisation of nintedanib yields H3 with the equivalent potency. In summary, this work provides a solid foundation for reshaping nintedanib as a valuable lead compound for the further design of MDM2/MDMX dual inhibitors.


Asunto(s)
Antineoplásicos , Proteínas Proto-Oncogénicas c-mdm2 , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Reposicionamiento de Medicamentos , Antineoplásicos/farmacología , Antineoplásicos/química , Unión Proteica
11.
Cancers (Basel) ; 15(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686602

RESUMEN

The development of MDM4 inhibitors as an approach to reactivating p53 in human cancer is attracting increasing attention; however, whether they affect the function of MDM2 and how they interact with MDM2 inhibitors remain unknown. We addressed this question in the present study using CEP-1347, an inhibitor of MDM4 protein expression. The effects of CEP-1347, the genetic and/or pharmacological inhibition of MDM2, and their combination on the p53 pathway in malignant brain tumor cell lines expressing wild-type p53 were investigated by RT-PCR and Western blot analyses. The growth inhibitory effects of CEP-1347 alone or in combination with MDM2 on inhibition were examined by dye exclusion and/or colony formation assays. The treatment of malignant brain tumor cell lines with CEP-1347 markedly increased MDM2 protein expression, while blocking CEP-1347-induced MDM2 overexpression by genetic knockdown augmented the effects of CEP-1347 on the p53 pathway and cell growth. Blocking the MDM2-p53 interaction using the small molecule MDM2 inhibitor RG7112, but not MDM2 knockdown, reduced MDM4 expression. Consequently, RG7112 effectively cooperated with CEP-1347 to reduce MDM4 expression, activate the p53 pathway, and inhibit cell growth. The present results suggest the combination of CEP-1347-induced MDM2 overexpression with the selective inhibition of MDM2's interaction with p53, while preserving its ability to inhibit MDM4 expression, as a novel and rational strategy to effectively reactivate p53 in wild-type p53 cancer cells.

12.
Eur J Pharmacol ; 957: 176016, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37634842

RESUMEN

Allyl-isothiocyanate (AITC) is a common Isothiocyanates (ITC) and its chemo-preventive and anti-tumor effects are believed to be related to the activation of NF-E2 p45-related Factor 2 (Nrf2). However, its anti-tumor effects on colorectal cancer (CRC) are not well elucidated. Here, we investigated the therapeutic in vitro and/or in vivo effects and mechanisms of action (MOA) for AITC on CRC cell line HCT116 (human) and MC38 (mouse). AITC treatment in a low concentration range (1 mg/kg in vivo) significantly inhibited the tumor cell growth and increased the expression of p21 and Nrf2. The AITC-mediated induction of p21 was dependent on Nrf2 but independent on p53 in vitro and in vivo at low dose. In contrast, the high dose of AITC (5 mg/kg in vivo) failed to increase substantial levels of p21/MdmX, and impaired the total antioxidant capacity of tumors and subsequent anti-tumor effect in vivo. These results suggest that an optimal dose of AITC is important and required for the proper Nrf2 activation and its anti-CRC effects and thus, providing insights into the potential applications of AITC for the prevention and treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Factor 2 Relacionado con NF-E2 , Humanos , Animales , Ratones , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico
13.
J Biomol Struct Dyn ; : 1-10, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578044

RESUMEN

The regulation of the p53 tumor suppressor pathway is critically dependent on the activity of Murine Double Minute 2 (MDM2) and Murine Double Minute X (MDMX) proteins. In certain types of cancer cells, excessive amount of MDMX can poly-ubiquitinate p53, which can result in its degradation, leading to a subsequent reduction in the levels of this protein. Therefore, the design of small-molecule inhibitors targeting the MDMX-p53 interaction has emerged as a promising strategy for cancer therapy. In this study, we employed computational techniques including pharmacophore modeling and molecular docking to identify three potential small molecule inhibitors (CID_25094615, CID_137634453, and CID_25094344) of the MDMX-p53 interaction from a PubChem database. Molecular dynamics of 100000 ps were conducted to assess the stability of the MDMX-inhibitor complexes. Our results showed that all three compounds exhibit stable binding with MDMX, with significantly lower root mean square deviation (RMSD) and fluctuation (RMSF) values than the control ligand, indicating superior stability. Additionally, the three compounds exhibit stronger intermolecular hydrogen bond (HBOND) interactions compared to the control, suggesting stronger stability. Overall, our findings highlight the potential of these compounds as lead candidates for the development of novel anticancer agents that target the MDMX-p53 interaction.Communicated by Ramaswamy H. Sarma.

14.
Cancers (Basel) ; 15(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37509223

RESUMEN

p53 plays a critical role in tumor suppression and is the most frequently mutated gene in human cancers. Most p53 mutants (mutp53) are missense mutations and are thus expressed in human cancers. In human cancers that retain wtp53, the wtp53 activities are downregulated through multiple mechanisms. For example, the overexpression of the negative regulators of p53, MDM2/MDMX, can also efficiently destabilize and inactivate wtp53. Therefore, both wtp53 and mutp53 have become promising and intensively explored therapeutic targets for cancer treatment. Current efforts include the development of small molecule compounds to disrupt the interaction between wtp53 and MDM2/MDMX in human cancers expressing wtp53 and to restore wtp53-like activity to p53 mutants in human cancers expressing mutp53. In addition, a synthetic lethality approach has been applied to identify signaling pathways affected by p53 dysfunction, which, when targeted, can lead to cell death. While an intensive search for p53-targeted cancer therapy has produced potential candidates with encouraging preclinical efficacy data, it remains challenging to develop such drugs with good efficacy and safety profiles. A more in-depth understanding of the mechanisms of action of these p53-targeting drugs will help to overcome these challenges.

15.
Biomedicines ; 11(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37509605

RESUMEN

A significant proportion of meningiomas are clinically aggressive, but there is currently no effective chemotherapy for meningiomas. An increasing number of studies have been conducted to develop targeted therapies, yet none have focused on the p53 pathway as a potential target. In this study, we aimed to determine the in vitro and in vivo effects of CEP-1347, a small-molecule inhibitor of MDM4 with known safety in humans. The effects of CEP-1347 and MDM4 knockdown on the p53 pathway in human meningioma cell lines with and without p53 mutation were examined by RT-PCR and Western blot analyses. The growth inhibitory effects of CEP-1347 were examined in vitro and in a mouse xenograft model of meningioma. In vitro, CEP-1347 at clinically relevant concentrations inhibited MDM4 expression, activated the p53 pathway in malignant meningioma cells with wild-type p53, and exhibited preferential growth inhibitory effects on cells expressing wild-type p53, which was mostly mimicked by MDM4 knockdown. CEP-1347 effectively inhibited the growth of malignant meningioma xenografts at a dose that was far lower than the maximum dose that could be safely given to humans. Our findings suggest targeting the p53 pathway with CEP-1347 represents a novel and viable approach to treating aggressive meningiomas.

16.
Biomolecules ; 13(6)2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37371582

RESUMEN

ATSP-7041, a stapled α-helical peptide that inhibits murine double minute-2 (MDM2) and MDMX activities, is a promising modality targeting protein-protein interactions. As peptides of molecular weights over 1000 Da are not usually evaluated, data on the drug-drug interaction (DDI) potential of stapled α-helical peptides remain scarce. Here, we evaluate the interaction of ATSP-7041 with hepatic cytochrome P450s (CYPs; CYP1A2, CYP2C9, CYP2C19, CYP3A4, and CYP2D6) and transporters (organic anion transporting polypeptides (OATPs; OATP1B1 and OATP1B3), P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP)). ATSP-7041 demonstrated negligible metabolism in human liver S9 fraction and a limited inhibition of CYP activities in yeast microsomes or S9 fractions. On the contrary, a substantial uptake by OATPs in HEK 293 cells, a strong inhibition of OATP activities in the cells, and an inhibition of P-gp and BCRP activities in reversed membrane vesicles were observed for ATSP-7041. A recent report describes that ALRN-6924, an ATSP-7041 analog, inhibited OATP activities in vivo; therefore, we focused on the interaction between ATSP-7041 and OATP1B1 to demonstrate that ATSP-7041, as a higher molecular weight stapled peptide, is a substrate and strong inhibitor of OATP1B1 activity. Our findings demonstrated the possibility of transporter-mediated DDI potential by high molecular weight stapled peptides and the necessity of their evaluation for drug development.


Asunto(s)
Proteínas de Neoplasias , Transportadores de Anión Orgánico , Humanos , Ratones , Animales , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Células HEK293 , Proteínas de Neoplasias/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transportadores de Anión Orgánico/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Sistema Enzimático del Citocromo P-450/metabolismo
17.
Drug Des Devel Ther ; 17: 1247-1274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37128274

RESUMEN

Introduction: Therapeutic peptides are a significant class of drugs in the treatment of a wide range of diseases. To enhance their properties, such as stability or binding affinity, they are usually chemically modified. This includes, among other techniques, cyclization of the peptide chain by bridging, modifications to the backbone, and incorporation of unnatural amino acids. One approach previously established, is the use of halogenated aromatic amino acids. In principle, they are thereby enabled to form halogen bonds (XB). In this study, we focus on the -R-CF2X moiety (R = O, NHCO; X = Cl, Br) as an uncommon halogen bond donor. These groups enable more spatial variability in protein-protein interactions. The chosen approach via Fmoc-protected building blocks allows for the incorporation of these modified amino acids in peptides using solid-phase peptide synthesis. Results and Discussion: Using a competitive fluorescence polarization assay to monitor binding to Mdm4, we demonstrate that a p53-derived peptide with Lys24Nle(εNHCOCF2X) exhibits an improved inhibition constant Ki compared to the unmodified peptide. Decreasing Ki values observed with the increasing XB capacity of the halogen atoms (F ≪ Cl < Br) indicates the formation of a halogen bond. By reducing the side chain length of Nle(εNHCOCF2X) to Abu(γNHCOCF2X) as control experiments and through quantum mechanical calculations, we suggest that the observed affinity enhancement is related to halogen bond-induced intramolecular stabilization of the α-helical binding mode of the peptide or a direct interaction with His54 in human Mdm4.


Asunto(s)
Aminoácidos , Proteína p53 Supresora de Tumor , Humanos , Péptidos/química , Halógenos/química , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas , Proteínas de Ciclo Celular
18.
Mol Divers ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029281

RESUMEN

Various studies have established that molecules specific for MDMX inhibition or optimized for dual inhibition of p53-MDM2/MDMX interaction signaling are more suitable for activating the Tp53 gene in tumor cells. Nevertheless, there are sparse numbers of approved molecules to treat the health consequences brought by the lost p53 functions in tumor cells. Consequently, this study explored the potential of a small molecule ligand containing 1, 8-naphthyridine scaffold to act as a dual inhibitor of p53-MDM2/X interactions using computational methods. The results obtained from quantum mechanical calculations revealed our studied compound entitled CPO is more stable but less reactive compared to standard dual inhibitor RO2443. Like RO2443, CPO also exhibited good non-linear optical properties. The results of molecular docking studies predicted that CPO has a higher potential to inhibit MDM2/MDMX than RO2443. Furthermore, CPO was stable over 50 ns molecular dynamics (MD) simulation in complex with MDM2 and MDMX respectively. On the whole, CPO also exhibited good drug-likeness and pharmacokinetics properties compared to RO2443 and was found with more anti-cancer activity than RO2443 in bioactivity prediction. CPO is anticipated to elevate effectiveness and alleviate drug resistance in cancer therapy. Ultimately, our results provide an insight into the mechanism that underlay the inhibition of p53-MDM2/X interactions by a molecule containing 1, 8-naphthyridine scaffold in its molecular structure.

19.
Cell Rep ; 42(3): 112230, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36897777

RESUMEN

Inactivation of the p53 tumor suppressor, either by mutations or through hyperactivation of repressors such as MDM2 and MDM4, is a hallmark of cancer. Although many inhibitors of the p53-MDM2/4 interaction have been developed, such as Nutlin, their therapeutic value is limited by highly heterogeneous cellular responses. We report here a multi-omics investigation of the cellular response to MDM2/4 inhibitors, leading to identification of FAM193A as a widespread regulator of p53 function. CRISPR screening identified FAM193A as necessary for the response to Nutlin. FAM193A expression correlates with Nutlin sensitivity across hundreds of cell lines. Furthermore, genetic codependency data highlight FAM193A as a component of the p53 pathway across diverse tumor types. Mechanistically, FAM193A interacts with MDM4, and FAM193A depletion stabilizes MDM4 and inhibits the p53 transcriptional program. Last, FAM193A expression is associated with better prognosis in multiple malignancies. Altogether, these results identify FAM193A as a positive regulator of p53.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Apoptosis , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Neoplasias/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
Eur J Med Chem ; 252: 115282, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36989812

RESUMEN

The function of the p53 protein is impaired by the overexpression of its negative regulator murine double minute 2 protein (MDM2) and homologous protein MDMX. Disruption of the p53-MDM2/MDMX interaction to restore the transcriptional function of p53 is considered a promising strategy for cancer therapy. To design dual MDM2/MDMX inhibitors, the binding modes of MDM2 or MDMX with their inhibitors are elucidated. Several hot-spot residues of MDM2 or MDMX are identified by molecular dynamics simulations, alanine scanning and MM-GBSA calculations. Then, focusing on the interaction with hot-spot residues, two series of derivatives bearing 1,3-diketone and α-aminoketone scaffolds are designed and synthesized. Among these compounds, C16 is identified as the most potent compound with low micromolar binding affinities with MDM2 and MDMX. C16 also displays moderate antiproliferative activities against MDM2-overexpressing and MDMX-overexpressing cells, with IC50 values of 0.68 µM in HCT116 cells and 0.54 µM in SH-SY5Y cells. Furthermore, C16 inhibits cell migration and invasion, reactivates the function of p53, arrests the cell cycle and induces cellular apoptosis in HCT116 and SH-SY5Y cells. Collectively, C16 can be developed as a dual MDM2 and MDMX inhibitor for cancer therapy.


Asunto(s)
Antineoplásicos , Neuroblastoma , Ratones , Animales , Humanos , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Antidepresivos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA