Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.899
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Ethnopharmacol ; 336: 118704, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182703

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Macrófagos , SARS-CoV-2 , Replicación Viral , Animales , Ratones , Células RAW 264.7 , Replicación Viral/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/virología , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Ratones Transgénicos , Pogostemon/química , Citocinas/metabolismo , Apoptosis/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/virología , Pulmón/patología , Glucósidos/farmacología , Glucósidos/aislamiento & purificación , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/uso terapéutico , Enzima Convertidora de Angiotensina 2/metabolismo , Antiinflamatorios/farmacología , Masculino , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Humanos
2.
Bioact Mater ; 43: 48-66, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39318638

RESUMEN

Excessive inflammation caused by bacterial infection is the primary cause of implant failure. Antibiotic treatment often fails to prevent peri-implant infection and may induce unexpected drug resistance. Herein, a non-antibiotic strategy based on the synergy of silver ion release and macrophage reprogramming is proposed for preventing infection and bacteria-induced inflammation suppression by the organic-inorganic hybridization of silver nanoparticle (AgNP) and quercetin (Que) into a polydopamine (PDA)-based coating on the 3D framework of porous titanium (SQPdFT). Once the planktonic bacteria (e.g., Escherichia coli, Staphylococcus aureus) reach the surface of SQPdFT, released Que disrupts the bacterial membrane. Then, AgNP can penetrate the invading bacterium and kill them, which further inhibits the biofilm formation. Simultaneously, released Que can regulate macrophage polarization homeostasis via the peroxisome proliferators-activated receptors gamma (PPARγ)-mediated nuclear factor kappa-B (NF-κB) pathway, thereby terminating excessive inflammatory responses. These advantages facilitate the adhesion and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), concomitantly suppressing osteoclast maturation, and eventually conferring superior mechanical stability to SQPdFT within the medullary cavity. In summary, owing to its excellent antibacterial effect, immune remodeling function, and pro-osteointegration ability, SQPdFT is a promising protective coating for titanium-based implants used in orthopedic replacement surgery.

3.
Adv Sci (Weinh) ; : e2403849, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352304

RESUMEN

Inflammation is highlighted as an initial factor that helps orchestrate liver reconstitution. However, the precise mechanisms controlling inflammation during liver reconstitution have not been fully elucidated. In this study, a clear immune response is demonstrated during hepatic reconstitution. Inhibition of the hepatic inflammatory response retards liver regeneration. During this process, Ccl2 is primarily produced by type 1 innate lymphoid cells (ILC1s), and ILC1-derived Ccl2 recruits peripheral ILC1s and regulatory T cells (Tregs) to the liver. Deletion of Ccl2 or Tregs exacerbates hepatic injury and inflammatory cytokine release, accelerating liver proliferation and regeneration. The adoption of Tregs and IL-10 injection reversed these effects on hepatocyte regenerative proliferation. Additionally, Treg-derived IL-10 can directly induce macrophage polarization from M1 to M2, which alleviated macrophage-secreted IL-6 and TNF-α and balanced the intrahepatic inflammatory milieu during liver reconstitution. This study reveals the capacity of Tregs to modulate the intrahepatic inflammatory milieu and liver reconstitution through IL-10-mediated macrophage polarization, providing a potential opportunity to improve hepatic inflammation and maintain homeostasis.

4.
Tissue Eng Regen Med ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352458

RESUMEN

BACKGROUND: Abnormal scarring imposes considerable challenges and burdens on the lives of patients and healthcare system. Macrophages at the wound site are found to be of great concern to overall wound healing. There have been many studies indicating an inextricably link between dysfunctional macrophages and fibrotic scars. Macrophages are not only related to pathogen destruction and phagocytosis of apoptotic cells, but also involved in angiogenesis, keratinization and collagen deposition. These abundant cell functions are attributed to specific heterogeneity and plasticity of macrophages, which also add an extra layer of complexity to correlational researches. METHODS: This article summarizes current understanding of macrophage polarization in scar formation and several prevention and treatment strategies on pathological scarring related to regulation of macrophage behaviors by utilizing databases such as PubMed, Google Scholar and so on. RESULTS: There are many studies proving that macrophages participate in the course of wound healing by converting their predominant phenotype. The potential of macrophages in managing hypertrophic scars and keloid lesions have been underscored. CONCLUSION: Macrophage polarization offers new prevention strategies for pathological scarring. Learning about and targeting at macrophages may be helpful in achieving optimum wound healing.

5.
Adv Sci (Weinh) ; : e2405318, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356034

RESUMEN

Chronic obstructive pulmonary disease (COPD) stands as the prevailing chronic airway ailment, characterized by chronic bronchitis and emphysema. Current medications fall short in treatment of these diseases, underscoring the urgent need for effective therapy. Prior research indicated immunoproteasome inhibition alleviated various inflammatory diseases by modulating immune cell functions. However, its therapeutic potential in COPD remains largely unexplored. Here, an elevated expression of immunoproteasome subunits LMP2 and LMP7 in the macrophages isolated from mouse with LPS/Elastase-induced emphysema and polarized macrophages in vitro is observed. Subsequently, intranasal administration of the immunoproteasome-specific inhibitor ONX-0914 significantly mitigated COPD-associated airway inflammation and improved lung function in mice by suppressing macrophage polarization. Additionally, ONX-0914 capsulated in PLGA nanoparticles exhibited more pronounced therapeutic effect on COPD than naked ONX-0914 by targeting immunoproteasome in polarized macrophages. Mechanistically, ONX-0914 activated autophagy and endoplasmic reticulum (ER) stress are not attribute to the ONX-0914 mediated suppression of macrophage polarization. Intriguingly, ONX-0914 inhibited M1 polarization through the nuclear factor erythroid 2-related factor-1 (NRF1) and NRF2-P62 axis, while the suppression of M2 polarization is regulated by inhibiting the transcription of interferon regulatory factor 4 (IRF4). In summary, the findings suggest that targeting immunoproteasome in macrophages holds promise as a therapeutic strategy for COPD.

6.
Int J Biol Macromol ; 281(Pt 1): 136232, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362434

RESUMEN

Selenium (Se) deficiency induces an inflammatory response in the lungs, but the underlying mechanisms are unknown. Selenoprotein O (SelO) is the largest selenoprotein in terms of molecular weight, yet its potential biological functions have yet to be characterized. Our study revealed that Se deficiency leads to an imbalance in the expression of pro-inflammatory "M1" macrophages and anti-inflammatory "M2" macrophages in alveolar macrophages (AMs) and interstitial macrophages (IMs) and contributed to the development of lung inflammation. Through the analysis of differentially expressed selenoproteins, we identified SelO as a potential regulator of the imbalance in pulmonary macrophage polarization caused by Se deficiency. In vitro experiments showed that SelO knockdown enhanced the polarization of M1 macrophages while suppressing that of M2 macrophages. In addition, SelO knockdown reprogrammed macrophage metabolism to glycolysis, disrupting oxidative phosphorylation (OXPHOS). Mechanistically, SelO primarily targets mitochondrial transcription factor A (TFAM), which plays a crucial role in the transcription and replication of mitochondrial DNA (mtDNA) and is essential for mitochondrial biogenesis and energy metabolism. The deficiency of SelO affects TFAM, resulting in its uncontrolled degradation, which compromises mitochondrial function and energy metabolism. In summary, the findings presented here offer significant theoretical insights into the physiological functions of SelO.

7.
Phytomedicine ; 135: 156043, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39366155

RESUMEN

BACKGROUND: Macrophages play a pivotal role in the development and recovery of acute lung injury (ALI), wherein their phenotypic differentiation and metabolic programming are orchestrated by mitochondria. Specifically, the mitochondrial calcium uniporter (MCU) regulates mitochondrial Ca2+ (mCa2+) uptake and may bridge the metabolic reprogramming and functional regulation of immune cells. However, the precise mechanism on macrophages remains elusive. Shikonin, a natural naphthoquinone, has demonstrated efficacy in mitigating ALI and suppressing glycolysis in macrophages, yet which mechanism remains to be fully elucidated. PURPOSE: This study explored whether Shikonin ameliorated ALI via modulating MCU-mediated mCa2+ and macrophage polarization. METHODS: This study firstly examined the protective effects of Shikonin on LPS-induced ALI mice, and investigated whether it is depends on macrophage by depleting macrophage using clodronate liposomes. The regulatory effect of Shikonin on macrophage polarization and mitochondrial MCU/Ca2+ signal was testified on RAW264.7 cells, and further validated by knocking-down MCU expression or by using RU360, an MCU inhibitor. Additionally, the crucial role of MCU in the therapeutic effect of Shikonin, along with its regulation on macrophage polarization was validated in mice with LPS-induced ALI under the intervention of RU360. RESULTS: Shikonin alleviated LPS-induced mice ALI, down-regulated inflammatory cytokines and inhibited the pro-inflammatory polarization of macrophages. Intravenous injection of clodronate liposomes on mice abolished the protective effects of Shikonin on ALI. On RAW264.7 cells, LPS&IFN decreased the protein expression of MCU, while induced pro-inflammatory polarization and glycolytic metabolism. In contrast, Shikonin increased MCU expression, activated MCU-mediated mCa2+ signal, promoted the polarization of macrophages to anti-inflammatory M2 phenotype, and driven a metabolic shift from glycolysis to oxidative phosphorylation. Either knocking-down MCU expression or pharmacological inhibiting MCU by using RU360 mitigated the effects of Shikonin on Raw 264.7 cells. Furthermore, RU360 counteracted the ameliorative effect of Shikonin on ALI mice. CONCLUSION: The current data showed that Shikonin alleviated LPS-induced mice ALI by activating mitochondrial MCU/mCa2+ signal and regulating macrophage metabolism.

8.
ACS Nano ; 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367850

RESUMEN

Sepsis-associated encephalopathy (SAE) is a devastating complication of sepsis, affecting approximately 70% of patients with sepsis in intensive care units (ICU). Although the pathophysiological mechanisms remain elusive, sepsis is typically accompanied by systemic inflammatory response syndrome (SIRS) and hyper-oxidative conditions. Here, we introduce a biomimetic nanomodulator (mAOI NP) that specifically targets inflammation site and simultaneously regulates oxidative and inflammatory stresses. mAOI NPs are constructed using metal-coordinated polyphenolic antioxidants (tannic acid) and flavonoid quercetin, which are then coated with macrophage membrane to enhance pharmacokinetics and enable SAE targeting. In a cecal ligation and puncture (CLP)-induced severe sepsis model, mAOI NPs effectively mitigate oxidative stress by purging reactive oxygen species, repairing mitochondrial damage and activating the Nrf2/HO-1 signaling pathway; while polarizing M1 macrophages or microglia toward anti-inflammatory M2 subtype. mAOI NPs potently inhibit sepsis progress, prolong overall survival from 25 to 66% and enhance learning and memory capabilities in SAE mice. Further proteomics analysis reveals that mAOI NPs modulate neurodevelopment processes related to learning and memory formation while also exerting anti-inflammatory and antioxidative effects on brain tissue responses associated with SAE pathology. This study offers significant potential for improving patient outcomes and revolutionizing the treatment landscape for this devastating complication of sepsis.

9.
Biol Direct ; 19(1): 86, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350193

RESUMEN

The immune response gene 1 (IRG1) and its metabolite itaconate are implicated in modulating inflammation and oxidative stress, with potential relevance to sepsis-induced myocardial dysfunction (SIMD). This study investigates their roles in SIMD using both in vivo and in vitro models. Mice were subjected to lipopolysaccharide (LPS)-induced sepsis, and cardiac function was assessed in IRG1 knockout (IRG1-/-) and wild-type mice. Exogenous 4-octyl itaconate (4-OI) supplementation was also examined for its protective effects. In vitro, bone marrow-derived macrophages and RAW264.7 cells were treated with 4-OI following Nuclear factor, erythroid 2 like 2 (NRF2)-small interfering RNA administration to elucidate the underlying mechanisms. Our results indicate that IRG1 deficiency exacerbates myocardial injury during sepsis, while 4-OI administration preserves cardiac function and reduces inflammation. Mechanistic insights reveal that 4-OI activates the NRF2/HO-1 pathway, promoting macrophage polarization and attenuating inflammation. These findings underscore the protective role of the IRG1/itaconate axis in SIMD and suggest a therapeutic potential for 4-OI in modulating macrophage responses.


Asunto(s)
Inflamación , Macrófagos , Ratones Noqueados , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Macrófagos/efectos de los fármacos , Inflamación/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Succinatos/farmacología , Células RAW 264.7 , Monocitos/metabolismo , Antígenos Ly/genética , Antígenos Ly/metabolismo , Sepsis/genética , Masculino , Lipopolisacáridos , Ratones Endogámicos C57BL , Hidroliasas
10.
Int J Biol Macromol ; : 136504, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395513

RESUMEN

Osteoporosis is a systemic disease with complex etiology and high incidence, resulting in a huge economic burden. For a long time, the search of new therapeutic pharmaceuticals has never stopped. Bone loss is related to the imbalance between bone resorption via osteoclast and bone formation via osteoblast. In recent years, the role of immunity and inflammation in the development of osteoporosis has attracted wide attention. Different cytokines, chemokines and endocrine factors regulate osteoclastogenesis by activating different macrophage subtypes, including pro-inflammatory M1 and anti-inflammatory M2. Bilobalide (Bil), an active Ginkgo biloba ingredient, has aroused our great interest because of its antioxidant and anti-inflammatory activities. In this study, we confirmed that Bil attenuated osteoclasts generation induced by receptor activator of nuclear factor- kappa B ligand (RANKL) through upregulating sirtuin 3 (SIRT3) and negatively regulating NF-κB signaling. Furthermore, Bil promotes M2 polarization of macrophages in a dose-dependent manner. In vivo studies provided evidence that Bil is able to improve bone density in ovariectomized (OVX) mice models. Based on the above results, we have the reason to believe that Bil has potential therapeutic value in osteoclast-mediated osteoporosis and may have the potential as a therapeutic drug in the future.

11.
Int J Nanomedicine ; 19: 10145-10163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39386058

RESUMEN

Purpose: Osteoporosis, characterized by reduced bone mass and structural deterioration, poses a significant healthcare challenge. Traditional treatments, while effective in reducing fracture risks, are often limited by side effects. This study introduces a novel nanocomplex, europium (Eu) ions-doped superparamagnetic iron oxide (SPIO) nanocrystals encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanospheres, abbreviated as SPIO:Eu@PLGA nanospheres, as a potential therapeutic agent for osteoporosis by modulating macrophage polarization, enhancing osteoblast differentiation and inhibiting osteoclastogenesis. Methods: SPIO and SPIO:Eu nanocrystals were synthesized through pyrolysis and encapsulated in PLGA using an emulsification method. To evaluate the impact of SPIO:Eu@PLGA nanospheres on macrophage reprogramming and reactive oxygen species (ROS) production, flow cytometry analysis was conducted. Furthermore, an ovariectomized (OVX) rat model was employed to assess the therapeutic efficacy of SPIO:Eu@PLGA nanospheres in preventing the deterioration of osteoporosis. Results: In vitro, SPIO:Eu@PLGA nanospheres significantly attenuated M1 macrophage activation induced by lipopolysaccharides, promoting a shift towards the M2 phenotype. This action is linked to the modulation of ROS and the NF-κB pathway. Unlike free Eu ions, which do not achieve similar results when not incorporated into the SPIO nanocrystals. SPIO:Eu@PLGA nanospheres enhanced osteoblast differentiation and matrix mineralization while inhibiting RANKL-induced osteoclastogenesis. In vivo studies demonstrated that SPIO:Eu@PLGA nanospheres effectively targeted trabecular bone surfaces in OVX rats under magnetic guidance, preserving their structure and repairing trabecular bone loss by modulating macrophage polarization, thus restoring bone remodeling homeostasis. The study underscores the critical role of Eu doping in boosting the anti-osteoporotic effects of SPIO:Eu@PLGA nanospheres, evident at both cellular and tissue levels in vitro and in vivo. Conclusion: The inclusion of Eu into SPIO matrix suggests a novel approach for developing more effective osteoporosis treatments, particularly for conditions induced by OVX. This research provides essential insights into SPIO:Eu@PLGA nanospheres as an innovative osteoporosis treatment, addressing the limitations of conventional therapies through targeted delivery and macrophage polarization modulation.


Asunto(s)
Europio , Macrófagos , Nanosferas , Osteoporosis , Ovariectomía , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Animales , Europio/química , Europio/farmacología , Femenino , Osteoporosis/tratamiento farmacológico , Nanosferas/química , Macrófagos/efectos de los fármacos , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Células RAW 264.7 , Ratas , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/química
12.
ACS Nano ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383310

RESUMEN

Cancer cells have a high demand for sugars and express diverse carbohydrate receptors, offering opportunities to improve delivery with multivalent glycopolymer materials. However, effectively delivering glycopolymers to tumors while inhibiting cancer cell activity, altering cellular metabolism, and reversing tumor-associated macrophage (TAM) polarization to overcome immunosuppression remains a challenging area of research due to the lack of reagents capable of simultaneously achieving these objectives. Here, the glycopolymer-like condensed nanoparticle (∼60 nm) was developed by a one-pot carbonization reaction with a single precursor, promoting multivalent interactions for the galactose-related receptors of the M2 macrophage (TAM) and thereby regulating the STAT3/NF-κB pathways. The subsequently induced M2-to-M1 transition was increased with the condensed level of glycopolymer-like nanoparticles. We found that the activation of the glycopolymer-like condensed galactose (CG) nanoparticles influenced monocarboxylate transporter 4 (MCT-4) function, which caused inhibited lactate efflux (similar to inhibitor effects) from cancer cells. Upon internalization via galactose-related endocytosis, CG NPs induced cellular reactive oxygen species (ROS), leading to dual functionalities of cancer cell death and M2-to-M1 macrophage polarization, thereby reducing the tumor's acidic microenvironment and immunosuppression. Blocking the nanoparticle-MCT-4 interaction with antibodies reduced their toxicity in glioblastoma (GBM) and affected macrophage polarization. In orthotopic GBM and pancreatic cancer models, the nanoparticles remodeled the tumor microenvironment from "cold" to "hot", enhancing the efficacy of anti-PD-L1/anti-PD-1 therapy by promoting macrophage polarization and activating cytotoxic T lymphocytes (CTLs) and dendritic cells (DCs). These findings suggest that glycopolymer-like nanoparticles hold promise as a galactose-elicited adjuvant for precise immunotherapy, particularly in targeting hard-to-treat cancers.

13.
ACS Biomater Sci Eng ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39383333

RESUMEN

During the host response toward implanted biomaterials, macrophages can shift phenotypes rapidly upon changes in their microenvironment within the host tissue. Exploration of this phenomenon can benefit significantly from the development of adequate tools. Creating cell microenvironment alterations on classical hydrogel substrates presents challenges, particularly when integrating them with cell cultivation and monitoring processes. However, having the capability to dynamically manipulate the cell microenvironment on biomaterial surfaces holds significant potential. We introduce magnetically actuated hydrogels (MadSurface) tailored to induce reversible stiffness changes on polyacrylamide hydrogel substrates with embedded magnetic microparticles in a time-controllable manner. Our investigation focused on exploring the potential of magnetic fields and MadSurfaces in dynamically modulating macrophage behavior in a programmable manner. We achieved a consistent modulation by subjecting the MadSurface to a pulsed magnetic field with a frequency of 0.1 Hz and a magnetic field flux density of 50 mT and analyzed exposed cells using flow cytometry and ELISA. At the single-cell level, we identified a subpopulation for which the dynamic stiffness conditions in conjunction with the pulsed magnetic field increased the expression of CD206 in M1-activated THP-1 cells, indicating a consistent shift toward the M2 anti-inflammatory phenotype on MadSurface. At the population level, this effect was mostly hindered in the culture period utilized in this work. The MadSurface approach advances our understanding of the interplay between magnetic field, cell microenvironment alterations, and macrophage behavior.

14.
Int Immunopharmacol ; 143(Pt 1): 113310, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39383788

RESUMEN

Renal ischemia-reperfusion injury (IRI) is a condition that arises from a sudden interruption of the blood flow to the kidney for a period of time followed by restoration of the blood supply. This process contributes to acute kidney injury (AKI), increases morbidity and mortality, and is a major risk factor for chronic kidney disease (CKD). Nuclear factor erythroid-derived 2-like 2 (Nrf2) has been shown to exhibit strong anti-oxidative and anti-inflammatory effects, which are reciprocally regulated by the pro-inflammatory actions of nuclear factor-kappa B (NF-κB) signaling. In this study, we established a model of AKI caused by renal IRI in mice lacking the Nrf2 gene (KO-Nrf2) and mice pre-injected with ML385 (Nrf2 inhibitor). In addition, LPS- or IL-4-induced M1- or M2-type polarized macrophages (RAW264.7), respectively, were also treated with Nrf2 activation and inhibition. The results demonstrated a more pronounced activation of the NF-κB signaling pathway in the Nrf2 inhibition model, accompanied by a more severe inflammatory effect. In cultured macrophages and renal IRI mice, Nrf2 inhibition activated M1 macrophage polarization, thereby increasing the release of proinflammatory cell factors (iNOS and TNF-α) and aggravating renal IRI. Notably, the inhibitory effect of Nrf2 on M1 macrophage polarization was related to the downregulation of the NF-κB signaling pathway activity, resulting in partial relief of renal IRI. Consequently, our findings indicated that Nrf2 inhibits M1 macrophage polarization to ameliorate renal IRI through antagonizing NF-κB signaling. Targeted activation of Nrf2 may be one of the important strategies for renal IRI treatment.

15.
Int J Biol Macromol ; : 136390, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39383910

RESUMEN

Polygalacturonic acid (PGA) restored the alpha-diversity of gut microbiota and promoted T cells infiltration in tumors. Here, we investigated whether oral administration of PGA could improve the anti-cancer effect of lipopolysaccharide-encapsulated PLGA-PEG-PLGA (LPS/PPP) in mice bearing CT26 tumors. Hydrogels with rapid thermogelling properties can achieve localized and controlled release of LPS, thus retaining the anti-cancer effect of LPS and avoiding a robust inflammatory storm. LPS/PPP promoted M1 macrophage polarization, TLR4 expression, and phagocytosis in tumors. The combination of PGA and LPS/PPP (PGA_LPS) notably repressed CT26 tumor growth and the inhibition rate reached 67.6 %. PGA_LPS triggered the recruitment of helper and cytotoxic T cells, IFN-γ level, decreased the proportion of immunosuppressive regulatory T cells. PGA_LPS also restored the beta-diversity of gut microbiota and increased short chain fatty acids abundance (butyric acid, 608.93 % vs. model group, P < 0.01). PGA_LPS followed by αPD-L1 resulted in obvious inhibition of both CT26 and 4T1 tumor growth, promoted cleaved-caspase 3 and Bax expression, T cell responses and the rescue of T cells exhaustion. These results confirmed that PGA_LPS reinforced the anticancer effect of αPD-L1, probably by reshaping the tumor microenvironment and intestinal flora, which sheds light on the combination approach to intensify the effect of immune checkpoint inhibitors.

16.
Heliyon ; 10(19): e38385, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39398082

RESUMEN

Background: Bone fracture regeneration poses significant clinical challenges due to complications such as delayed healing, nonunion, and the limitations of current treatments. Objective: This study introduces a novel therapeutic approach utilizing biomimetic nanogels to silence the Ccl4 gene, aiming to promote bone repair by regulating macrophage polarization. Methods: The nanogels, composed of tannic acid (TA) and small interfering RNA (siRNA), were designed for targeted gene delivery. Results: In vitro findings indicate that siRNA-mediated Ccl4 reduction significantly improves M2 macrophage polarization, which, in turn, promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Increased expression of osteogenic markers and enhanced mineral deposition were observed. The nanogels demonstrated optimal particle size, stability, and cellular uptake, and biocompatibility assays confirmed their non-toxicity. Conclusion: This study underscores the potential of targeted siRNA delivery in modulating immune responses to enhance bone regeneration, offering promising treatment options for complex bone healing scenarios.

17.
Eur J Pharmacol ; 984: 177028, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39366502

RESUMEN

Sepsis-induced acute kidney injury (SI-AKI) has become a focal point in nephrology research field due to its high mortality and potential progression to chronic kidney disease (CKD). The increase of M1 macrophages within renal tissue and their associated inflammatory responses are key contributors to renal inflammation and subsequent damage. Additionally, the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway is abnormally activated during the onset of acute kidney injury (AKI). However, the relationship between the activation of this pathway and the increase in M1 macrophages has not been fully elucidated. This study investigated the protective effects and underlying mechanisms of the STING pathway-specific inhibitor C-176 on LPS-induced AKI, using an LPS and IFN-γ induced M1 macrophage model and an LPS-induced sepsis AKI mouse model. The in vivo results demonstrate that C-176 intervention can alleviate acute kidney injury and improve renal function by reducing macrophage infiltration in renal tissue, decreasing the proportion of M1 macrophages, and mitigating the inflammatory response. Additionally, in vitro results indicate that C-176 intervention inhibits the polarization of M0 macrophages to M1 macrophages, promotes their polarization to M2 macrophages, and reduces the amounts of pro-inflammatory cytokines such as IL-6 and TNF-α at both the protein and gene expression levels. The biological effects of C-176 are associated with the inhibition of STING-IRF3 signaling pathway activation. In summary, the findings of this study have certain scientific significance and application value for exploring the pathogenesis and treatment methods of SI-AKI.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39360530

RESUMEN

OBJECTIVE: To investigate the underlying mechanism by which quercetin (Que) regulates macrophage polarization and its subsequent therapeutic effect on liver fibrosis, an important pathological precondition for hepatocellular carcinoma (HCC). METHODS: In vitro experiments were performed on the RAW264.7 mouse macrophage line. After the induction of M1-type macrophages with LPS, the effects of Que on cell morphology, M1/M2 surface marker expression, cytokine expression, and JAK2/STAT3 expression were analyzed. In vivo, male SD rats were used as a model of CCL4-induced hepatic fibrosis, and the effects of Que on serum aminotransferase levels, the histopathological structure of liver tissues, and macrophage-associated protein expression in liver tissues were analyzed. RESULTS: In vitro experiments revealed that Que can suppress the activation of the JAK2/STAT3 signaling pathway, leading to decreases in the expression of M1 macrophage surface markers and cytokines. Additionally, Que was found to increase the expression of M2 macrophage surface markers and cytokines. In vivo, assays demonstrated that Que significantly ameliorated the development of inflammation and fibrosis in a rat liver fibrosis model. CONCLUSION: Que can inhibit hepatic fibrosis by promoting M1 to M2 macrophage polarization, which could be associated with its ability to suppress the JAK2/STAT3 signaling pathway in macrophages.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39360811

RESUMEN

Diabetic foot ulcers/chronic wounds are difficult to treat because of dysfunctional macrophage response and decreased phenotype transition from the M1 to M2 status. This causes severe inflammation, less angiogenesis, microbial infections, and small deformation in wound beds, affecting the healing process. The commercial wound dressing material has limited efficacy, poor mechanical strength, extra pain, and new granulated tissue formed in a mesh of gauze. It is desired to create tough, skin-adhesive, antifouling, sustainable M2 phenotype-enabling, and mechanoresponsive drug-releasing hydrogel. To resolve this, zwitterionic poly(sulfobetaine methacrylate) (SB) incorporated with keratin-exfoliated MoS2 and bee-wax nanoparticles were developed to deliver phenytoin upon application of mechanical forces. Human hair keratin was used for exfoliation of MoS2, and bee-wax nanoparticles loaded with phenytoin were used as cross-linkers of SB hydrogel. The cross-linked SB-MO15-B hydrogel has high mechanical properties, with more tensile strength and strain of 118 kPa and 1485%. Under external mechanical force, hydrogel deformed to release phenytoin of 38% (tensile) and 24% (compressive), which was higher compared to static condition (12%). The penetration of phenytoin into skin tissue was also improved by the mechanical force applied to the hydrogel. SB-MO15-B hydrogel effectively activates the polarization of macrophages toward the M2 phenotype, promotes cell proliferation, and also shows superior antibacterial properties. In vivo results demonstrate that hydrogel rapidly promotes diabetic wound repair through fast antiinflammation and M2 macrophage polarization. Therefore, a robust mechanoresponsive hydrogel would provide a new strategy to deliver the drug and also tune the M2 macrophage polarization for chronic wound healing.

20.
Inflammation ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365391

RESUMEN

This study aimed to investigate how aquaporin 1 (AQP1) modulates hypoxia-inducible factor-1α (HIF1α) to promote glycolysis and drive the M1 polarization of macrophages. Within 12 h post-treatment with LPS to induce acute kidney injury in rats, a significant upregulation of AQP1 and HIF1α protein levels was noted in serum and kidney tissues. This elevation corresponded with a decrease in blood glucose concentrations and an enhancement of glycolytic activity relative to the control group. Furthermore, there was a pronounced reduction in the circulating levels of the anti-inflammatory cytokine IL-10, accompanied by an upregulation in the levels of the pro-inflammatory cytokines IL-6 and TNF-α. The administration of an HIF1α inhibitor reversed these effects, which did not affect the production of AQP1 protein. In cellular assays, AQP1 knockdown mitigated the increase in HIF1α expression induced by LPS. Furthermore, the suppression of HIF1α with PX-478 led to decreased expression levels of Hexokinase 2 (HK2) and Lactate Dehydrogenase A (LDHA), indicating that AQP1 regulates glycolysis through HIF1α. M1 polarization of macrophages was reduced by AQP1 knockdown and was further diminished by the addition of an HIF1α inhibitor. Inhibition of the glycolytic process not only weakened M1 polarization but also promoted M2 polarization, thereby reducing the release of inflammatory cytokines. These findings provide a novel perspective for developing therapeutic strategies that target AQP1 and HIF1α, potentially improving the treatment of sepsis-associated AKI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA