Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(19)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39407587

RESUMEN

Dispersive solid-phase extraction (dSPE) is a crucial step for multiresidue analysis used to remove matrix components from extracts. This purification prevents contamination of instrumental equipment and improves method selectivity, sensitivity, and reproducibility. Therefore, a clean-up step is recommended, but an over-purified extract can lead to analyte loss due to adsorption to the sorbent. This study provides a systematic comparison of the advantages and disadvantages of the well-established dSPE sorbents PSA, GCB, and C18 and the novel dSPE sorbents chitin, chitosan, multi-walled carbon nanotube (MWCNT), and Z-Sep® (zirconium-based sorbent). They were tested regarding their clean-up capacity by visual inspection, UV, and GC-MS measurements. The recovery rates of 98 analytes, including pesticides, active pharmaceutical ingredients, and emerging environmental pollutants with a broad range of physicochemical properties, were determined by GC-MS/MS. Experiments were performed with five different matrices, commonly used in food analysis (spinach, orange, avocado, salmon, and bovine liver). Overall, Z-Sep® was the best sorbent regarding clean-up capacity, reducing matrix components to the greatest extent with a median of 50% in UV and GC-MS measurements, while MWCNTs had the largest impact on analyte recovery, with 14 analytes showing recoveries below 70%. PSA showed the best performance overall.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Nanotubos de Carbono , Extracción en Fase Sólida , Extracción en Fase Sólida/métodos , Adsorción , Nanotubos de Carbono/química , Quitosano/química , Espectrometría de Masas en Tándem , Contaminantes Ambientales/análisis , Contaminantes Ambientales/química , Contaminantes Ambientales/aislamiento & purificación , Animales , Bovinos
2.
Talanta ; 280: 126658, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39137659

RESUMEN

The approaches to matrix effects determination and reduction in ultra-high performance supercritical fluid chromatography with mass spectrometry detection have been evaluated in this study using different sample preparation methods and investigation of different calibration models. Five sample preparation methods, including protein precipitation, liquid-liquid extraction, supported liquid extraction, and solid phase extraction based on both "bind and elute" and "interferent removal" modes, were optimized with an emphasis on the matrix effects and recovery of 8 forms of vitamin E, including α-, ß-, γ-, and δ-tocopherols and tocotrienols, from plasma. The matrix effect evaluation included the use and comparison of external and internal calibration using three models, i.e., least square with no transformation and no weighting (1/x0), with 1/x2 weighting, and with logarithmic transformation. The calibration model with logarithmic transformation provided the lowest %-errors and the best fits. Moreover, the type of the calibration model significantly affected not only the fit of the data but also the matrix effects when evaluating them based on the comparison of calibration curve slopes. Indeed, based on the used calibration model, the matrix effects calculated from calibration slopes ranged from +92% to - 72% for α-tocopherol and from -77% to +19% in the case of δ-tocotrienol. Thus, it was crucial to calculate the matrix effect by Matuszewski's post-extraction approach at six concentration levels. Indeed, a strong concentration dependence was observed for all optimized sample preparation methods, even if the stable isotopically labelled internal standards (SIL-IS) were used for compensation. The significant differences between individual concentration levels and compounds were observed, even when the tested calibration range covered only one order of magnitude. In methods with wider calibration ranges, the inappropriate use of calibration slope comparison instead of the post-extraction addition approach could result in false negative results of matrix effects. In the selected example of vitamin E, solid-phase extraction was the least affected by matrix effects when used in interferent removal mode, but supported liquid extraction resulted in the highest recoveries. We showed that the calibration model, the use of a SIL-IS, and the analyte concentration level played a crucial role in the matrix effects. Moreover, the matrix effects can significantly differ for compounds with similar physicochemical properties and close retention times. Thus, in all bioanalytical applications, where different analytes are typically determined in one analytical run, it is necessary to carefully select the data processing in addition to the method for the sample preparation, SIL-IS, and chromatography.


Asunto(s)
Cromatografía con Fluido Supercrítico , Espectrometría de Masas , Vitamina E , Vitamina E/sangre , Vitamina E/análisis , Cromatografía con Fluido Supercrítico/métodos , Espectrometría de Masas/métodos , Humanos , Calibración , Extracción en Fase Sólida/métodos
3.
Pharmaceutics ; 16(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39204445

RESUMEN

The deformulation stage of original drug products, which includes the quantification of critical excipients, is crucial for the successful development of generic drug products of solid dosage form. Sodium lauryl sulphate (SLS) belongs to the group of critical excipients due to its influence on the bioavailability of drugs, such as metformin. The purpose of this work is to carry out a feasibility study in order to develop a simple, economical, and robust analytical method for the quantification of SLS in metformin-containing tablets after their dissolution in water. Firstly, SLS is extracted with chloroform in acidic conditions, followed by the addition of methylene blue (MB) in order to form a SLS-MB ion pair, which is then measured photometrically at a wavelength of 651 nm. Additionally, interference from matrix components (excipients and APIs) was assessed, and it was found that metformin also forms a blue complex; therefore, this specific extraction method was developed. Other matrix components did not interfere with SLS determination. This method shows a well-estimated precision of 3.3% and accuracy of 5%, a calibration linearity of R2 = 0.99990, and a working range of 0.38 µg/mL to 10 µg/mL of SLS in water. The midpoint of the calibration graph corresponds to the concentration of SLS obtained by dissolving a single tablet in 1 L of water. This method seems appropriate for total SLS determination in tablets and can be applicable for deformulation.

4.
Bioanalysis ; 16(14): 757-769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957926

RESUMEN

Aim: Endogenous interferents can cause nonselectivity in ligand binding pharmacokinetic assays, leading to inaccurate quantification of drug concentrations. We describe the development of a Gyrolab immunoassay to quantify a new modality, CB307 and discuss strategies implemented to overcome matrix effects and achieve selectivity at the desired sensitivity.Results: Matrix effects were mitigated using strategies including increasing minimum required dilution (MRD) and lower limit of quantification, optimization of antibody orientation, assay buffer and solid phase.Conclusion: The strategies described resulted in a selective method for CB307 in disease state matrix that met bioanalytical method validation (BMV) guidance and is currently used to support clinical pharmacokinetic sample analysis in the first-in-human POTENTIA clinical study (NCT04839991) as a secondary clinical end point.


[Box: see text].


Asunto(s)
Anticuerpos Biespecíficos , Humanos , Anticuerpos Biespecíficos/farmacocinética , Inmunoensayo/métodos
5.
Foods ; 13(11)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38890973

RESUMEN

The production of nutraceuticals is a growing trend, as many consumers consider them an important part of the modern active lifestyle. Others rely on the use of nutraceuticals instead of prescribing pharmaceuticals to improve their health more naturally. One of the major concerns in the nutraceutical industry is the potential presence of contaminants. Even low concentrations of contaminant residues can be harmful, so analytical methods that are sensitive at ultratrace levels are needed. Dispersive liquid-liquid microextraction method combined with fast gas chromatography and mass spectrometry was developed for the inspection of pesticide residues in Carmelite drops. The most suitable recoveries are presented when the alcohol content is fixed at 20% in Carmelite drops. The method was validated; the linearity, limits of detection/quantification, the method accuracy and precision were obtained. The complex nutraceutical matrix causes significant complications in quantitative analysis; therefore, the main target of the work was placed on studying the effects of the matrix on the correct expression of the resulting concentration of contaminants in different types of samples. An in-depth study of matrix factors was carried out, and its relationship with the content of potential interferents from the medicinal products as well as other components added during the drops' production was discussed. Related medicinal plant-derived nutraceuticals were tested, the method was applied for real-life samples, and positive findings are herein reported.

6.
Anal Chim Acta ; 1309: 342675, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772665

RESUMEN

BACKGROUND: Elemental analysis by inductively coupled plasma mass spectrometry (ICP-MS) may suffer from matrix effects; those caused by organic matrices cannot be corrected by internal standardization. A new strategy, matrix overcompensation calibration (MOC), was developed to correct such matrix effects. RESULTS: Clear fruit juices were diluted 1:50 in 1 % HNO3 (v/v)- 0.5 % HCl (v/v)- 5 % ethanol (v/v). A standard series was treated likewise to construct an external calibration curve. As, Se, Cd, and Pb in juices were determined by dilute-and-shoot ICP-MS based on this MOC strategy. The results agreed with those obtained by standard addition calibration and microwave-aided digestion; data accuracy was validated by spike-recovery studies. SIGNIFICANCE: Unlike standard addition calibration, a single external calibration curve established by MOC can be applicable to juices of diversified fruit, geographical, and manufacturer origins enhancing productivity.

7.
Environ Sci Pollut Res Int ; 31(23): 33623-33637, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684615

RESUMEN

We present an analytical method to detect and quantify residues of currently used pesticides (CUPs), which include 31 active ingredients (ai) and seven transformation products (TPs) in tropical and agricultural soils of Cuba. Ten isotopically labeled analogous compounds served as internal standards (IL-IS). The novelty of this research is the inclusion of different tropical soils type scarcely studied for CUPs and TPs, based on the QuEChERS (quick, easy, cheap, effective, rugged and safe) method, followed by chromatography tandem mass spectrometry. All figures of merit proved to be satisfactory according to SANTE guidelines 2020 and 2021. Matrix effects (ME) calculated by the external standard method were significant (|ME| > 20% for almost all compounds; grand mean ± standard deviation (STD) 104 ± 108%) in all soils. The internal standard method compensated ME to non-significant levels (8 ± 50%), even for analytes with a non-structure identical IL-IS (STD, 13 ± 57%). Repeatability (relative standard deviation, RSDr) and reproducibility (RSDR) for skeletic regosol (SR) were 7.5 ± 2.8% and 11.7 ± 4.7%, respectively. Absolute (quantified for 11 analytes with structure identical IL-IS) and relative recovery from SR was 92 ± 13% (mean ± STD) and 90 ± 12%, respectively. Limits of quantification for SR ranged from 0.1 to 10 ng/g, except metalaxyl and oxyfluorfen (25 ng/g each). Linearity of matrix-matched (MM) calibration curves (5 to 100 ng/g) had an R2 of ≥ 0.99 for all soils and almost all analytes. The method was successfully applied to 30 real soil samples.


Asunto(s)
Agricultura , Contaminantes del Suelo , Suelo , Espectrometría de Masas en Tándem , Cuba , Contaminantes del Suelo/análisis , Suelo/química , Espectrometría de Masas en Tándem/métodos , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Cromatografía de Gases y Espectrometría de Masas , Reproducibilidad de los Resultados , Monitoreo del Ambiente/métodos
8.
J Chromatogr A ; 1722: 464895, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608367

RESUMEN

Direct sample introduction thermal desorption (TD) coupled to GC-MS was investigated for the analysis of paraffinic hydrocarbons (HCs) from polluted sediments. TD-GC-MS is sometimes used for analysing paraffinic HCs from atmospheric particles but rarely for their direct desorption from sediments. So, the new TD methodology, applied to sediments, required development, optimization and validation. A definitive screening experimental design was performed to discriminate the critical factors on TD efficiency, from model sediments containing various organic matter (OM) amounts. Low molecular weight HCs had extraction behaviours markedly different from high molecular ones (HMW-HCs), but a compromise was found using very few sediment amount (5 mg), high temperature rate (55 °C min-1) and final temperature (350 °C). Linear HCs (n-C10 to n-C40) could be quantified using the matrix-matched calibration method, with very low detection limits (3.8-13.4 ng). The amount of the overall paraffinic alkanes was also determined as a sum of unresolved components between predefined equivalent carbon ranges. The developed solventless methodology was compared to an optimized solvent microwave assisted extraction (MAE). Matrix effects could be higher for TD compared to MAE but it depended on sediment matrix. When matrix effect was strong, particularly on HMW-HCs signal depletion, a dilution with pure non-porous sand was favourable for accurate quantification. The sum of resolved and unresolved HCs gave comparable results between MAE and TD extractions, with an exception of alkanes greater than C30 which were less quantitatively extracted via TD. However, TD-GC-MS was more sensitive than MAE-GC-MS. So TD-GC-MS is useful for analyzing sediments containing a great range of paraffinic HCs (C9-C34) and it has the advantages of being fully automated, with few sample preparation and operator intervention, using very low amounts of solvent, and generating few wastes.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Sedimentos Geológicos , Cromatografía de Gases y Espectrometría de Masas/métodos , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Límite de Detección , Hidrocarburos Acíclicos/análisis , Microondas
9.
Anal Chim Acta ; 1287: 342073, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38182377

RESUMEN

BACKGROUND: Prognosis, diagnosis, and treatment of several diseases strongly rely on the sensitive, selective, and accurate determination of specific biomarkers in relevant biological samples. Free biliverdin and free bilirubin represent important new biomarkers of oxidative stress, however, the lack of suitable analytical methods for their determination has hindered progress in biomedical and clinical research. RESULTS: Here, we introduce a first comprehensive approach for robust and simultaneous determination of these bilins in serum using liquid chromatography - mass spectrometry (LC-MS). The developed analytical method exhibits linearity for both analytes within the concentration range of 0.5-100 nM, with limits of detection and quantitation determined at 0.1 nM and 0.5 nM, respectively. Moreover, several analytical pitfalls related to the intrinsic molecular structures of free bilirubin and free biliverdin and their trace concentration levels in biological samples are discussed here in detail for the first time. We have shown that the solubility, chemical stability, and affinity of these bilins to various materials strongly depend on the solvent, pH, and addition of stabilizing and chelating agents. Finally, the validated LC-MS method was successfully applied to the analysis of both bilins in fetus bovine serums, yielding higher free bilirubin/biliverdin ratios compared with previously reported values for human serum. SIGNIFICANCE: Failure to recognize and address the challenges presented here often leads to substantial analytical errors and consequently biased interpretation of the obtained results. This pertains not only to LC-MS, but also to many other analytical platforms due to the compound-derived sources of error.


Asunto(s)
Bilirrubina , Biliverdina , Humanos , Cromatografía Liquida , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem , Biomarcadores
10.
Anal Chim Acta ; 1288: 342167, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220299

RESUMEN

BACKGROUND: Variations in plasma properties among spectra and samples lead to significant signal uncertainty and matrix effects in laser-induced breakdown spectroscopy (LIBS). To address this issue, direct compensation for plasma property variations is considered highly desirable. However, reliably compensating for the total number density variation is challenging due to inaccurate spectroscopic parameters. For reliable compensation, a total number density compensation (TNDC) method was presented in our recent work, but its applicability is limited to simple samples because of its strict assumptions. In this study, we propose a new pre-processing method, namely extended TNDC (ETNDC), to reduce signal uncertainty and matrix effects in the more complex analytical task of uranium determination. RESULTS: ETNDC reflects the total number density variation with a weighted combination of spectral lines from all major elements and incorporates temperature and electron density compensation into the weighting coefficients. The method is evaluated on yellow cake samples and combined with regression models for uranium determination. Using the typical validation set and line combination, the mean relative standard deviation (RSD) of U II 417.159 nm in validation samples decreases from 4.92% to 2.27%, and the root mean square error of prediction (RMSEP) and the mean RSD of prediction results decrease from 4.81% to 1.93% and from 1.92% to 1.56%, respectively. Furthermore, the results of 10 validation sets and 216 line combinations show that ETNDC outperforms baseline methods in terms of average performance and robustness. SIGNIFICANCE: For the first time, ETNDC explicitly addresses the temperature and electron density variations while compensating for the total number density variation, where the inaccurate spectroscopic parameters are avoided by fitting related quantities using concentration information. The method demonstrates effective and robust improvement in signal repeatability and analytical performance in uranium determination, facilitating accurate quantification of the LIBS technique.

11.
Anal Bioanal Chem ; 416(3): 839-847, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38059990

RESUMEN

Analysis of V, Co, Ni, Cu, Zn, As, Se, Ag, Cd, Ba, and Pb in fruit juices was performed by inductively coupled plasma mass spectrometry (ICPMS) after simple 50-fold dilution in 1% (v/v) HNO3-0.5% (v/v) HCl-5% (v/v) ethanol. Ethanol was added to overwhelm native organic components and dominate matrix effects. A universal calibration curve was built based on a likewise treated reagent standard series. This new matrix overcompensation calibration (MOC) strategy was developed to effectively compensated for matrix effects of carbon origin and achieved quantitative (92.5-118.8%) recoveries comparable to those by standard addition calibration (92.1-117.8%) and microwave-aided digestion (99.3-116.8%). The LODs were 0.528, 0.204, 0.195, and 2.07 ng mL-1 for toxic elements As, Cd, Pb, and Ni, respectively, adequate for their regulatory monitoring. Ge, Rh, Tb, and Ir were used as internal standards. MOC renders a calibration curve universally applicable to any clear fruit juices of diversified crop, geographic, and manufacturer origins resulting in cost saving and enhanced productivity.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38101287

RESUMEN

Biota samples are used to monitor chemical stressors and their impact on the ecosystem and to describe dietary chemical exposure. These complex matrices require an extraction step followed by clean-up to avoid damaging sensitive analytical instruments based on chromatography coupled to mass spectrometry. While interest for non-targeted analysis (NTA) is increasing, there is no versatile or generic sample preparation for a wide range of contaminants suitable for a diversity of biotic matrices. Among the contaminants' variety, persistent contaminants are mostly hydrophobic (mid- to non-polar) and bio-magnify through the lipidic fraction. During their extraction, lipids are generally co-extracted, which may cause matrix effect during the analysis such as hindering the acquired signal. The aim of this study was to evaluate the efficacy of four clean-up methods to selectively remove lipids from extracts prior to NTA. We evaluated (i) gel permeation chromatography (GPC), (ii) Captiva EMR-lipid cartridge (EMR), (iii) sulphuric acid degradation (H2SO4) and (iv) polydimethyl siloxane (PDMS) for their efficiency to remove lipids from hen egg extracts. Gas and liquid chromatography coupled with high-resolution mass spectrometry fitted with either electron ionisation or electrospray ionisation sources operating in positive and negative modes were used to determine the performances of the clean-up methods. A set of 102 chemicals with a wide range of physico-chemical properties that covers the chemical space of mid- to non-polar contaminants, was used to assess and compare recoveries and matrix effects. Matrix effects, that could hinder the mass spectrometer signal, were lower for extracts cleaned-up with H2SO4 than for the ones cleaned-up with PDMS, EMR and GPC. The recoveries were satisfactory for both GPC and EMR while those determined for PDMS and H2SO4 were low due to poor partitioning and degradation/dissociation of the compounds, respectively. The choice of the clean-up methods, among those assessed, should be a compromise that takes into account the matrix under consideration, the levels and the physico-chemical properties of the contaminants.


Asunto(s)
Exposoma , Espectrometría de Masas en Tándem , Animales , Femenino , Espectrometría de Masas en Tándem/métodos , Pollos , Ecosistema , Lípidos/química
13.
J Sep Sci ; 46(23): e2300571, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897324

RESUMEN

Matrix effects can significantly impede the accuracy, sensitivity, and reliability of separation techniques presenting a formidable challenge to the analytical process. It is crucial to address matrix effects to achieve accurate and precise measurements in complex matrices. The multifaceted nature of matrix effects which can be influenced by factors such as target analyte, sample preparation protocol, composition, and choice of instrument necessitates a pragmatic approach when analyzing complex matrices. This review aims to highlight common challenges associated with matrix effects throughout the entire analytical process with emphasis on gas chromatography-mass spectrometry, liquid chromatography-mass spectrometry, and sample preparation techniques. These techniques are susceptible to matrix effects that could lead to ion suppression/enhancement or impact the analyte signal at various stages of the analytical workflow. The assessment, quantification, and mitigation of matrix effects are necessary in developing any analytical method. Strategies can be implemented to reduce or eliminate the matrix effect by changing the type of ionization, improving extraction and clean-up methods, optimization of chromatography conditions, and corrective calibration methods. While development of an effective strategy to completely mitigate matrix effects remains elusive, an integrated approach that combines sample preparation, analytical extraction, and effective instrumental analysis remains the most promising avenue for identifying and resolving matrix effects.

14.
Heliyon ; 9(10): e19687, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37780752

RESUMEN

Consumption of low levels of egg already can evoke harmful physiological responses in humans in those allergic to eggs. By detection of egg in food products, using Egg ELISA kits to determine its unintended presence, food producers can respond to avoid potential safety or quality risks of their products. Selection of an ELISA kit fit for the issue at hand is challenging due to, amongst others, lack of information on assay performances with specified matrices. In this study, performances of seven commercial egg ELISA kits are compared for nine different relevant matrices: cookie, chocolate, pasta, dressing, stock cube, wine, vegetable drink and milk, ice cream and meat/meat replacers. The presence of egg was unified for all ELISA kits to mg total egg protein kg-1 food product. In every matrix, kit performances for recovery, intra- and interassay were compared, and also processing is accounted for by determination of egg in incurred samples. All seven kits were able to detect egg qualitatively at the VITAL3 ED01 level of 0.2 mg total egg protein and the corresponding relevant portion size for each matrix. For quantitative results, each ELISA kit showed an increase in detected egg concentration with increased egg levels and performed within the set criteria for recovery for the cookie, chocolate, stock cube and wine. For pasta, vegetable drink and milk, ice cream, and salad dressing, recovery of egg was within the set criteria for at least 4 ELISA kits. Most challenging matrices were meat/meat replacers, showing high matrix effects which could not be explained by the possible egg presence in the cognate blank. Only one ELISA kit was able to recover egg within the set criteria for the meat/meat replacer matrix. Results enable food industry to choose for ELISA kits suitable for egg detection in the matrix of interest.

15.
Mikrochim Acta ; 190(10): 387, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37700165

RESUMEN

Food safety is a critical issue that is closely related to people's health and safety. As a simple, rapid, and sensitive detection technique, surface-enhanced Raman scattering (SERS) technology has significant potential for food safety detection. Recently, researchers have shown a growing interest in utilizing silent region molecules for SERS analysis. These molecules exhibit significant Raman scattering peaks in the cellular Raman silent region between 1800 and 2800 cm-1 avoiding overlapping with the SERS spectrum of biological matrices in the range 600-1800 cm-1, which could effectively circumvent matrix effects and improve the SERS accuracy. In this review, the application of silent region molecules-based SERS analytical technique for food safety detection is introduced, detection strategies including label-free detection and labeled detection are discussed, and recent applications of SERS analysis technology based on molecules containing alkyne and nitrile groups, as well as Prussian blue (PB) in the detection of pesticides, mycotoxins, metal ions, and foodborne pathogens are highlighted. This review aims to draw the attention to the silent region molecules-based SERS analytical technique and to provide theoretical support for its further applications in food safety detection.


Asunto(s)
Micotoxinas , Plaguicidas , Humanos , Inocuidad de los Alimentos , Alquinos , Nitrilos
16.
Cells ; 12(13)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37443822

RESUMEN

Quantitative polymerase chain reaction (qPCR) has emerged as an important bioanalytical method for assessing the pharmacokinetics of human-cell-based medicinal products after xenotransplantation into immunodeficient mice. A particular challenge in bioanalytical qPCR studies is that the different tissues of the host organism can affect amplification efficiency and amplicon detection to varying degrees, and ignoring these matrix effects can easily cause a significant underestimation of the true number of target cells in a sample. Here, we describe the development and drug regulatory-compliant validation of a TaqMan® qPCR assay for the quantification of mesenchymal stromal cells in the range of 125 to 20,000 cells/200 µL lysate via the amplification of a human-specific, highly repetitive α-satellite DNA sequence of the chromosome 17 centromere region HSSATA17. An assessment of matrix effects in 14 different mouse tissues and blood revealed a wide range of spike recovery rates across the different tissue types, from 11 to 174%. Based on these observations, we propose performing systematic spike-and-recovery experiments during assay validation and correcting for the effects of the different tissue matrices on cell quantification in subsequent bioanalytical studies by multiplying the back-calculated cell number by tissue-specific factors derived from the inverse of the validated percent recovery rate.


Asunto(s)
Células Madre Mesenquimatosas , Reacción en Cadena de la Polimerasa , Animales , Humanos , Ratones , Células Madre Mesenquimatosas/metabolismo , Trasplante Heterólogo , Reacción en Cadena de la Polimerasa/métodos
17.
Environ Res ; 236(Pt 2): 116693, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481058

RESUMEN

Methylisothiazolinone (MIT) is widely used in daily chemicals, fungicides, and other fields and its toxicity has posed a threat to water system and human health. In this study, ultraviolet (UV)/trichloroisocyanuric acid (TCCA), which belongs to advanced oxidation processes (AOP), was adopted to degrade MIT. Total chlorine attenuation detection proved that TCCA has medium UV absorption and a strong quantum yield (0.49 mol E-1). At a pH of 7.0, 93.5% of MIT had been decontaminated after 60 min in UV/TCCA system (kobs = 4.4 × 10-2 min-1, R2 = 0.978), which was much higher than that in the UV alone system and TCCA alone system, at 65% (1.7 × 10-2 min-1, R2 = 0.995) and 10% (1.8 × 10-3 s-1, R2 = 0.915), respectively. This system also behaved well in degrading other five kinds of contaminants. Tert-butanol (TBA) and carbonate (CO32-) were separately used in quenching experiments, and the degradation efficiency of MIT decreased by 39.5% and 46.5% respectively, which confirmed that HO• and reactive chlorine species (RCS) were dominant oxidants in UV/TCCA system. With TCCA dosage increasing in a relatively low concentration range (0.02-0.2 mM) and pH decreasing, the effectiveness of this AOP system would be strengthened. The influences of coexisting substances (Cl-, SO42-, CO32-, NO2- and NO3-) were explored. MIT degradation pathways were proposed and sulfur atom oxidation and carboxylation were considered as the dominant removal mechanisms of MIT. Frontier orbital theory and Fukui indexes of MIT were employed to further explore the degradation mechanism.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Cloro/química , Rayos Ultravioleta , Agua , Cinética , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis , Peróxido de Hidrógeno
18.
Methods Mol Biol ; 2688: 107-121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37410288

RESUMEN

Mass spectrometry imaging has the potential to reveal important molecular interaction in morphological regions in tissue. However, the simultaneous ionization of the continuously altered and complex chemistry in each pixel can introduce artifacts that result in skewed molecular distributions in the compiled ion images. These artifacts are known as matrix effects. Mass spectrometry imaging using nanospray desorption electrospray ionization (nano-DESI MSI) enables the elimination of matrix effects by doping the nano-DESI solvent with internal standards. Carefully selected internal standards ionize similarly and simultaneously with the extracted analytes from thin tissue sections, and the matrix effects are eliminated through a robust data normalization method. Herein we describe the setup and use of pneumatically assisted (PA) nano-DESI MSI with standards doped in the solvent for elimination of matrix effects in ion images.


Asunto(s)
Diagnóstico por Imagen , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Ionización de Electrospray/métodos , Solventes , Estándares de Referencia , Artefactos
19.
Front Chem ; 11: 1203314, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304684

RESUMEN

The interactions between soil microorganisms and soil minerals play a crucial role in the formation and evolution of minerals and the stability of soil aggregates. Due to the heterogeneity and diversity of the soil environment, the under-standing of the functions of bacterial biofilms in soil minerals at the microscale is limited. A soil mineral-bacterial biofilm system was used as a model in this study, and it was analyzed by time-of-flight secondary ion mass spectrometry (ToF-SIMS) to acquire molecular level information. Static culture in multi-wells and dynamic flow-cell culture in microfluidics of biofilms were investigated. Our results show that more characteristic molecules of biofilms can be observed in SIMS spectra of the flow-cell culture. In contrast, biofilm signature peaks are buried under the mineral components in SIMS spectra in the static culture case. Spectral overlay was used in peak selection prior to performing Principal component analysis (PCA). Comparisons of the PCA results between the static and flow-cell culture show more pronounced molecular features and higher loadings of organic peaks of the dynamic cultured specimens. For example, fatty acids secreted from bacterial biofilm extracellular polymeric substance are likely to be responsible for biofilm dispersal due to mineral treatment up to 48 h. Such findings suggest that the use of microfluidic cells to dynamically culture biofilms be a more suitable method for reducing the matrix effect arisen from the growth medium and minerals as a perturbation fac-tor for improved spectral and multivariate analysis of complex mass spectral data in ToF-SIMS. These results show that the interaction mechanism between biofilms and soil minerals at the molecular level can be better studied using the flow-cell culture and advanced mass spectral imaging techniques like ToF-SIMS.

20.
Nanomaterials (Basel) ; 13(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37368268

RESUMEN

This paper proposes a novel approach to implement an internal standard (IS) correction in single particle inductively coupled plasma mass spectrometry (SP ICP-MS), as exemplified for the characterization of Au nanoparticles (NPs) in complex matrices. This approach is based on the use of the mass spectrometer (quadrupole) in bandpass mode, enhancing the sensitivity for the monitoring of AuNPs while also allowing for the detection of PtNPs in the same measurement run, such that they can serve as an internal standard. The performance of the method developed was proved for three different matrices: pure water, a 5 g L-1 NaCl water solution, and another water solution containing 2.5% (m/v) tetramethylammonium hydroxide (TMAH)/0.1% Triton X-100. It was observed that matrix-effects impacted both the sensitivity of the NPs and their transport efficiencies. To circumvent this problem, two methods were used to determine the TE: the particle size method for sizing and the dynamic mass flow method for the determination of the particle number concentration (PNC). This fact, together with the use of the IS, enabled us to attain accurate results in all cases, both for sizing and for the PNC determination. Additionally, the use of the bandpass mode provides additional flexibility for this characterization, as it is possible to easily tune the sensitivity achieved for each NP type to ensure that their distributions are sufficiently resolved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA