Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pharm Pharmacol ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39437337

RESUMEN

OBJECTIVES: This study examined the role of endoplasmic reticulum stress in pediatric acute kidney injury and the therapeutic effect of midbrain astrocyte-derived neurotrophic factor. METHODS: Two-week-old Sprague-Dawley rats were divided into: Sham, ischemia-reperfusion injury-induced acute kidney injury (AKI), mesencephalic astrocyte-derived neurotrophic factor (MANF)-treated, tauroursodeoxycholic acid (TUDCA)-treated. Analyses were conducted 24 h post-treatment. Serum creatinine, cystatin C, Albumin, MANF levels were measured, cytokine concentrations in serum and renal tissues were determined using a Luminex assay. Histopathology was assessed via light and electron microscopy. Western blotting and RT-qPCR analyzed markers for oxidative stress, apoptosis, endoplasmic reticulum (ER) stress, and autophagy. HK-2 cells underwent hypoxia/reoxygenation (H/R) to simulate AKI and were treated with MANF or TUDCA. RESULTS: AKI rats had increased serum creatinine, cystatin C, and inflammatory cytokines, along with significant renal damage, and showed loose and swollen ER structures, reduced cell proliferation, and elevated levels of IRE1, PERK, ATF6, CHOP, LC3-II/I, KIM-1, TLR4, JNK, and NF-κB. MANF treatment reduced these biomarkers and protein levels, improved ER structure and cell proliferation, alleviated oxidative stress, apoptosis, ER stress, and inhibited JNK/TLR4/NF-κB signaling. In HK-2 cells, MANF reduced ER stress and inflammation post-H/R exposure. CONCLUSIONS: MANF treatment alleviates ER stress, oxidative stress, apoptosis, and inflammation in pediatric AKI, improving renal function and morphology.

2.
J Psychiatr Res ; 176: 33-39, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838432

RESUMEN

BACKGROUND: Sleeping late has been associated with cognitive impairment, and insufficient sleep can affect the secretion of feeding-related cytokines. Feeding-related cytokines may contribute to cognitive deficits resulting from delayed bedtime. Glial cell line-derived neurotrophic factor (GDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF), which are feeding-related neurotrophic factors, have been associated with improved cognitive function and neuroprotective abilities. Enhanced expression of GDNF and MANF is linked to increased energy expenditure and hyperphagia, respectively. AIMS: This study aimed to investigate the association between cerebrospinal fluid (CSF) GDNF, MANF, cognition, and sleep time and to explore the moderating effects of GDNF and MANF on cognitive impairment in individuals who sleep late. METHOD: This cross-sectional study included participants (mean age 31.76 ± 10.22 years) who were categorized as ≤23 o'clock sleepers (n = 66) and >23 o'clock sleepers (n = 125) based on sleep time. Cognition was assessed using Montreal Cognitive Assessment (MoCA), and GDNF and MANF levels in CSF were measured. RESULTS: MANF may play a moderating role in the relationship between sleep time and cognition (R2 = 0.06, ß = 0.59, p = 0.031). Age showed a negative correlation with MoCA scores (R2 = 0.08, ß = -0.18), while education exhibited a positive correlation (ß = 0.17, both p < 0.05). Only ≤23 o'clock sleepers exhibited a negative correlation between MANF levels and BMI (r = -0.35, p = 0.005). CONCLUSIONS: This study provides hitherto undocumented evidence of the potential protective effect of CSF MANF on cognitive impairment of late sleepers, which suggests that maintaining a regular sleep schedule may contribute to cognition and overall health, with MANF playing a role in this process.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial , Factores de Crecimiento Nervioso , Sueño , Humanos , Masculino , Adulto , Femenino , Estudios Transversales , Factor Neurotrófico Derivado de la Línea Celular Glial/líquido cefalorraquídeo , Factores de Crecimiento Nervioso/líquido cefalorraquídeo , Sueño/fisiología , Adulto Joven , Cognición/fisiología , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiología , Persona de Mediana Edad , Factores de Tiempo
3.
Mol Biol Rep ; 51(1): 654, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735002

RESUMEN

BACKGROUND: Cervical cancer is a common gynecologic malignant tumor, but the critical factors affecting cervical cancer progression are still not well demonstrated. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been widely recognized as an anti-inflammatory factor to regulate macrophage polarization. In this study, the effect and mechanism of MANF on cervical cancer were preliminarily explored. METHODS AND RESULTS: Kaplan-Meier curve was used to show the overall survival time of the involved cervical cancer patients with high and low MANF expression in cervical cancer tissues. MANF was highly expressed in peritumoral tissues of cervical carcinoma by using immunohistochemistry and western blot. MANF mRNA level was detected by using qRT-PCR. Dual-labeled immunofluorescence showed MANF was mainly expressed in macrophages of cervical peritumoral tissues. Moreover, MANF-silenced macrophages promoted HeLa and SiHa cells survival, migration, invasion and EMT via NF-κB signaling activation. The results of tumor formation in nude mice indicated MANF-silenced macrophages promoted cervical tumor formation in vivo. CONCLUSION: Our study reveals an inhibitory role of MANF in cervical cancer progression, indicating MANF as a new and valuable therapeutic target for cervical cancer treatment.


Asunto(s)
Macrófagos , Factores de Crecimiento Nervioso , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Células HeLa , Macrófagos/metabolismo , Ratones Desnudos , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/genética , FN-kappa B/metabolismo , Fenotipo , Transducción de Señal , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo
4.
BMC Psychiatry ; 24(1): 47, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216957

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is a debilitating health condition that has significant morbidity and mortality rates. Depression can be caused due to social, biological, environmental, psychological, and genetic factors. A few biological processes have been proposed as the pathophysiological pathways of depression. Neurotrophic factors and inflammatory cytokines have been linked to depression. Thus, we aimed to investigate the serum interleukin-33 (IL-33) and mesencephalic astrocyte-derived neurotrophic factor (MANF) in MDD patients and corresponding healthy controls (HCs). METHOD: This study involved the inclusion of 129 MDD patients and 125 HCs matched by sex and age. A psychiatrist evaluated the study participants following DSM-5 criteria. The severity of the illness was assessed utilizing the Hamilton Depression Rating Scale (Ham-D). The serum concentrations of IL-33 and MANF were measured using enzyme-linked immunosorbent assay (ELISA) kits. RESULTS: The mean serum levels of IL-33 were decreased (159.12 ± 6.07 pg/ml vs. 180.60 ± 8.64 pg/ml, p = 0.042), and the MANF levels were increased (5.40 ± 0.19 ng/ml vs. 4.46 ± 0.21 ng/ml, p = 0.001) in MDD patients when compared to HCs. CONCLUSIONS: The current study proposes that lower IL-33 and higher MANF serum levels are associated with MDD progression and depression severity. These biomarkers could be used as risk assessment tools for MDD. We recommend more investigation, including a significant population, to determine the precise function of IL-33 and MANF in depression.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Astrocitos/metabolismo , Estudios Transversales , Interleucina-33 , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo
5.
Acta Neuropathol Commun ; 12(1): 10, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229173

RESUMEN

Mesencephalic astrocyte-derived neurotrophic factor (MANF) has cytoprotective effects on various injuries, including cerebral ischemia, and it can promote recovery even when delivered intracranially several days after ischemic stroke. In the uninjured rodent brain, MANF protein is expressed almost exclusively in neurons, but post-ischemic MANF expression has not been characterized. We aimed to investigate how endogenous cerebral MANF protein expression evolves in infarcted human brains and rodent ischemic stroke models. During infarct progression, the cerebral MANF expression pattern both in human and rat brains shifted drastically from neurons to expression in inflammatory cells. Intense MANF immunoreactivity took place in phagocytic microglia/macrophages in the ischemic territory, peaking at two weeks post-stroke in human and one-week post-stroke in rat ischemic cortex. Using double immunofluorescence and mice lacking MANF gene and protein from neuronal stem cells, neurons, astrocytes, and oligodendrocytes, we verified that MANF expression was induced in microglia/macrophage cells in the ischemic hemisphere. Embarking on the drastic expression transition towards inflammatory cells and the impact of blood-borne inflammation in stroke, we hypothesized that exogenously delivered MANF protein can modulate tissue recovery processes. In an attempt to enhance recovery, we designed a set of proof-of-concept studies using systemic delivery of recombinant MANF in a rat model of cortical ischemic stroke. Intranasal recombinant MANF treatment decreased infarct volume and reduced the severity of neurological deficits. Intravenous recombinant MANF treatment decreased the levels of pro-inflammatory cytokines and increased the levels of anti-inflammatory cytokine IL-10 in the infarcted cortex one-day post-stroke. In conclusion, MANF protein expression is induced in activated microglia/macrophage cells in infarcted human and rodent brains, and this could implicate MANF's involvement in the regulation of post-stroke inflammation in patients and experimental animals. Moreover, systemic delivery of recombinant MANF shows promising immunomodulatory effects and therapeutic potential in experimental ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Ratas , Ratones , Animales , Accidente Cerebrovascular Isquémico/metabolismo , Ratas Sprague-Dawley , Encéfalo/metabolismo , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/uso terapéutico , Accidente Cerebrovascular/metabolismo , Infarto Cerebral/metabolismo , Inflamación/metabolismo
6.
World J Emerg Med ; 14(5): 386-392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908790

RESUMEN

BACKGROUND: To determine the protective role of mesencephalic astrocyte-derived neurotrophic factor (MANF) in regulating sepsis-associated acute kidney injury (S-AKI). METHODS: A total of 96 mice were randomly divided into the control group, control+MANF group, S-AKI group, and S-AKI+MANF group. The S-AKI model was established by injecting lipopolysaccharide (LPS) at 10 mg/kg intraperitoneally. MANF (200 µg/kg) was administered to the control+MANF and S-AKI+MANF groups. An equal dose of normal saline was administered daily intraperitoneally in the control and S-AKI groups. Serum and kidney tissue samples were obtained for biochemical analysis. Western blotting was used to detect the protein expression of MANF in the kidney, and enzyme-linked immunosorbent assay (ELISA) was used to determine expression of MANF in the serum, pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]). Serum creatinine (SCr), and blood urea nitrogen (BUN) were examined using an automatic biochemical analyzer. In addition, the kidney tissue was observed for pathological changes by hematoxylin-eosin staining. The comparison between two groups was performed by unpaired Student's t-test, and statistics among multiple groups were carried out using Tukey's post hoc test following one-way analysis of variance (ANOVA). A P-value <0.05 was considered statistically significant. RESULTS: At the early stage of S-AKI, MANF in the kidney tissue was up-regulated, but with the development of the disease, it was down-regulated. Renal function was worsened in the S-AKI group, and TNF-α and IL-6 were elevated. The administration of MANF significantly alleviated the elevated levels of SCr and BUN and inhibited the expression of TNF-α and IL-6 in the kidney. The pathological changes were more extensive in the S-AKI group than in the S-AKI+MANF group. CONCLUSION: MANF treatment may significantly alleviate renal injury, reduce the inflammatory response, and alleviate or reverse kidney tissue damage. MANF may have a protective effect on S-AKI, suggesting a potential treatment for S-AKI.

7.
Mol Neurobiol ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37989984

RESUMEN

The precise mechanism underlying sevoflurane-induced neurotoxicity and cognitive impairment remains largely unknown. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a neuroprotective factor that has shown promise in various neurological disorders. However, its impact on sevoflurane-induced alterations has not been investigated. Thus, the objective of this study was to examine the effect of MANF in mitigating sevoflurane-induced neurotoxicity in young mice. Anesthesia with 3% sevoflurane 2 h daily was administered to young mice on postnatal day (P) 3, 6 and 9. We also constructed mono-macrophage-specific MANF knockout (MKO) mice in the mechanistic studies. Finally, the recombinant human MANF (rhMANF, 20 µg) protein was intraperitoneally administrated to neonatal mice before the sevoflurane anesthesia and the cognitive function, levels of pro-inflammatory cytokine and synapse-associated protein PSD95, the status of neural apoptosis, microglia activation and oxidative stress in hippocampus of the mice were investigated. The sevoflurane anesthesia increased the expression of endogenous MANF in the hippocampus, especially in microglia. MKO upregulated the expression of tumor necrosis factor-α (TNF-α), accelerated the neural apoptosis and the activation of microglia in hippocampus in young mice. MANF reversed the sevoflurane-induced cognitive impairment and inhibited the upregulation of TNF-α, the neural apoptosis and the reduction of the postsynaptic density protein-95 (PSD95) induced by sevoflurane anesthesia. Also, pretreatment with MANF alleviated the sevoflurane-induced activation of microglia and oxidative stress. Our current results demonstrated that MANF ameliorated neurotoxicity induced by the sevoflurane anesthesia in young mice, and such protective effect was associated with inhibition of microglia activation and neuroinflammation.

8.
Acta Pharm Sin B ; 13(10): 4234-4252, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37799387

RESUMEN

The mesencephalic astrocyte-derived neurotrophic factor (MANF) has been recently identified as a neurotrophic factor, but its role in hepatic fibrosis is unknown. Here, we found that MANF was upregulated in the fibrotic liver tissues of the patients with chronic liver diseases and of mice treated with CCl4. MANF deficiency in either hepatocytes or hepatic mono-macrophages, particularly in hepatic mono-macrophages, clearly exacerbated hepatic fibrosis. Myeloid-specific MANF knockout increased the population of hepatic Ly6Chigh macrophages and promoted HSCs activation. Furthermore, MANF-sufficient macrophages (from WT mice) transfusion ameliorated CCl4-induced hepatic fibrosis in myeloid cells-specific MANF knockout (MKO) mice. Mechanistically, MANF interacted with S100A8 to competitively block S100A8/A9 heterodimer formation and inhibited S100A8/A9-mediated TLR4-NF-κB signal activation. Pharmacologically, systemic administration of recombinant human MANF significantly alleviated CCl4-induced hepatic fibrosis in both WT and hepatocytes-specific MANF knockout (HKO) mice. This study reveals a mechanism by which MANF targets S100A8/A9-TLR4 as a "brake" on the upstream of NF-κB pathway, which exerts an impact on macrophage differentiation and shed light on hepatic fibrosis treatment.

9.
Cell Mol Neurobiol ; 43(8): 3897-3913, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37751132

RESUMEN

This study employs bibliometric analysis through CiteSpace to comprehensively evaluate the status and trends of MANF (mesencephalic astrocyte-derived neurotrophic factor) research spanning 25 years (1997-2022). It aims to fill the gap in objective and comprehensive reviews of MANF research. MANF-related studies were extracted from the Web of Science database. MANF publications were quantitatively and qualitatively analyzed for various factors by CiteSpace, including publication volume, journals, countries/regions, institutions, and authors. Keywords and references were visually analyzed to unveil research evolution and hotspot. Analysis of 353 MANF-related articles revealed escalating annual publications, indicating growing recognition of MANF's importance. High-impact journals such as the International Journal of Molecular Sciences and Journal of Biological Chemistry underscored MANF's interdisciplinary significance. Collaborative networks highlighted China and the USA's pivotal roles, while influential figures and partnerships drove understanding of MANF's mechanisms. Co-word analysis of MANF-related keywords exposed key evolutionary hotspots, encompassing neurotrophic effects, cytoprotective roles, MANF-related diseases, and the CDNF/MANF family. This progression from basic understanding to clinical potential showcased MANF's versatility from cellular protection to therapy. Bibliometric analysis reveals MANF's diverse research trends and pathways, from basics to clinical applications, driving medical progress. This comprehensive assessment enriches understanding and empowers researchers for dynamic evolution, advancing innovation, and benefiting patients. Bibliometric analysis of MANF research. The graphical abstract depicts the bibliometric analysis of MANF research, highlighting its aims, methods, and key results.


Asunto(s)
Factores de Crecimiento Nervioso , Humanos , Factores de Crecimiento Nervioso/fisiología , Bibliometría , Investigación Biomédica/tendencias
10.
J Nutr Biochem ; 121: 109431, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37652307

RESUMEN

Necrotizing enterocolitis (NEC) is a leading cause of death in preterm infants. Compared to formula milk, breastfeeding protects against NEC. However, the composition of breast milk is quite complicated, and many immunological compositions remain unknown. In this study, we aimed to investigate the concentration of a secreted protein, Mesencephalic astrocyte-derived neurotrophic factor (MANF), in breastmilk and evaluate its immune-regulatory function in protecting the intestinal epithelial barrier. Our data indicated that MANF was secreted in human milk but could not be detected in infant formulas. More importantly, the amount of MANF in colostrum was higher than that in mature milk. We also clarified that MANF was mainly expressed in intestinal macrophages and was capable of inducing apoptosis and decreasing the inflammation of pro-inflammatory macrophages in both NEC intestinal tissues and BMDMs. Mechanismly, MANF protein significantly inhibited the apoptosis of intestinal epithelial cells and protected epithelial tight junctions through downregulation of the NF-κB pathway in pro-inflammatory macrophages. These results reveal the crucial function of human milk-derived MANF in intestinal macrophages, which contributes to downregulating the intestinal inflammatory response and protecting the homeostasis of intestinal epithelial cells. Our study not only demonstrates a potential mechanism underlying breastfeeding protective effects in NEC but also, more importantly, enables clinical translation, facilitating new strategies for the development of nutritional interventions in the prevention of NEC.

11.
BMC Neurol ; 23(1): 213, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268902

RESUMEN

OBJECTIVE: Mesencephalic astrocyte-derived neurotrophic factor (MANF) expressions are dramatically up-regulated in injured brain tissues, thereby conferring neurological protective effects. We intended to determine significance of serum MANF as a prognostic biomarker of intracerebral hemorrhage (ICH). METHODS: In this prospective, observational study done from February 2018 to July 2021, 124 patients with new-onset primary supratentorial ICH were consecutively enrolled. Also, a group of 124 healthy individuals constituted controls. Their serum MANF levels were detected using the Enzyme-Linked Immunosorbent Assay. National Institutes of Health Stroke Scale (NIHSS) and hematoma volume were designated as the two severity indicators. Early neurologic deterioration (END) was referred to as an increase of 4 or greater points in NIHSS scores or death at post-stroke 24 h. Post-stroke 90-day modified Rankin scale (mRS) scores of 3-6 was considered as a poor prognosis. Serum MANF levels were analyzed using multivariate analysis with respect to its association with stroke severity and prognosis. RESULTS: Patients, in comparison to controls, displayed markedly elevated serum MANF levels (median, 24.7 versus 2.7 ng/ml; P < 0.001), and serum MANF levels were independently correlated with NIHSS scores (beta, 3.912; 95% confidence interval (CI), 1.623-6.200; VIF = 2.394; t = 3.385; P = 0.002), hematoma volumes (beta, 1.688; 95% CI, 0.764-2.612; VIF = 2.661; t = 3.617; P = 0.001) and mRS scores (beta, 0.018; 95% CI, 0.013-0.023; VIF = 1.984; t = 2.047; P = 0.043). Serum MANF levels significantly predicted END and poor 90-day prognosis with areas under receiver operating characteristic curve at 0.752 and 0.787 respectively. END and prognostic predictive abilities were similar between serum MANF levels and NIHSS scores plus hematoma volumes (all P > 0.05). Combination of serum MANF levels with NIHSS scores and hematoma volumes had significantly higher prognostic capability than each of them (both P < 0.05). Serum MANF levels above 52.5 ng/ml and 62.0 ng/ml distinguished development of END and poor prognosis respectively with median-high sensitivity and specificity values. Using multivariate analysis, serum MANF levels > 52.5 ng/ml predicted END with odds ratio (OR) value of 2.713 (95% CI, 1.004-7.330; P = 0.042) and > 62.0 ng/ml predicted a poor prognosis with OR value of 3.848 (95% CI, 1.193-12.417; P = 0.024). Using restricted cubic spline, there was a linear correlation between serum MANF levels and poor prognosis or END risk (both P > 0.05). Nomograms were well established to predict END and a poor 90-day prognosis. Under calibration curve, such combination models were comparatively stable (using Hosmer & Lemeshow test, both P > 0.05). CONCLUSION: Increased serum MANF levels after ICH, in independent correlation with disease severity, independently distinguished risks of END and 90-day poor prognosis. Therefore, serum MANF may be a potential prognostic biomarker of ICH.


Asunto(s)
Astrocitos , Hemorragia Cerebral , Factores de Crecimiento Nervioso , Accidente Cerebrovascular , Humanos , Biomarcadores , Hemorragia Cerebral/sangre , Hemorragia Cerebral/diagnóstico , Hematoma , Pronóstico , Estudios Prospectivos , Factores de Crecimiento Nervioso/sangre
12.
Clin Chim Acta ; 545: 117370, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37137461

RESUMEN

BACKGROUND: Mesencephalic astrocyte-derived neurotrophic factor (MANF) is released under endoplasmic reticulum stress, thereby exerting neuroprotective effects. We determined whether serum MANF may be a prognostic biomarker of human severe traumatic brain injury (sTBI). METHODS: Serum MANF concentrations of 137 sTBI patients and 137 controls were quantified in this prospective cohort study. Patients with extended Glasgow outcome scale (GOSE) scores of 1-4 at post-traumatic 6 months were considered to have poor prognosis. Relationships between serum MANF concentrations and severity plus prognosis were investigated using multivariate analyses. Area under receiver operating characteristic curve (AUC) was calculated for reflecting prognostic efficiency. RESULTS: As compared to controls, there was a significant increase of serum MANF concentrations after sTBI (median, 18.5 ng/ml versus 3.0 ng/ml; P < 0.001), which was independently correlated with Glasgow coma scale (GCS) scores [ß, -3.000; 95% confidence interval (CI), -4.525--1.476; VIF, 2.216; P = 0.001], Rotterdam computed tomography (CT) scores (ß, 4.020; 95% CI, 1.446-6.593; VIF, 2.234; P = 0.002) and GOSE scores (ß, -0.056; 95% CI, -0.089--0.023; VIF, 1.743; P = 0.011). Serum MANF concentrations substantially distinguished risk of poor prognosis with AUC of 0.795 (95% CI, 0.718-0.859) and its concentrations > 23.9 ng/ml was predictive of poor prognosis with 67.7% sensitivity and 81.9% specificity. Serum MANF concentrations combined with GCS scores and Rotterdam CT scores displayed markedly higher prognostic predictive ability than each of them (all P < 0.05). Using restricted cubic spline, there was a linear correlation between serum MANF concentrations and poor prognosis (P = 0.256). Serum MANF concentrations > 23.9 ng/ml was independently associated with poor prognosis (odds ratio, 2.911; 95% CI, 1.057-8.020; P = 0.039). A nomogram was built, where serum MANF concentrations > 23.9 ng/ml, GCS scores and Rotterdam CT scores were integrated. Hosmer and Lemeshow test, calibration curve and decision curve analysis demonstrated such a prediction model was comparatively stable and was of relatively high clinical benefit. CONCLUSIONS: Substantially increased serum MANF concentrations after sTBI are highly correlated with traumatic severity and are independently predictive of long-term poor prognosis, suggesting that serum MANF may represent a useful prognostic biochemical marker of human sTBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Humanos , Astrocitos , Biomarcadores , Lesiones Traumáticas del Encéfalo/diagnóstico , Factores de Crecimiento Nervioso , Pronóstico , Estudios Prospectivos
13.
Cell Rep ; 42(2): 112066, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36739529

RESUMEN

Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-located protein with cytoprotective effects in neurons and pancreatic ß cells in vitro and in models of neurodegeneration and diabetes in vivo. However, the exact mode of MANF action has remained elusive. Here, we show that MANF directly interacts with the ER transmembrane unfolded protein response (UPR) sensor IRE1α, and we identify the binding interface between MANF and IRE1α. The expression of wild-type MANF, but not its IRE1α binding-deficient mutant, attenuates UPR signaling by decreasing IRE1α oligomerization; phosphorylation; splicing of Xbp1, Atf6, and Txnip levels; and protecting neurons from ER stress-induced death. MANF-IRE1α interaction and not MANF-BiP interaction is crucial for MANF pro-survival activity in neurons in vitro and is required to protect dopamine neurons in an animal model of Parkinson's disease. Our data show IRE1α as an intracellular receptor for MANF and regulator of neuronal survival.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Animales , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Neuronas Dopaminérgicas/metabolismo
14.
Biomedicines ; 11(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36830970

RESUMEN

BACKGROUND: Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) stress response protein that plays an important role in pancreatic functions. As both alcohol and ER stress response proteins are involved in the pathogenesis of pancreatitis, we sought to investigate the expression of MANF in chronic alcoholic pancreatitis (CAP) and chronic non-alcoholic pancreatitis (CNP). METHODS: A cohort of chronic pancreatitis tissues was gathered from routine surgical pathology (n = 77) and autopsy (n = 10) cases and tissue microarrays were created. Sampled tissues were reviewed and designated as representing CAP (n = 15), CNP (n = 58), or normal pancreatic tissue (NPT) (n = 27). MANF immunohistochemistry (IHC) and digital image analysis were performed to obtain an estimation of tissue fibrosis and an optical density (OD) of MANF IHC in ducts and acini for each case. The averaged values for these variables among histologic designations were compared. RESULTS: The amount of fibrous tissue of the combined CAP and CNP group (chronic alcoholic and non-alcoholic pancreatitis, CANP) exceeded that of the NPT group (70% vs. 34%, p < 0.0001). The MANF OD in ducts of CANP was significantly higher than that of NPT (0.19 vs. 0.10, p < 0.05). The MANF OD in ducts of CAP was significantly higher than that of CNP (0.27 vs. 0.17, p < 0.05). The MANF OD in acini of CAP was significantly lower than that in CNP (0.81 vs. 1.05, p < 0.05). Finally, there was a statistically significant positive relationship between the amount of fibrosis and MANF OD in ducts (p < 0.001). CONCLUSIONS: MANF expression was higher in ducts of CAP than CNP. In contrast, MANF expression in acini was lower in CAP than CNP and NPT. There was a positive correlation between fibrosis and MANF levels in the ducts.

15.
J Clin Pharmacol ; 63(5): 604-612, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36609957

RESUMEN

Recent publications regarding the role of mesencephalic astrocyte-derived neurotrophic factor (MANF) in various metabolic and degenerative disorders suggest that MANF is both a marker of disease and a possible therapeutic agent. We investigate the role of plasma MANF levels in patients in intensive care units (ICUs) receiving voriconazole (VCZ) therapy while also comparing MANF levels in healthy individuals. A single-center prospective study was conducted. The plasma MANF level in patients in ICU was found to have high interindividual variability and was significantly higher than that in healthy controls (P < .01). Compared with patients using VCZ only, patients using both VCZ and amikacin had 3-fold lower MANF concentrations (P < .05). The MANF concentrations also decreased when alkaline phosphatase (ALP) and serum creatinine levels were above the upper limits of the normal range (P < .05) and the estimated glomerular filtration rate (eGFR) was below the lower limit of the normal range (P < .01). Receiver operating characteristic curve analysis indicated that low MANF levels were associated with high ALP levels, high creatinine levels, and low eGFR. The cut-off value of MANF for ALP levels higher than 126 U/L was 0.35 ng/mL (area under curve, AUC = 0.62, 95%CI = 0.50-0.74, P = .044); for serum creatinine levels higher than 104 µmol/L, the cut-off value was 0.41 ng/mL (AUC = 0.74, 95%CI = 0.62-0.87, P = .001); and for eGFR below 80 mL/min, the cut-off value was 0.75 ng/mL (AUC = 0.70, 95%CI = 0.59-0.81, P = .002). Monitoring plasma MANF levels may be of value for clinical decision-making regarding the choice of antibiotics and the prediction of impaired liver function and renal function in patients admitted to an ICU.


Asunto(s)
Astrocitos , Factores de Crecimiento Nervioso , Humanos , Voriconazol/uso terapéutico , Astrocitos/metabolismo , Creatinina , Estudios Prospectivos , Factores de Crecimiento Nervioso/metabolismo
16.
Exp Gerontol ; 171: 112037, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36436758

RESUMEN

BACKGROUND: The excessive activation of the microglia leads to the release of inflammatory factors that contribute to neuronal cell loss and neurodegeneration in Parkinson's Disease (PD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) that belongs to a newly found neurotrophic factors (NTFs) family has been reported to promote neuronal survival in the PD models. However, the effects of the MANF on neuroinflammation in PD remain unclear. METHODS: AAV8-MANF virus was constructed to determine whether the high expression of MANF can protect the neuroinflammation-induced dopaminergic neurodegeneration in rats with 6-OHDA-induced PD. Rotarod performance test, immunofluorescent staining and western bolt were employed to evaluate the behavioral dysfunction, dopaminergic neurodegeneration, microglia activation, and signal activation. 6-OHDA treated SH-SY5Y cells and LPS treated BV-2 cells were used as the in vitro model for MANF neuroprotective and neuroinflammation mechanisms. Cell vitality and apoptosis were evaluated with MTT, CCK-8 and flow cytometric analysis. The AKT/GSK3ß-Nrf2 signaling and the TNF-α/IL6 expression were measured by Western Blot. RESULTS: Our findings indicated that the elevated MANF expression by the AAV8-MANF administration ameliorated the motor dysfunction and protected the dopaminergic neurons in the 6-OHDA treated rats. The upregulated CD11b in the rat SN caused by the 6-OHDA administration was significantly attenuated by the pretreatment of the AAV8-MANF. Furthermore, the levels of p-AKT, p-GSK3ß, BCL-2, and Nrf-2 were upregulated by the high expression of the MANF. Under the oxidative stress of the 6-OHDA, the MANF significantly reduced the apoptotic effect of the TNF-α on the SH-SY5Y cells. In the LPS treated BV-2 cells, the MANF reduced the production of the TNF-α and IL-6, via enhancing the Nrf-2, p-Akt, p-GSK3ß, and p-NF-κß level. CONCLUSIONS: These results suggested that the MANF prevented the dopaminergic neurodegeneration caused by the microglia activation in PD via activation of the AKT/GSK3ß-Nrf-2 signaling axis.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , Ratas , Animales , Factor de Necrosis Tumoral alfa , Factores de Crecimiento Nervioso/farmacología , Oxidopamina , Dopamina/metabolismo , Neuronas Dopaminérgicas
17.
Acta Pharmacol Sin ; 44(1): 157-168, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35655095

RESUMEN

Hepatic steatosis plays a detrimental role in the onset and progression of alcohol-associated liver disease (ALD). Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an evolutionarily conserved protein related to the unfolded protein response. Recent studies have demonstrated that MANF plays an important role in liver diseases. In this study, we investigated the role of MANF in ethanol-induced steatosis and the underlying mechanisms. We showed that the hepatic MANF expression was markedly upregulated in mouse model of ALD by chronic-plus-single-binge ethanol feeding. Moreover, after chronic-plus-binge ethanol feeding, hepatocyte-specific MANF knockout (HKO) mice displayed more severe hepatic steatosis and liver injury than wild-type (WT) control mice. Immunoprecipitation-coupled MS proteomic analysis revealed that arginosuccinate synthase 1 (ASS1), a rate-limiting enzyme in the urea cycle, resided in the same immunoprecipitated complex with MANF. Hepatocyte-specific MANF knockout led to decreased ASS1 activity, whereas overexpression of MANF contributed to enhanced ASS1 activity in vitro. In addition, HKO mice displayed unique urea cycle metabolite patterns in the liver with elevated ammonia accumulation after ethanol feeding. ASS1 is known to activate AMPK by generating an intracellular pool of AMP from the urea cycle. We also found that MANF supplementation significantly ameliorated ethanol-induced steatosis in vivo and in vitro by activating the AMPK signaling pathway, which was partly ASS1 dependent. This study demonstrates a new mechanism in which MANF acts as a key molecule in maintaining hepatic lipid homeostasis by enhancing ASS1 activity and uncovers an interesting link between lipid metabolism and the hepatic urea cycle under excessive alcohol exposure.


Asunto(s)
Hígado Graso , Hepatopatías Alcohólicas , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Astrocitos/metabolismo , Etanol/toxicidad , Hígado Graso/inducido químicamente , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones Noqueados , Factores de Crecimiento Nervioso/metabolismo , Proteómica , Urea/metabolismo
18.
Front Mol Biosci ; 9: 1080161, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533082

RESUMEN

Sulfatide is an abundant glycosphingolipid in the mammalian nervous system, kidney, trachea, gastrointestinal tract, spleen, and pancreas and is found in low levels in other tissues. Sulfatide is characterized by the presence of a sulfate group in the hydrophilic galactose moiety, with isoforms differing in their sphingosine base and the length, unsaturation, and hydroxylation of their acyl chain. Sulfatide has been associated with a variety of cellular processes including immune responses, cell survival, myelin organization, platelet aggregation, and host-pathogen interactions. Structural studies of protein-sulfatide interactions markedly advanced our understanding of their molecular contacts, key-interacting residues, orientation of the sulfatide in its binding site, and in some cases, sulfatide-mediated protein oligomerization. To date, all protein-sulfatide interactions are reported to display dissociation constants in the low micromolar range. At least three distinct modes of protein-sulfatide binding were identified: 1) protein binding to short consensus stretches of amino acids that adopt α-helical-loop-α-helical conformations; 2) sulfatide-bound proteins that present the sulfatide head group to another protein; and 3) proteins that cage sulfatides. The scope of this review is to present an up-to-date overview of these molecular mechanisms of sulfatide recognition to better understand the role of this glycosphingolipid in physiological and pathological states.

19.
Biomed Pharmacother ; 156: 113931, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36411620

RESUMEN

Hepatic fibrosis is a chronic inflammatory process with hepatic stellate cells (HSCs) activation. Peroxiredoxin 6 (PRDX6), a multifunctional protein, was reported to protect against liver injury induced by ischemia/reperfusion and high-fat diet. However, the effect of PRDX6 on hepatic fibrosis remains unclear. Male Sprague-Dawley rats were treated with carbon tetrachloride (CCl4) for 4-8 weeks to induce hepatic fibrosis. Here, we found that PRDX6 was mainly expressed in hepatocytes and significantly upregulated in CCl4-induced liver fibrosis. To clarify the impact of PRDX6 in hepatic fibrosis, we constructed a PRDX6 knockout (PRDX6-/-) rat model by using CRISPR/Cas9 method. We found that PRDX6 deficiency accelerated CCl4-induced liver fibrosis. Furthermore, we found that PRDX6 knockout promoted α-SMA expression in normal and fibrotic conditions, especially in hepatic fibrosis. PRDX6 knockout significantly upregulated Col1α1 and Col3α1 in fibrotic tissues. To explore the underlying mechanisms, we identified mesencephalic astrocyte-derived neurotrophic factor (MANF), a suppressor for hepatic fibrosis and NF-κB pathway, as an interacting protein of PRDX6. PRDX6 promoted MANF secretion by binding to the C-terminus of MANF, which did not depend on its peroxidase and PLA2 activities. Similarly, MANF increased PRDX6 protein level and promoted its secretion. Additionally, PRDX6 knockout increased p65 level either in cytoplasm or nuclei in HSCs under fibrotic condition. In conclusion, PRDX6 is an effective inhibitor for hepatic fibrosis through a non-enzymic dependent interacting with MANF, which will offer a potential target for hepatic fibrosis therapy.


Asunto(s)
Células Estrelladas Hepáticas , Peroxiredoxina VI , Ratas , Masculino , Animales , Células Estrelladas Hepáticas/metabolismo , Peroxiredoxina VI/genética , Peroxiredoxina VI/farmacología , Ratas Sprague-Dawley , Fibrosis , Cirrosis Hepática/metabolismo , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo
20.
Front Oncol ; 12: 900166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185184

RESUMEN

DLC1 (deleted in liver cancer-1) is downregulated or deleted in colorectal cancer (CRC) tissues and functions as a potent tumor suppressor, but the underlying molecular mechanism remains elusive. We found that the conditioned medium (CM) collected from DLC1-overexpressed SW1116 cells inhibited the migration of colon adenocarcinoma cells HCT116 and SW1116, but had no effect on proliferation, which suggested DLC1-mediated secretory components containing a specific inhibitor for colon adenocarcinoma cell migration. Analysis by mass spectrometry identified mesencephalic astrocyte-derived neurotrophic factor (MANF) as a candidate. More importantly, exogenous MANF significantly inhibited the migration of colon adenocarcinoma cells HCT116 and SW1116, but did not affect proliferation. Mechanistically, DLC1 reduced the retention of MANF in ER by competing the interaction between MANF and GRP78. Taken together, these data provided new insights into the suppressive effects of DLC1 on CRC, and revealed the potential of MANF in the treatment of CRC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA