Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.001
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Ethnopharmacol ; : 118888, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368758

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tripterygii wilfordii Radix, (TW) as a toxic herbal medicine, is the root of Tripterygium wilfordii Hook. F. , which commonly used in China for the treatment of rheumatoid arthritis and autoimmune diseases, but its severe toxicity, particularly hepatotoxicity, significantly impacts its clinical application. AIM OF THE STUDY: The hepatotoxicity and its molecular mechanism of 70% TW ethanol extract (TWE) on male mice were demonstrated based on metabolomics, network pharmacological analysis and experimental validation. MATERIALS AND METHODS: The toxic and bioactive ingredients in TWE were quantitative analyzed by Triple quadrupole (TQ) mass spectrometry method. The liver organ index, as well as the liver function indexes AST and ALT were evaluated after administering different doses of TWE for 24 hours, and a pathological change was analyzed in liver tissue. Non-targeted metabolomics using UPLC-QTOF/MS was performed on both the plasma and liver tissue samples in combination with network toxicology to screen for key targets related to TWE toxicity in the liver. These key targets including caspase 3, NF-κB, TLR4, TNF-α, NQO1, and Bcl2 were subsequently verified through Western blotting experiments. RESULTS: The six toxic and active ingredients of raphenolactone, ranolactone, triptolide tripterine, wilforlide A, demethylzeylasterain in TWE for the contents of 0.709, 1.408, 0.353, 0.354, 0.882, 0.227 mg.g-1, respectively. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels increased and liver index decreased after administration of TWE for 24hr. Pathological analysis showed that TWE could produce toxicity to mouse liver, and its toxicity was dose-dependent. In the high-dose group, TW-D (11.23g/kg) and TW-E (22.46g/kg) caused a large amount of rupture in mouse liver nucleus and a large amount of inflammatory infiltration at the same time. Furthermore, 63 metabolites in plasma and 89 metabolites in the liver tissue were identified. The main metabolic pathways involved glycerol phospholipid metabolism, glycosylphosphatidylinositol-ether lipid metabolism, fatty acid metabolism, sphingomyelin metabolism, and ether lipid metabolism in plasma and liver tissue. Through analysis of the top 10 correlated targets, 6 out of the top 10 selected target proteins exhibited consistent expression patterns with liver injury. The levels of Bcl2 and NQ-O1 decreased with increasing exposure dose. The expression of Caspase 3, NF-κB, TLR4, and TNF-α increased with increasing dose. These findings suggest that protein expression has a regulatory effect at different doses groups compared to the control group.These findings suggest a regulatory effect of protein expression in different dose groups compared to the control group. CONCLUSION: The hepatotoxic effects of TWE can increase ALT and AST levels in plasma, leading to hepatic oxidative damage and inflammatory response. The toxic mechanisms that produce are closely related to the regulating of the abnormal metabolites in plasma and liver tissue. Furthermore, the regulating the expression levels of targeted proteins of TNF-α, NF-κB, Caspase 3, NQ-O1, and Bcl2 were confirmed by examining the liver tissue. These data clearly elucidate the toxicity mechanism of TW, laying the foundation for ensuring the quality and safety of drugs.

2.
J Ethnopharmacol ; : 118879, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39369923

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: UC, characterized by chronic inflammation primarily affecting the colon and rectum, follows a protracted relapsing course marked by inflammation and an abundance of free radicals at the onset. Hudichangrong Capsule (HDCRC), a traditional Chinese medicinal formula, has long been employed in the treatment of UC and chronic bacillary dysentery, exhibiting positive therapeutic outcomes and a high rate of cure in clinical practice. AIM OF THE STUDY: The precise mechanism underlying its efficacy for UC remains elusive. Our objective was to investigate the anti-inflammatory effect and underlying mechanisms of HDCRC on TNBS-induced UC. MATERIALS AND METHODS: Here, we introduced HDCRC and induced UC using TNBS. SPF BALB/c mice were divided into 6 groups as follows: control group, colitis model group, colitis treated with sulfasalazine (400mg/kg) group, and colitis treated with HDCRC (156, 312, and 624mg/kg) groups. To assess the effects of HDCRC on colitis, we measured body weight loss, disease activity index (DAI), colon length, tissue damage, degree of inflammation, immune capacity, and oxidative stress. Additionally, we evaluated the TLR-4/MyD88 pathway and its downstream signaling using immunohistochemistry, real-time qPCR, and Western blot. Network pharmacology was used for main target prediction. 16s rRNA was employed for gut microbiota detechtion and UPLC-QTOF-MS was used for its and its metabonomics. RESULTS: HDCRC significantly slowed weight loss, ameliorated DAI, restored colon length, alleviated TNBS-induced tissue damage. It exerted the therapeutic effects via reducing oxidative stress, restoring immune balance, normalizing the inflammatory mediator levels and restoring intestinal barrier integrity. Furthermore, HDCRC mainly alleviate UC via suppressing the TLR-4/MyD88 pathway and its downstream signaling. The key components of the downstream pathway, including TLR-4, MyD88, NF-κB p65, ERK, p-JNK, p38, p-JAK1, JAK1, p-STAT3, and STAT3, were improved, thereby ameliorating the TNBS-induced injury. In addition, HDCRC could regulate gut microbiota (eg. Erysipelaloclostridium,etc.) and its metabonomics (eg. Vitamin B6 metabolism) in UC mice. CONCLUSIONS: In conclusion, HDCRC exerts a protective effect against TNBS-induced UC in mice by inhibiting the TLR-4/MyD88 pathway and its downstream signaling, and partially JAK1/STAT3, suppressing oxidative stress, regulating immunity, restoring intestinal barrier integrity, and regulating gut microbiota and its metabonomics.

3.
J Anim Sci ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39315571

RESUMEN

Blood samples are easily obtained from sheep. Therefore, blood analysis can be a convenient method for evaluating reproductive traits in sheep by detecting genetic and metabolic changes in the ovary. By combining 167 RNA sequencing (RNA-seq) data and 60 untargeted metabolomics data, this study analyzed the relationship between genes and metabolites in the ovary and blood. The conjoint KEGG enrichment analysis enriched glutathione metabolic pathways both in the ovary and blood. This finding provides an explanation for possible glutathione metabolic processes in the ovary with metabolite exchange in the blood. The metabolite-gene-disease interaction network revealed a correlation between the expression of certain Bardet-Biedl syndrome (BBS) family genes in the ovary and blood. This indicates that BBS family genes, such as BBS10 in sheep blood, could be a potential biomarker for BBS. We investigated the relationship between BBS10 gene expression in the ovary and lambing numbers using whole-genome sequencing data from 450 ewes. Our findings suggest that g.112314188C > G may lead to decreased litter size in ewes carrying the FecB gene. These SNPs could be potential molecular markers for breeding sheep.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39306868

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovitis, which can lead to joint deformity. Acupuncture treatment stimulates specific acupoints to adjust qi and blood function, relieving joint inflammation and pain. METHODS: Ultra-high performance liquid chromatography-mass spectrometry (UPLC-QTOF-MS) was utilized for non-targeted metabolomics analysis of plasma samples from the blank group, Adjuvant-Induced Arthritis (AIA) model mice model mice group, and acupuncture group. Metabolite hierarchical clustering analysis, multivariate statistical analysis, standardized processing, principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and other methods were employed to identify targeted metabolites affected by acupuncture treatment in AIA mice. The related metabolic pathways were analyzed using KEGG pathway. RESULTS: Histopathological results demonstrated that acupuncture at Zusanli point (ST 36) significantly improved the inflammatory response in AIA mice. The PCA score plot indicated relatively close sample clustering within each group with significant differences observed between the four groups, confirming successful establishment of the AIA animal model with metabolic disorders occurring. Acupuncture treatment effectively corrected these metabolic disorders. Plasma metabolomics identified a total of 10 differential metabolites primarily associated with arachidonic acid and pentose phosphate metabolic pathways. CONCLUSIONS: Acupuncture at ST36 can significantly improve the inflammatory response in AIA mice through modulation of arachidonic acid and pentose phosphate metabolic pathways.

5.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4207-4219, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39307759

RESUMEN

This article analyzed the mechanism of Huangqi Simiao Decoction(HSD) for the treatment of type 2 diabetes mellitus(T2DM). The component targets of HSD and the related disease targets of T2DM were screened through network pharmacology. The protein-protein interaction(PPI) network of intersecting targets and the drug-component-intersecting target network were constructed to screen the potential active ingredients and targets. Molecular docking was performed using AutoDock Vina software to verify the interaction between potential components and core targets. The serum was tested by ultra performance liquid chromatography-tandem mass spectrometry, and multivariate statistical analyses, such as principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA), were used to search for the differential metabolites and related metabolic pathways of each group by combining with the MetaboAnalyst database. The same metabolic pathways were analyzed by combining the screened differential metabolites with the intersecting targets screened by network pharmacology. Network pharmacology showed that the nine core components of HSD for the treatment of T2DM were quercetin, kaempferol, stigmasterol, baicalein, ß-sitosterol, flavodoxin, canthaxanthin, canthaxanthin, berberine, and berberine, and the five core targets included AKT1, TP53, TNF, IL6, and VEGFA. Molecular docking showed that the core components bound well to the target genes. Metabolomics showed that a total of 112 common differential metabolites were identified, of which 88 metabolites exhibited increased concentration and 24 metabolites decreased concentration after treatment with HSD. Enrichment analysis showed that HSD regulated the body metabolism of patients with T2DM, mainly related to seven metabolic pathways, such as amino acid metabolism and tricarboxylic acid cycle. The joint analysis of metabolomics and network pharmacology showed that both involved histidine metabolism, arginine and proline metabolic pathways. This study suggests that HSD has a good efficacy for T2DM. Based on the combined analysis of metabolomics and network pharmacology, it was found that the mechanism may be that the pharmacodynamic bases of quercetin, kaempferol, and stigmasterol in HSD enhance the effects on histidine metabolism, arginine and proline metabolic pathways by modulating a variety of metabolites, which provides the basis for further prevention and treatment of T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Metabolómica , Farmacología en Red , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Simulación del Acoplamiento Molecular
6.
Front Pharmacol ; 15: 1436017, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39318776

RESUMEN

The ancient Chinese medicinal formula, Dayuan Yin (DYY), has a long history of use in treating respiratory ailments and is shown to be effective in treating acute infectious diseases. This study aims to explore how DYY may impact intestinal flora and metabolites induced by acute lung injury (ALI). ALI rats were induced with lipopolysaccharide (LPS) to serve as models for assessing the anti-ALI efficacy of DYY through multiple lung injury indices. Changes in intestinal microflora were assessed via 16SrRNA gene sequencing, while cecum contents were analyzed using non-targeted metabonomics. Differential metabolites were identified through data analysis, and correlations between metabolites, microbiota, and inflammatory markers were examined using Pearson's correlation analysis. DYY demonstrated a significant improvement in LPS-induced lung injury and altered the composition of intestinal microorganisms, and especially reduced the potential harmful bacteria and enriched the beneficial bacteria. At the gate level, DYY exhibited a significant impact on the abundance of Bacteroidota and Firmicutes in ALI rats, as well as on the regulation of genera such as Ruminococcus, Lactobacillus, and Romboutsia. Additionally, cecal metabonomics analysis revealed that DYY effectively modulated the abnormal expression of 12 key metabolic biomarkers in ALI rats, thereby promoting intestinal homeostasis through pathways such as purine metabolism. Furthermore, Pearson's analysis indicated a strong correlation between the dysregulation of intestinal microbiota, differential metabolites, and inflammation. These findings preliminarily confirm that ALI is closely related to cecal microbial and metabolic disorders, and DYY can play a protective role by regulating this imbalance, which provides a new understanding of the multi-system linkage mechanism of DYY improving ALI.

7.
NMR Biomed ; : e5257, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229964

RESUMEN

This study aimed to investigate the metabolic changes in the kidneys in a murine adenine-diet model of chronic kidney disease (CKD). Kidney fibrosis is the common pathological manifestation across CKD aetiologies. Sustained inflammation and fibrosis cause changes in preferred energy metabolic pathways in the cells of the kidney. Kidney cortical tissue from mice receiving a control or adenine-supplemented diet for 8 weeks (late inflammation and fibrosis) and 12 weeks (8 weeks of treatment followed by 4 weeks recovery) were analysed by 2D-correlated nuclear magnetic resonance spectroscopy and compared with histopathology and biomarkers of kidney damage. Tissue metabolite and lipid levels were assessed using the MestreNova software. Expression of genes related to inflammation, fibrosis, and metabolism were measured using quantitative polymerase chain reaction. Animals showed indicators of severely impaired kidney function at 8 and 12 weeks. Significantly increased fibrosis was present at 8 weeks but not in the recovery group suggesting some reversal of fibrosis and amelioration of inflammation. At 8 weeks, metabolites associated with glycolysis were increased, while lipid signatures were decreased. Genes involved in fatty acid oxidation were decreased at 8 weeks but not 12 weeks while genes associated with glycolysis were significantly increased at 8 weeks but not at 12 weeks. In this murine model of CKD, kidney fibrosis was associated with the accumulation of triglyceride and free lactate. There was an up-regulation of glycolytic enzymes and down-regulation of lipolytic enzymes. These metabolic changes reflect the energy demands associated with progressive kidney disease where there is a switch from fatty acid oxidation to that of glycolysis.

8.
Clin Med Insights Endocrinol Diabetes ; 17: 11795514241282253, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39328906

RESUMEN

Objectives: Plasma bile acid (BA) has been widely studied as pathophysiological factors in chronic liver disease. But the changes of plasma BA level in lean metabolic dysfunction-associated fatty liver disease (MAFLD) remains unclear. Here, we clarified the BA metabolic characteristics of lean MAFLD and explored its significance and mechanism as a marker. Methods: We employed ultra-performance liquid chromatography tandem mass spectrometry based on BA metabonomics to characterize circulating bile acid in lean MAFLD patients. Explore its significance as serum biomarkers by further cluster analysis, functional enrichment analysis, and serum concentration change analysis of differential BAs. Evaluation of diagnostic value of differential BAs by ROC analysis. Results: A total of 65 BAs were detected and 17 BAs were identified which showed different expression in the lean-MAFLD group compared with the normal group. Functional annotation and enrichment analysis of KEGG and HMDB showed that differential BAs were mainly related to bile acid biosynthesis, bile secretion, cholesterol metabolism, and familial hypercholangitis, involving diseases including but not limited to cirrhosis, hepatocellular carcinoma, chronic active hepatitis, colorectal cancer, acute liver failure, and portal vein obstruction. ROC analysis displayed that the 6 BA metabolites (GCDCA-3S, GUDCA-3S, CDCA-3S, NCA, TCDCA, and HDCA) exhibited well differential diagnostic ability in discriminating between lean MAFLD patients and normal individuals with an area under the curve (AUC) ⩾0.85. Conclusions: We delineated the characteristics of BA level in patients with lean MAFLD, and identified 6 potential plasma BA biomarkers of lean MAFLD.


Analysis of serum bile acid profile characteristics and identification of new biomarkers in fatty liver disease accompanied by metabolic abnormalities in people with normal weight based on the technology of high-resolution mass spectrometry Objectives: The physique of lean MAFLD patient is normal or even leaner. They often does not pay enough attention to the onset of fatty liver disease. Plasma bile acids (BAs) have been extensively studied as pathophysiological actors in chronic liver disease. But the changes of plasma BA level in fatty liver disease accompanied by metabolic abnormalities in people with normal weight remains unclear. Here, we clarified the BA metabolic characteristics of lean MAFLD and explored its significance and mechanism as a marker. Methods: we employed an advanced mass spectrometry technology to characterize circulating bile acid in lean lean MAFLD patients. To explore its significance as a marker by bioinformatics methods, such as cluster analysis, functional enrichment analysis, and relative content change analysis of differential BAs. Evaluation diagnostic accuracy and determine threshold points of BAs by Receiver Operating Characteristic analysis. Results: A total of 65 BAs were detected and 17 BAs were identified which showed different expression in the lean MAFLD group compared with the normal group. Bioinformatics analysis showed that differential BAs were mainly related to bile acid biosynthesis, bile secretion, cholesterol metabolism, and familial hypercholangitis, involving diseases including but not limited to cirrhosis, hepatocellular carcinoma, chronic active hepatitis, colorectal cancer, acute liver failure, and portal vein obstruction. ROC analysis displayed that the six BA metabolites (GCDCA-3S, GUDCA-3S, CDCA-3S, NCA, TCDCA and HDCA) exhibited well differential diagnostic ability in discriminating between lean MAFLD patients and normal individuals with an area under the curve (AUC) ≥ 0.85. Conclusions: We delineated the characteristics of BA level in patients with lean MAFLD, and identified six potential plasma BA biomarkers of lean MAFLD. This strategy provided broad clinical application prospects for disease assessment.

9.
Molecules ; 29(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39275122

RESUMEN

The objective of this study was to enhance the membrane permeability and anticancer effectiveness of (20S)-protopanaxadiol (PPD) by introducing triphenylphosphonium into the OH group at the C-3 site. This study shows that the anti-proliferation activity of CTPPPPD, with an IC50 value of 1.65 ± 0.10 µmol/L, was 33-times better than that of PPD (with an IC50 value of 54.56 ± 4.56 µmol/L) and superior to that of cisplatin (with an IC50 value of 1.82 ± 0.25 µmol/L) against A549 cells. Biological examinations suggested that CTPPPPD treatment reduced the growth rate of A549 cells, increased the permeability of cell membranes, and changed the structure of chromosomal DNA in a concentration-dependent manner. Annexin V/PI assay and flow cytometry were employed to detect the effect of CTPPPPD on the apoptosis of A549 cells. The results showed that CTPPPPD could induce the apoptosis of A549 cells, and the apoptosis rate of A549 cells treated with 0, 1.0, 2.0, and 4.0 µM of CTPPPPD for 24 h was 0%, 4.9%, 12.7%, and 31.0%, respectively. The integration of transcriptomics and metabolomics provided a systematic and detailed perspective on the induced antitumor mechanisms. A combined analysis of DEGs and DAMs suggested that they were primarily involved in the central carbon metabolism pathway in cancer, as well as the metabolism of aminoacyl-tRNA biosynthesis, alanine, aspartate, and glutamate. Central carbon metabolism in cancer-related genes, i.e., SLC16A3, FGFR3, LDHA, PGAM1, and SLC2A1, significantly reduced after treatment with CTPPPPD. In particular, the dominant mechanism responsible for total antitumor activity may be attributed to perturbations in the PI3K-AKT, MAPK, and P53 pathways. The findings derived from transcriptomics and metabolomics were empirically confirmed through q-PCR and molecular docking. Further analyses revealed that CTPPPPD could be a promising lead for the development of protopanaxadiol for non-small-cell lung cancer (NSCLC) drugs.


Asunto(s)
Antineoplásicos , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Metabolómica , Sapogeninas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Sapogeninas/farmacología , Sapogeninas/química , Apoptosis/efectos de los fármacos , Metabolómica/métodos , Antineoplásicos/farmacología , Antineoplásicos/química , Células A549 , Proliferación Celular/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica
10.
Genes Nutr ; 19(1): 17, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182019

RESUMEN

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver ailment that can lead to serious conditions such as cirrhosis and hepatocellular carcinoma. Hepatic Nogo-B regulates glucose and lipid metabolism, and its inhibition has been shown to be protective against metabolic syndrome. Increasing evidence suggests that imbalances in the gut microbiota (GM) and lipid metabolism disorders are significant contributors to NAFLD progression. Nevertheless, it is not yet known whether Nogo-B can affect NAFLD by influencing the gut microbiota and metabolites. Hence, the aim of the present study was to characterize this process and explore its possible underlying mechanisms. METHODS: A NAFLD model was constructed by administering a high-fat diet (HFD) to Nogo-B-/- and WT mice from the same litter, and body weight was measured weekly in each group. The glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to assess blood glucose levels. At the end of the 12-week period, samples of serum, liver, and intestinal contents were collected and used for serum biochemical marker and inflammatory factor detection; pathology evaluation; and gut microbiome and metabolomics analysis. Spearman's correlation analysis was performed to determine possible correlations between differential gut microbiota and differential serum metabolites between groups. RESULTS: Nogo-B deficiency attenuated the effects of the HFD, including weight gain, liver weight gain, impaired glucose tolerance, hepatic steatosis, elevated serum lipid biochemicals levels, and liver function. Nogo-B deficiency suppressed M1 polarization and promoted M2 polarization, thus inhibiting inflammatory responses. Furthermore, Nogo-B-/--HFD-fed mice presented increased gut microbiota richness and diversity, decreased Firmicutes/Bacteroidota (F/B) ratios, and altered serum metabolites compared with those of WT-HFD-fed mice. During analysis, several differential gut microbiota, including Lachnoclostridium, Harryflintia, Odoribacter, UCG-009, and unclassified_f_Butyricoccaceae, were screened between groups. These microbiota were found to be positively correlated with upregulated purine metabolism and bile acid metabolites in Nogo-B deficiency, while they were negatively correlated with downregulated corticosterone and tricarboxylic acid cyclic metabolites in Nogo-B deficiency. CONCLUSION: Nogo-B deficiency delayed NAFLD progression, as demonstrated by reduced hepatocellular lipid accumulation, attenuated inflammation and liver injury, and ameliorated gut microbiota dysbiosis and metabolic disorders. Importantly, Odoribacter was strongly positively correlated with ALB and taurodeoxycholic acid, suggesting that it played a considerable role in the influence of Nogo-B on the progression of NAFLD, a specific feature of NAFLD in Nogo-B-/- mice. The regulation of bile acid metabolism by the gut microbiota may be a potential target for Nogo-B deficiency to ameliorate NAFLD.

11.
J Pharm Biomed Anal ; 251: 116442, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39197206

RESUMEN

Polygala tenuifolia is a well-known traditional Chinese medicine. Polygala tenuifolia polysaccharide (PTP), as one of its main active ingredients, has excellent neuroprotective activity. PTP improved the disruption of the endogenous metabolites and gut microbiota caused by Alzheimer's disease (AD). Specifically, untargeted metabolomics results showed that 19 metabolites such as leukotriene B4, vanylglycol, and cer(d18:1/18:0) are significantly reduced, and 2 metabolites are elevated. It was significantly enriched in Sphingolipid metabolism, Glycerophospholipid metabolism, Tyrosine metabolism, and Arachidonic acid metabolism. Meanwhile, 16S rDNA analysis showed that PTP treatment significantly increased the relative abundance of bacteria such as Alistipes, Lachnospiraceae_NK4A136_group, and Lachnospiraceae_UCG-006. In addition, Spearman analysis showed that significant changes in gut microbiota were closely related to differential endogenous metabolites.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Metabolómica , Polygala , Polisacáridos , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Polygala/química , Ratones , Polisacáridos/farmacología , Metabolómica/métodos , Masculino , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/microbiología , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/metabolismo , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Medicamentos Herbarios Chinos/farmacología , ARN Ribosómico 16S/genética
12.
Biomed Chromatogr ; : e5969, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126348

RESUMEN

This study aimed to explore the pharmacodynamics and mechanisms of different processing methods of Ligustrum lucidum Ait. (LLA) in addressing kidney-yin deficiency (KYD). Forty-eight Sprague-Dawley rats were divided into eight groups based on their weight. The KYD model was established by intragastric administration of levothyroxine sodium. Each group was administered the corresponding treatment for 15 consecutive days. The general condition of the rats during the treatment period was observed. In addition, the levels of cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), and the ratio of cAMP to cGMP in the serum of rats from different groups were measured. Serum samples were analyzed using the ultra-performance liquid chromatography (UPLC)-Orbitrap Fusion MS technique for metabolomics analysis. Compared with the model group, the general condition of the rats in the wine-steamed L. lucidum group (WL) and salt-steamed L. lucidum group (SSL) groups showed significant improvement. The serum levels of cAMP, cGMP, and the cAMP-to-cGMP ratio tended to return to normal. Metabolic analysis identified 38 relevant biomarkers and revealed 3 major metabolic pathways: phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism; and sphingolipid metabolism. The different processing methods of LLA demonstrated therapeutic effects on KYD in rats, likely related to the restoration of disturbed metabolism by adjusting the levels of endogenous metabolites in the kidney. The SSL demonstrated significantly superior effects compared with the other four types of LLA processed products.

13.
Food Res Int ; 193: 114858, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39160054

RESUMEN

Noni fruit is renowned for its abundance of bioactive compounds. Drying is an important method for processing functional products derived from noni. However, limited information exists on how drying methods affect the active metabolite profiles of noni fruit. This study investigated the impact of four common drying methods, including hot-air drying (HAD), vacuum freeze drying (VFD), microwave drying (MWD), and far infrared drying (FID), on the physicochemical indexes, bioactive components, and functional properties of dried noni fruit slices using targeted and untargeted metabonomics analysis. The results showed significant variations in appearance, water migration, and microstructure of dried noni fruit slices subjected to the four drying methods. VFD treatment yielded better dried noni fruit products when compared to other drying methods. The superiority of VFD treatment was due to its uniform stratification, reduced collapse, better retention of bioactive components and antioxidants, and higher enzyme inhibitory rates. These findings suggest that VFD method is ideal for obtaining premium bioactive profiles and maintaining the biological activity of noni fruit.


Asunto(s)
Desecación , Manipulación de Alimentos , Liofilización , Frutas , Morinda , Morinda/química , Frutas/química , Frutas/metabolismo , Desecación/métodos , Manipulación de Alimentos/métodos , Antioxidantes/metabolismo , Antioxidantes/análisis , Metabolómica/métodos , Microondas , Metaboloma
14.
Transl Cancer Res ; 13(6): 2721-2734, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988914

RESUMEN

Background: Breast cancer (BC) has the highest incidence rate among female malignant tumors. Adjuvant chemotherapy is commonly used to reduce micrometastasis in postoperative patients. However, monitoring the efficacy of chemotherapy in BC is a major challenge in clinical practice. In this study, 1H nuclear magnetic resonance (NMR) metabonomics was performed to explore the serum metabolic characteristics of BC patients before and after adjuvant chemotherapy. Methods: In this study, we collected serum samples from 51 healthy controls and 61 BC patients before and after chemotherapy for 1H NMR metabolomic analysis, and tested the performance of each metabolite and combination segment by the receiver operating characteristic (ROC) curves. Results: Nine metabolites, namely glutamine, citrate, creatine, glycerophosphatidylcholine/phosphatidylcholine, glycine, 1-methylhistidine, lactate, pyruvate and formate had significant changes in BC patients before chemotherapy compared with healthy controls. Lactate, pyruvate, 1-methylhistidine and formate were found to be inversely regulated by chemotherapy. ROC analysis showed that a combination of the four metabolites had good prediction for chemotherapy efficacy with area under the curve of 0.958, sensitivity of 98.36% and specificity of 91.30%. There was no significant correlation between chemotherapy-related metabolites and clinical indicators of cancer patients, indicating that they can be used to evaluate the chemotherapy efficacy of patients with different clinical indicators. Conclusions: Effectively, dynamic and non-invasive metabolic markers for the evaluation of the efficacy of chemotherapy were identified in this study.

15.
Front Plant Sci ; 15: 1420231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040510

RESUMEN

Baccaurea ramiflora Lour. is a new kind of underutilized wild fruit tree; the metabolic reasons for its fruit flavor changes are not yet clear. In this study, the pink flesh of this excellent tasting fruit (BR) was used to reveal the metabolic causes of taste variations through five developmental stages. We identified 154 common differential metabolites of different developmental stages based on non-targeted metabolomics analysis. The accumulation of sugar and fatty acids increased significantly after 73 days, while citric acid decreased significantly. Flesh color accumulation mainly occurred 53 days ago, and vitamin accumulation occurred after 93 days. Interestingly, L-sorbose and 5-hydroxyindole-3-acetic acid were positively correlated with the sugar-acid ratio but negatively correlated with titratable acids. It indicated that L-sorbose and 5-hydroxyindole-3-acetic acid may be taste biomarkers of BR B. ramiflora. The results provided new metabolic lines of evidence for the taste variation during the ripening process of B. ramiflora.

16.
Ecotoxicol Environ Saf ; 282: 116734, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024951

RESUMEN

Hepatic diseases pose a significant threat to community health, impacting the quality of life and longevity of millions worldwide. Despite revolutionary advancements in treatment, liver diseases remain a pressing issue, necessitating the development of more effective therapeutic approaches. Here, we conducted a comprehensive multi-omics analysis to investigate the underlying mechanism of Swertiamarin in alleviating hepatic injuries induced by CCl4 in mice. We divided 100 Kunming mice into five groups: RC (control), RM (CCl4), RD (15 mg/Kg Swertiamarin), RZ (30 mg/Kg Swertiamarin), and RG (60 mg/Kg Swertiamarin). Animals in groups RD, RZ, and RG received daily Swertiamarin via gavage, while those in groups RM, RD, RZ, and RG were treated with CCl4 solution intraperitoneally every four days, nine times in total. Our findings revealed that mice in the RM group exhibited slightly lower average weights compared to other groups, along with significantly higher liver weight (p<0.0001) and liver index (p<0.0001). Pathological analysis indicated liver damage characterized by cell degeneration, inflammatory cell infiltration, and hepatic fibrosis in the CCl4-induced group. In contrast, Swertiamarin supplementation mitigated these effects, reducing denatured cells, inflammatory cells, and collagenous fibers in the liver. Serum analysis showed elevated levels of TNF-α (p<0.001), IL-6 (p<0.05), ALT (p<0.001), AST (p<0.0001), MDA (p<0.001), and Hyp (p<0.001) in CCl4-induced animals, along with lower levels of T-AOC (p<0.001), GSH-px (p<0.0001), SOD (p<0.001), and CAT (p<0.01). Microbiome analysis revealed significant differences among groups, with pathogenic taxa such as Arthrinium and Aureobasidium, and probiotic Saccharomyces showing notable variations. Metabolomics analysis identified numerous differentially abundant metabolites, with Swertiamarin-treated animals exhibiting distinct profiles. Our findings highlight the potential of Swertiamarin ameliorating CCl4-induced liver toxicity through modulation of antioxidant capacity, inflammatory response, gut microbiota, and metabolites. These insights may inform the development of novel therapies for liver injury.


Asunto(s)
Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas , Glucósidos Iridoides , Hígado , Pironas , Animales , Pironas/farmacología , Glucósidos Iridoides/farmacología , Ratones , Hígado/efectos de los fármacos , Hígado/patología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Masculino , Metabolómica , Estrés Oxidativo/efectos de los fármacos , Multiómica , Animales no Consanguíneos
17.
Heliyon ; 10(12): e32790, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39005925

RESUMEN

Ulcerative colitis (UC), an inflammatory disease affecting the colon and rectal mucosa, is characterized by chronic and heterogeneous behavior of unknown origin. The primary cause of UC is chronic inflammation, which is closely linked to the development of colorectal cancer. Sonchus arvensis L. (SAL), a plant consumed worldwide for its nutritional and medicinal properties, holds significance in this context. In this study, we employed the total flavone in SAL as a treatment for male C57BL/6 mice with UC. The cecal contents metabolic profile of C57BL/6 mice in different groups, including UC (group ML; n = 5), UC treated with aspirin (group AN; n = 5), UC treated with the total flavone in SAL (group FE; n = 5), and healthy male C57BL/6 mice (group CL; n = 5), was examined using UHPLC-Triple-TOF-MS. Through the identification of variations in key metabolites associated with UC and the exploration of their underlying biological mechanisms, our understanding of the pathological processes underlying this condition has been enhanced. This study identified a total of seventy-three metabolites that have a significant impact on UC. Notably, the composition of total flavone in SAL, a medication used for UC treatment, differs from that of aspirin due to the presence of four distinct metabolites (13,14-Dihydro-15-keto-PGE2, Prostaglandin I2 (PGI2), (20R,22R)-20,22-dihydroxycholesterol, and PS (18:1(9Z)/0:0)). These metabolites possess unique characteristics that set them apart. Moreover, the study identified a total of eleven pathways that were significantly enriched in mice with UC, including Aminoacyl-tRNA biosynthesis, Valine, leucine and isoleucine biosynthesis, Linoleic acid metabolism, PPAR signaling pathway, mTOR signaling pathway, Valine, leucine and isoleucine degradation, Lysine degradation, VEGF signaling pathway, Melanogenesis, Endocrine and other factor-regulated calcium reabsorption, and Cocaine addiction. These findings contribute to a better understanding of the metabolic variations in UC following total flavonoids of SAL therapy and provide valuable insights for the treatment of UC.Keywords: Ulcerative colitis; Total flavonoids of Sonchus arvensis L.; Key metabolites; Metabonomics; Cecal contents of male C57BL/6 mice.

18.
Front Pharmacol ; 15: 1351871, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015370

RESUMEN

Introduction: Fuqi Guben Gao (FQGBG) is a botanical drug formulation composed of FuZi (FZ; Aconitum carmichaelii Debeaux [Ranunculaceae; Aconiti radix cocta]), Wolfberry (Lycium barbarum L. [Solanaceae; Lycii fructus]), and Cinnamon (Neolitsea cassia (L.) Kosterm. [Lauraceae; Cinnamomi cortex]). It has been used to clinically treat nocturia caused by kidney-yang deficiency syndrome (KYDS) for over 30 years and warms kidney yang. However, the pharmacological mechanism and the safety of FQGBG in humans require further exploration and evaluation. Methods: We investigated the efficacy of FQGBG in reducing urination and improving immune organ damage in two kinds of KYDS model rats (hydrocortisone-induced model and natural aging model), and evaluated the safety of different oral FQGBG doses through pharmacokinetic (PK) parameters, metabonomics, and occurrence of adverse reactions in healthy Chinese participants in a randomized, double-blind, placebo-controlled, single ascending dose clinical trial. Forty-two participants were allocated to six cohorts with FQGBG doses of 12.5, 25, 50, 75, 100, and 125 g. The PKs of FQGBG in plasma were determined using a fully validated LC-MS/MS method. Results: FQGBG significantly and rapidly improved the symptoms of increased urination in both two KYDS model rats and significantly resisted the adrenal atrophy in hydrocortisone-induced KYDS model rats. No apparent increase in adverse events was observed with dose escalation. Major adverse drug reactions included toothache, thirst, heat sensation, gum pain, diarrhea, abdominal distension, T-wave changes, and elevated creatinine levels. The PK results showed a higher exposure level of benzoylhypaconine (BHA) than benzoylmesaconine (BMA) and a shorter half-life of BMA than BHA. Toxic diester alkaloids, aconitine, mesaconitine, and hypaconitine were below the lower quantitative limit. Drug-induced metabolite markers primarily included lysophosphatidylcholines, fatty acids, phenylalanine, and arginine metabolites; no safety-related metabolite changes were observed. Conclusion: Under the investigated dosing regimen, FQGBG was safe. The efficacy mechanism of FQGBG in treating nocturia caused by KYDS may be related to the improvement of the hypothalamus-pituitary-adrenal axis function and increased energy metabolism. Clinical Trial Registration: https://www.chictr.org.cn/showproj.html?proj=26934, identifier ChiCTR1800015840.

19.
Front Endocrinol (Lausanne) ; 15: 1308841, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962681

RESUMEN

Background: Untargeted metabonomics has provided new insight into the pathogenesis of sarcopenia. In this study, we explored plasma metabolic signatures linked to a heightened risk of sarcopenia in a cohort study by LC-MS-based untargeted metabonomics. Methods: In this nested case-control study from the Adult Physical Fitness and Health Cohort Study (APFHCS), we collected blood plasma samples from 30 new-onset sarcopenia subjects (mean age 73.2 ± 5.6 years) and 30 healthy controls (mean age 74.2 ± 4.6 years) matched by age, sex, BMI, lifestyle, and comorbidities. An untargeted metabolomics methodology was employed to discern the metabolomic profile alterations present in individuals exhibiting newly diagnosed sarcopenia. Results: In comparing individuals with new-onset sarcopenia to normal controls, a comprehensive analysis using liquid chromatography-mass spectrometry (LC-MS) identified a total of 62 metabolites, predominantly comprising lipids, lipid-like molecules, organic acids, and derivatives. Receiver operating characteristic (ROC) curve analysis indicated that the three metabolites hypoxanthine (AUC=0.819, 95% CI=0.711-0.927), L-2-amino-3-oxobutanoic acid (AUC=0.733, 95% CI=0.598-0.868) and PC(14:0/20:2(11Z,14Z)) (AUC= 0.717, 95% CI=0.587-0.846) had the highest areas under the curve. Then, these significant metabolites were observed to be notably enriched in four distinct metabolic pathways, namely, "purine metabolism"; "parathyroid hormone synthesis, secretion and action"; "choline metabolism in cancer"; and "tuberculosis". Conclusion: The current investigation elucidates the metabolic perturbations observed in individuals diagnosed with sarcopenia. The identified metabolites hold promise as potential biomarkers, offering avenues for exploring the underlying pathological mechanisms associated with sarcopenia.


Asunto(s)
Metabolómica , Sarcopenia , Humanos , Sarcopenia/metabolismo , Sarcopenia/sangre , Masculino , Metabolómica/métodos , Femenino , Anciano , Estudios de Casos y Controles , Cromatografía Liquida/métodos , Biomarcadores/sangre , Estudios de Cohortes , Metaboloma , Anciano de 80 o más Años , Espectrometría de Masas/métodos , Factores de Riesgo , Hipoxantina/sangre , Hipoxantina/metabolismo , Cromatografía Líquida con Espectrometría de Masas
20.
BMC Complement Med Ther ; 24(1): 240, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902771

RESUMEN

BACKGROUND: Acupuncture is a method for treating tic disorder. However, there is a lack of sufficient clinical objective basis in regards of its treatment efficacy. Indeed, there are structural abnormalities present in energy metabolism and infrared thermography in children with tic disorder. Therefore, this study proposes a clinical trial scheme to explore the possible mechanism of acupuncture in treating tic disorder. METHODS: This randomized controlled trial will recruit a total of 90 children, in which they will be divided into non-intervention group and intervention group. The non-intervention group consists of 30 healthy children while the intervention group consists of 60 children with tic disorder. The intervention group will be randomly allocated into either the treatment group or the control group, with 30 children randomly assigned in each group. Children either received acupuncture treatment and behavioral therapy (treatment group) or sham acupuncture treatment and behavioral therapy (control group), 3 treatment sessions per week for a period of 12 weeks, with a total of 36 treatment sessions. Outcome measures include YGTSS, urinary and fecal metabolomics, infrared thermography of body surface including governor vessel. For the intervention group, these outcome measures will be collected at the baseline and 90th day prior to intervention. Whereas for the non-intervention group, outcome measures (excluding YGTSS) will be collected at the baseline. DISCUSSION: The main outcome will be to observe the changes of the severity of tic condition, the secondary outcome will be to observe the changes of structural characteristic of infrared thermography of body surface/acupoints along the governor vessel and to evaluate the changes of urinary and fecal metabolomics at the end of the treatment, so as to analyze the relationship between them and to provide further knowledge in understanding the possible mechanism of acupuncture in improving the clinical symptoms via regulating and restoring the body metabolomics network, which in future it can develop as a set of clinical guideline (diagnosis, treatment, assessment, prognosis) in treating tic disorder. ChiCTR2300075188(Chinese Clinical Trial Registry, http://www.chictr.org.cn , registered on 29 August 2023).


Asunto(s)
Terapia por Acupuntura , Metabolómica , Termografía , Trastornos de Tic , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Terapia por Acupuntura/métodos , Rayos Infrarrojos , Ensayos Clínicos Controlados Aleatorios como Asunto , Termografía/métodos , Trastornos de Tic/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA