Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.903
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 280(Pt 1): 135528, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278448

RESUMEN

Citrus Huanglongbing (HLB) poses an enormous challenge to Citrus cultivation worldwide, necessitating groundbreaking interventions beyond conventional pharmaceutical methods. In this study, we propose molybdenum disulfide-chitosan nanoparticles (MoS2-CS NPs) through electrostatic adsorption, preserving the plant-beneficial properties of molybdenum disulfide (MoS2), while enhancing its antibacterial effectiveness through chitosan modification. MoS2-CS NPs exhibited significant antibacterial efficacy against RM1021, and the closest relatives to Candidatus Liberibacter asiaticus (CLas), Erwinia carotovora, and Xanthomonas citri achieved survival rates of 7.40 % ± 1.74 %, 8.94 % ± 1.40 %, and 6.41 % ± 0.56 %, respectively. In vivo results showed, CLas survival rate of 10.42 % ± 3.51 %. Furthermore, treatment with MoS2-CS NPs resulted in an increase in chlorophyll and carotenoid content. Concomitantly, a significant reduction in malondialdehyde (MDA), soluble sugar, hydrogen peroxide (H2O2), and starch contents was also observed. Mechanistically, MoS2-CS NPs enhanced the activity of antioxidant-related enzymes by upregulating the expression of antioxidant genes, thereby galvanizing the antioxidant system to alleviate oxidative stress. Collectively, this dual functionality-combining direct antibacterial action with the activation of plant defense mechanisms-marks a promising strategy for managing Citrus Huanglongbing and suggests potential agricultural applications for MoS2-based antibacterial treatments.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125181, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39332182

RESUMEN

An efficient Surface-enhanced Raman scattering (SERS) method for the detection of cysteamine hydrochloride (CSH) was developed by synthesizing a composite substrate comprising silver nanoparticles (AgNPs) functionalized with MoS2 and ß-cyclodextrin (ß-CD). The enhanced Raman signals of CSH by ß-CD/MoS2/AgNPs substrate were the contribution of electromagnetic enhancement (EM) as well as chemical enhancement (CM), and the enhancement factor (EF) can reach up to 3.11 × 106 (peak at 633 cm-1). Various instrumental techniques were used to characterize the substrate, such as X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and ultraviolet visible (UV-vis). The binding of ß-CD/MoS2/AgNPs and CSH was confirmed by UV-vis and Fourier transform infrared (FT-IR). The optimal experimental conditions were determined by single factor experiments as well as response surface model. The influences of different metal ions and analogous drugs on the detection of CSH were investigated. Under optimum conditions, a good linear correlation (R = 0.9997) was established for CSH in the range of 10.00-1000.00 nmol/L, and the limit of detection (LOD) was as low as 0.78 nmol/L (S/N = 3). The contents of CSH in meat samples were detected. The recovery was 96.6-103.1 %, and the relative standard deviation (RSD) of the measurement was 0.7-3.9 % (n = 7).

3.
J Colloid Interface Sci ; 678(Pt C): 959-967, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39326167

RESUMEN

This study demonstrates the preparation of needle-like Ce-MOF crystals on molybdenum disulfide (MoS2) nanosheets using in-situ growth technology. This hybrid structure significantly enhances the thermal management and mechanical properties of thermosetting epoxy resin (EP). Specifically, EP/Ce-MOF@MoS2-3 exhibits a notable increase in tensile strength (TS) to 50.87 MPa and elongation at break (EB) to 10.84 %. Moreover, Ce-MOF@MoS2 provides synergistic flame retardant benefits, reducing the peak heat release rate (pHRR) and total heat release (THR) of EP/Ce-MOF@MoS2-3 by 38 % and 12.64 %, respectively, compared to EP-0. Additionally, Ce-MOF@MoS2 suppresses smoke and reduces toxic emissions; at a 3 % loading, it decreases CO and CO2 production in EP nanocomposites by 48.8 % and 38.7 %, respectively. Thus, this Ce-MOF@MoS2 hybrid, synthesized via in-situ growth, offers a novel approach for developing EP nanocomposites with superior thermal management and mechanical properties, along with effective flame retardancy and reduced hazardous emissions during thermal events.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39326866

RESUMEN

MoS2 not only has unique optoelectronic properties realizing photonic and semiconductor applications but also serves as a promising solid lubricant in tribological three-body contacts due to its advantageous friction and wear behavior. Its functionality is defined by elementary processes including strain, oxidation processes, and material mixing. However, these mechanisms were not elucidated for MoS2 having transferred from the MoS2 film synthesized at the main body to a steel counter body during tribological ball-on-disk tests. Using spatially and spectrally high-resolved Raman spectroscopy, we study the compressive and tensile strain within the MoS2 transfer material and analyze the oxidation of molybdenum, sulfur, and iron. In addition, we elaborate on the impact of transition metals modifying the MoS2 films on the strain distribution and oxidation processes. Decreasing intensities of the MoS2 Raman lines are accompanied with enhanced intensities of sulphur and molybdenum oxide Raman signatures which are particularly agglomerated at the edges of the tribological track. The formation of tribochemical oxides, including Mo4O11 in the Magnéli-phase, depends weakly on the type of modifying element, and an oxidation of a modification element itself is not detected. We also identified a tribologically induced formation of disordered few-layer graphene at counter-body surface areas which experienced weak thermo-mechanical tribological load. Our results characterize structural and chemical features of the MoS2 transfer material, thus predicting material failure at the microscopic level.

5.
ACS Appl Mater Interfaces ; 16(38): 50587-50601, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39259512

RESUMEN

Transition metal chalcogenides (TMX) have attracted energy researchers due to their role as high-performance electrode materials for energy storage devices. A facile one-pot hydrothermal technique was adopted to synthesize a molybdenum disulfide/cadmium sulfide (MoS2/CdS) (MCS) composite. The as-prepared samples were subjected to characterization techniques such as XRD, FT-IR, SEM, TEM, and XPS to assess their structure, morphology, and oxidation states. The MoS2/CdS (MCS) composites were prepared in three different ratios of molybdenum and cadmium metals. Among them, the MCS 1:2 (Mo:Cd) ratio showed better electrochemical performance with a high specific capacitance of 1336 F g-1 (high specific capacity of 185.83 mAh g-1) at a specific current of 1 A g-1 for half-cell studies. Later, a hybrid supercapacitor (HSC) device was fabricated with N-doped graphene (NG) as an anode and MCS (1:2) as a cathode, delivering a high specific energy of 34 Wh kg-1 and a specific power of 7500 W kg-1. The high nitrogen content in the MoS2 structure in MCS composites alters the device's performance, where CdS supports the composite structure through its conductivity and encourages the easy accessibility of ions. The device withstands up to 10 000 cycles with a higher Coulombic efficiency of 97% and a capacitance retention of 90.25%. The high-performance NG//MCS (1:2) HSC may be a potential candidate alternative to the existing conventional material.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39312628

RESUMEN

Monolayer semiconducting transition-metal dichalcogenides (S-TMDs) have been extensively studied as materials for next-generation optoelectronic devices due to their direct band gap and high exciton binding energy at room temperature. Under a superacid treatment of bis(trifluoromethane)sulfonimide (TFSI), sulfur-based TMDs such as MoS2 can emit strong photoluminescence (PL) with a photoluminescence quantum yield (PLQY) approaching unity. However, the magnitude of PL enhancement varies by more than 2 orders of magnitude in published reports. A major culprit behind the discrepancy is sulfur-based TMD's sensitivity to above-bandgap photostimulation. Here, we present a detailed study of how TFSI-treated MoS2 reacts to photostimulation with increasing PL occurring hours after continuous or pulsed laser exposure. The PL of TFSI-treated MoS2 is enhanced up to 74 times its initial intensity after 5 h of continuous exposure to 532 nm laser light. Photostimulation also enhances the PL of untreated MoS2 but with a much smaller enhancement. Caution should be taken when probing MoS2 PL spectra, as above-bandgap light can alter the resulting intensity and peak wavelength of the emission over time. The presence of air is verified to play a key role in the photostimulated enhancement effect. Additionally, the rise of PL intensity is mirrored by an increase in measured carrier lifetime of up to ∼400 ps, consistent with the suppression of nonradiative pathways. This work demonstrates why variations in PL intensity are observed across samples and provides an understanding of the changes in carrier lifetimes to better engineer next-generation optoelectronic devices.

7.
J Environ Sci Health B ; 59(9): 595-610, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287337

RESUMEN

Toxic intermediates in food caused by chloramphenicol (CP) and furazolidone (FZ) have gained interest in research toward their detection. Hence, fast, reliable, and accurate detection of CP and FZ in food products is of utmost importance. Here, a novel molybdenum disulfide-connected carbon nanotube aerogel/poly (3,4-ethylenedioxythiophene) [MoS2/CNTs aerogel/PEDOT] nanocomposite materials are constructed and deposited on the pretreated carbon paste electrode (PCPE) by a facile eletropolymerization method. The characterization of MoS2/CNTs aerogel/PEDOT nanocomposite was analyzed by scanning electron microscopy (SEM), cyclic voltammetry, and differential pulse voltammetry. The modified MoS2/CNTs aerogel/PEDOT nanocomposite has improved sensing characteristics for detecting CP and FZ in PBS solution. For this work, we have studied various parameters like electrocatalytic activity, the effect of scan rates, pH variation studies, and concentration variation studies. Under optimum conditions, the modified electrode exhibited superior sensing ability compared to the bare and pretreated CPE. This improvement in electrocatalytic activity can be the higher conductivity, larger surface area, increased heterogeneous rate constant, and presence of more active sites in the MoS2/CNTs aerogel/PEDOT nanocomposite. The modified electrode demonstrated distinct electrochemical sensing toward the individual and simultaneous analysis of CP and FZ with a high sensitivity of 0.701 µA. µM-1 .cm-2 for CP and 0.787 µA. µM-1 .cm-2 for FZ and a low detection limit of 3.74 nM for CP and 3.83 nM for FZ with good reproducibility, repeatability, and interferences. Additionally, the prepared sensor effectively detects CP and FZ in food samples (honey and milk) with an acceptable recovery range and a relative standard deviation below 4%.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Cloranfenicol , Disulfuros , Técnicas Electroquímicas , Contaminación de Alimentos , Furazolidona , Molibdeno , Nanocompuestos , Nanotubos de Carbono , Polímeros , Cloranfenicol/análisis , Furazolidona/análisis , Nanocompuestos/química , Nanotubos de Carbono/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Contaminación de Alimentos/análisis , Polímeros/química , Disulfuros/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Molibdeno/química , Antibacterianos/análisis , Límite de Detección , Leche/química
8.
Nanomaterials (Basel) ; 14(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39269080

RESUMEN

Gold-assisted exfoliation can fabricate centimeter- or larger-sized monolayers of van der Waals (vdW) semiconductors, which is desirable for their applications in electronic and optoelectronic devices. However, there is still a lack of control over the exfoliation processes and a limited understanding of the atomic-scale mechanisms. Here, we tune the MoS2-Au interface using controlled external pressure and reveal two atomic-scale prerequisites for successfully producing large-area monolayers of MoS2. The first is the formation of strong MoS2-Au interactions to anchor the top MoS2 monolayer to the Au surface. The second is the integrity of the covalent network of the monolayer, as the majority of the monolayer is non-anchored and relies on the covalent network to be exfoliated from the bulk MoS2. Applying pressure or using smoother Au films increases the MoS2-Au interaction, but may cause the covalent network of the MoS2 monolayer to break due to excessive lateral strain, resulting in nearly zero exfoliation yield. Scanning tunneling microscopy measurements of the MoS2 monolayer-covered Au show that even the smallest atomic-scale imperfections can disrupt the MoS2-Au interaction. These findings can be used to develop new strategies for fabricating vdW monolayers through metal-assisted exfoliation, such as in cases involving patterned or non-uniform surfaces.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39318343

RESUMEN

The development of MoS2 as a cathode electrocatalyst for lithium-oxygen batteries (LOBs) has attracted considerable attention due to its natural abundance, excellent catalytic activity, and chemical stability. However, the sluggish and complicated kinetic of insulating and bulk discharge products on the electrode surface is one of major factors for MoS2 as a cathode for high performance LOBs. Defect engineering of an electrocatalyst and its hybridization with highly conductive frameworks are effective strategies to address this critical issue. Herein, we report a hybrid of rich sulfur-defective MoS2 (MoS2-x) nanosheets grown on highly conductive holey expanded graphite (hEG) with well-defined "worm-like" and holey structures (MoS2-x/hEG). Benefiting from rich sulfur defects of MoS2-x and the highly conductive nature and holey structures of hEG, the MoS2-x/hEG hybrid as a cathode for LOBs displays outstanding electrochemical performance with an extremely high discharge capacity of 19000.3 mAh g-1 at 500 mA g-1 and an ultralong cycling life of over 500 cycles at 1000 mA g-1 with a controlled specific capacity of 1000 mAh g-1.

10.
ACS Nano ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319775

RESUMEN

Normally, it is hard to regulate thermal defects precisely in their host lattice due to the stochastic nature of thermal activation. Here, we demonstrate a thermal annealing way to create patterned single sulfur vacancy (VS) defects in monolayer molybdenum disulfide (MoS2) with about 2 nm separations at subnanometer accuracy. Theoretically, we reveal that the S-Au interface coupling reduces the energy barriers in forming VS defects and that explains the overwhelming formation of interface VS defects. We also discover a phonon regulation mechanism by the moiré interface that effectively condenses the Γ-point out-of-plane acoustic phonons of monolayer MoS2 to its TOP moiré sites, which has been proposed to trigger moiré-patterned thermal VS formation. The high-throughput nanoscale patterned defects presented here may contribute to building scalable defect-based quantum systems.

11.
ChemSusChem ; : e202400572, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254355

RESUMEN

Reducing CO2 emissions is one of the greatest challenges of the century. Among the means employed to tackle CO2 emissions, the photocatalytic conversion of CO2 is an appealing way to valorize CO2 since it uses the sun energy, which is abundant. However, nowadays, the best photocatalytic systems still report too low efficiencies, and use expensive materials, so they cannot be readily industrialized for use at large scale. In this report, we first highlight general industrial and process challenges (including operating conditions). Then, focusing on MoS2/TiO2 heterojunction systems, we analyze advantages and limitations of such systems and open perspectives on Mo oxysulfides supported on TiO2 discussing their potential to reach higher efficiency for CO2 photoconversion.

12.
Heliyon ; 10(17): e36821, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39281548

RESUMEN

Copper cadmium tin selenide (Cu2CdSnSe4) based photodetector (PD) has been explored with the solar cell capacitance simulator (SCAPS-1D). Herein, cadmium sulfide (CdS) and molybdenum disulfide (MoS2) are used as a window and back surface field (BSF) layers, respectively. The physical attributes, such as width, carrier density and bulk defects have been adjusted to attain the optimal conditions. In an optimized environment, the performance parameters of the Cu2CdSnSe4 (CCTSe) PD e.g. open circuit voltage (VOC), short circuit current (JSC), responsivity, and detectivity are determined as 0.76 V, 45.57 mA/cm2, 0.72 A/W and 5.05 × 1014 Jones, respectively without a BSF layer. After insertion of the BSF layer, the performance of the CCTSe PD is significantly upgraded because of the production of high built-in potential which rises the magnitude of VOC from 0.76 V to 0.84 V. For this reason, the responsivity and detectivity of CCTSe PD are also grows with the value of 0.84 A/W and 2.32 × 1015 Jones, respectively that indicate its future potential.

13.
Sci Rep ; 14(1): 20905, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245662

RESUMEN

First-principle calculations based on density functional theory are employed to investigate the impact of graphene insertion on the electronic properties and Schottky barrier of MoS2/metals (Mg, Al, In, Cu, Ag, Au, Pd, Ti, and Sc) without deteriorating the intrinsic properties of the MoS2 layer. The results reveal that the charge transfer mainly occurs at the interface between the graphene and metal layers, with smaller transfer at the interface between bi-layer garphene or between graphene and MoS2. And the tunneling barrier exists at the interface between graphene and MoS2, which hinders electron injection from graphene to MoS2. Importantly, the Schottky barrier height ( Φ SB,N ) decreases upon graphene insertion into MoS2/metal contacts. Specifically, for single-layer graphene, the Φ SB,N of MoS2 contacted with Mg, In, Sc, and Ti are - 0.116 eV, - 0.116 eV, - 0.014 eV, and - 0.116 eV, respectively. Furthermore, with bilayer graphene, when by inserting bi-layer graphene, the negative n-type Schottky barrier of - 0.086 eV, - 0.114 eV, - 0.059 eV, - 0.008 eV, and - 0.0636 eV are observed for MoS2 contacted with the respective metals, respectively. These findings provide a practical guidance for developing and designing high-performance transition metal dichalcogenide nanoelectronic devices.

14.
Luminescence ; 39(9): e4884, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39258707

RESUMEN

In present work, synthesis of a nanohybrid material using Fe and MoS2 has been performed via a cost-effective and environmentally friendly route for sustainable manufacturing innovation. Rice straw extract was prepared and used as a reducing and chelating agent to synthesize the nanohybrid material by mixing it with molybdenum disulfide (MoS2) and ferric nitrate [Fe (NO3)3.9H2O], followed by heating and calcination. The X-ray diffraction (XRD) pattern confirms the formation of a nanohybrid consisting of monoclinic Fe2(MoO4)3, cubic Fe2.957O4, and orthorhombic FeS with 86% consisting of Fe2(MoO4)3. The properties were analyzed through Fourier-transformed infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results of the dynamic light scattering (DLS) study revealed a heterogeneous size distribution, with an average particle size of 48.42 nm for 18% of particles and 384.54 nm for 82% of particles. Additionally, the zeta potential was measured to be -18.88 mV, suggesting moderate stability. X-ray photoelectron spectroscopy (XPS) results confirmed the presence of both Fe2+ and Fe3+ oxidation states along with the presence of Molybdenum (Mo), oxygen (O), and Sulphur (S). The prepared nanohybrid material exhibited a band gap of 2.95 eV, and the photoluminescence intensity increased almost twice that of bare MoS2. The present work holds potential applications in photo luminescent nanoplatform for biomedical applications.


Asunto(s)
Disulfuros , Tecnología Química Verde , Molibdeno , Oryza , Tamaño de la Partícula , Molibdeno/química , Disulfuros/química , Oryza/química , Hierro/química , Propiedades de Superficie
15.
Adv Sci (Weinh) ; : e2406476, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283050

RESUMEN

Quantum dot sensitized solar cells (QDSCs) represent a promising third-generation photovoltaic technology, boasting a high theoretical efficiency of 44% and cost efficiency. However, their practical efficiency is constrained by reduced photovoltage (Voc) and fill factor (FF). One primary reason is the inefficient charge transfer and elevated recombination rates at the counter electrode (CE). In this work, a novel CE composed of a titanium mesh loaded with Co,N─C@MoS2 is introduced for the assembly of QDSCs. The incorporation of nanosized MoS2 enhances the density of catalytic sites, while the Co,N─C component ensures high conductivity and provides a substantial active surface area. Additionally, the titanium mesh's 3D structure serves as an effective electrical conduit, facilitating rapid electron transfer from the external circuit to the composite. These improvements in catalytic activity, charge transfer rate, and stability of the CE significantly enhance the photovoltaic performance of QDSCs. The optimized cells achieve a groundbreaking power conversion efficiency (PCE) of 16.39%, accompanied by a short-circuit current density (Jsc) of 27.26 mA cm-2, Voc of 0.818 V, and FF of 0.735. These results not only offer a new strategy for designing electrodes with high catalytic activity but also underscore the promising application of the Co,N─C@MoS2 composite in enhancing QDSC technology.

16.
Small ; : e2404684, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39285804

RESUMEN

Two-dimensional molybdenum disulfide (2D MoS2) shows great promise as a surface-enhanced Raman scattering (SERS) substrate due to its strong exciton resonance. However, the inert basal plane limits the performance of SERS. In this work, a strategy is proposed for the one-step synthesis of atomically basal defect-rich MoS2. The study first reveals that NaCl plays a two-stage role in the growth process, where NaCl initially promotes the rapid growth of large MoS2 as previously reported, and then promotes the formation of atomic basal defects dominated by single sulfur vacancies. Additionally, spectral changes induced by modulation of experimental parameters and density function theory calculation show that defect generation occurs during cooling. Meanwhile, the ratio of E 2 g 1 ${\mathrm{E}}_{{\mathrm{2g}}}^{\mathrm{1}}$ to A1g in defect-rich MoS2 exhibits different variation trends compared with pristine MoS2 in power-dependent Raman, and the ratio increases with increasing basal defects. In SERS tests, the limit of detection for rhodamine 6G reached 10-9 m, which is comparable to the performance of conventional noble metal SERS substrate. The activation strategy of the inert basal plane is applicable to other 2D transition metal dichalcogenides, and further has the potential to enhance performance in other domains, such as SERS and hydrogen evolution reactions.

17.
Anal Chim Acta ; 1325: 343090, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39244300

RESUMEN

BACKGROUND: Curcumin has been used in traditional medicine because of its pharmacological activity, including antioxidant, antibacterial, anticancer, and anticarcinogenic properties. Therefore, sensitive and selective monitoring of curcumin is highly demand for practical application. RESULTS: In this study, we describe the construction of a fluorescence method for curcumin assay based on nitrogen-doped MoS2 quantum dots (N-MoS2 QDs). The N-MoS2 QDs are constructed by a solvothermal method using sodium molybdate and Cys as precursors. With the addition of curcumin, the bright blue fluorescence of N-MoS2 QDs is quenched by the inner filter effect (IFE). The QDs emitted bright blue fluorescence and could be quenched by the addition of curcumin via IFE. The dynamic range is the range of 0.1-10 µM for curcumin detection, with a detection limit of 59 nM. N-MoS2 QDs were applied for curcumin assay in real samples with good recovery. In addition, the N-MoS2 QDs exhibited relative low cytotoxicity and could be applied for fluorescence-based imaging in biological samples. SIGNIFICANCE: Our study indicates that the sensor possesses good selectivity to monitor curcumin in water samples, human urine samples, ginger powder samples, mustard samples, and curry samples with satisfactory recoveries. The N-MoS2 QDs possess less cytotoxicity with excellent biocompatibility and were applied for in vitro cell imaging.


Asunto(s)
Curcumina , Disulfuros , Colorantes Fluorescentes , Molibdeno , Nitrógeno , Puntos Cuánticos , Curcumina/química , Curcumina/farmacología , Puntos Cuánticos/química , Molibdeno/química , Humanos , Disulfuros/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Nitrógeno/química , Imagen Óptica , Límite de Detección , Espectrometría de Fluorescencia , Supervivencia Celular/efectos de los fármacos
18.
Adv Sci (Weinh) ; : e2408640, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39244733

RESUMEN

Atomic chalcogen vacancy is the most commonly observed defect category in two dimensional (2D) transition-metal dichalcogenides, which can be detrimental to the intrinsic properties and device performance. Here a low-defect density, high-uniform, wafer-scale single crystal epitaxial technology by in situ oxygen-incorporated "growth-repair" strategy is reported. For the first time, the oxygen-repairing efficiency on MoS2 monolayers at atomic scale is quantitatively evaluated. The sulfur defect density is greatly reduced from (2.71 ± 0.65) × 1013 down to (4.28 ± 0.27) × 1012 cm-2, which is one order of magnitude lower than reported as-grown MoS2. Such prominent defect deduction is owing to the kinetically more favorable configuration of oxygen substitution and an increase in sulfur vacancy formation energy around oxygen-incorporated sites by the first-principle calculations. Furthermore, the sulfur vacancies induced donor defect states is largely eliminated confirmed by quenched defect-related emission. The devices exhibit improved carrier mobility by more than three times up to 65.2 cm2 V-1 s-1 and lower Schottky barrier height reduced by half (less than 20 meV), originating from the suppressed Fermi-level pinning effect from disorder-induced gap state. The work provides an effective route toward engineering the intrinsic defect density and electronic states through modulating synthesis kinetics of 2D materials.

19.
J Colloid Interface Sci ; 678(Pt B): 256-265, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39245016

RESUMEN

Enabling highly-efficient multiplex-optimization photocatalysts is critical to overcome the bottlenecks of hydrogen evolution reaction efficiency and photostability. Herein, novel CoS/Sv-ZnIn2S4/MoS2 composites are successfully synthesized through an in situ technique. Taking advantage of the synergistic effect of sulfur vacancy, Schottky-type MoS2/Sv-ZnIn2S4 junction and Ohmic-type CoS/Sv-ZnIn2S4 junction, the light absorption, electron/hole separation efficiency, charge transfer rate and hydrogen reduction reaction dynamic can be significantly enhanced. As a result, an impressive photocatalytic hydrogen evolution rate of 18.43 mmol g-1 h-1 is achieved under the visible-light irradiation. Furthermore, apparent quantum efficiencies of 72.14 % and 9.91 % are also achieved under 350 and 420 nm monochromatic light irradiation. This work presents an in situ perspective to design multiplex-optimization photocatalytic system for highly-efficient hydrogen production.

20.
Environ Res ; 262(Pt 2): 119891, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218336

RESUMEN

Sulfate-radical-mediated photocatalysis technology peroxymonosulfate (PMS) activation via visible light irradiation shows great promise for water treatment applications. However, its effectiveness largely depends on the bifunctional performance of photocatalysis and PMS activation provided by the catalysts. In this study, we successfully synthesized a novel S-scheme MoS2/Co3O4 (MC) heterojunction composite by a hydrothermal method and employed it for the first time to activate PMS for ofloxacin (OFX) degradation under visible light irradiation. The MC-5/PMS/Vis system achieved an impressive 85.11% OFX degradation efficiency within 1 min and complete OFX removal within 15 min under optimal conditions, with an apparent first-order kinetics rate constant of 0.429 min-1. Reactive species trapping experiments and electron spin resonance analysis identified 1O2, h+, and •O2- as the primary active species responsible for OFX degradation. Photoelectrochemical analyses and density functional theory calculations indicated the formation of a built-in electric field between MoS2 and Co3O4, which enhanced the separation and migration of photoinduced carriers. Additionally, the Co-Mo interaction further increased the yield of dominant reactive species, thereby boosting photocatalytic activity. This work underscores the potential of visible-light-assisted PMS-mediated photocatalysis using Co3O4-based catalysts for effective pollutant control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA