Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.215
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Pediatr Nephrol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093455

RESUMEN

BACKGROUND: In patients with steroid-resistant nephrotic syndrome (SRNS), the presence of monogenic variants influences therapeutic strategies. Large cohort studies reported the detection of monogenic variants in approximately 30% of patients with SRNS. However, these cohorts included many patients, such as those with symptomatic proteinuria, who did not meet the strict diagnostic criteria for pediatric nephrotic syndrome (NS). Therefore, we investigated the proportion of causative monogenic variants detected in patients who strictly met the diagnostic criteria of SRNS and explored their clinical characteristics. METHODS: We examined pediatric SRNS cases with genetic analysis conducted in our hospital. Cases satisfying all of the following criteria were included: (1) age at onset 1-18 years, (2) serum albumin at onset ≤ 2.5 g/dl, (3) persistent heavy proteinuria, and (4) no complete remission after 4 weeks of steroid monotherapy. RESULTS: The proportion of detected monogenic variants was 12% (22/185) among all patients. The proportion was only 7% (9/129) in patients with edema at disease onset compared with 38% (9/24) in those without (p < 0.0001). Monogenic variants were rare in patients with acute kidney injury associated with NS (1% (1/11)) or a history of complete remission (4% (2/51)). CONCLUSIONS: Our study revealed a monogenic cause in 12% of individuals with strictly defined SRNS, a much smaller proportion than previously reported. The presence or absence of edema at the onset was an important factor to distinguish SRNS with monogenic cause from SRNS without. Our results provide further evidence of the SRNS types attributable to monogenic causes.

2.
Endocr Res ; : 1-11, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106207

RESUMEN

BACKGROUND: Monogenic diabetes often occurs as a result of single-gene mutations. The illness is minimally affected by environmental and behavioral factors, and it constitutes around one to five percent of all cases of diabetes. METHODS: Newborn diabetes mellitus (NDM) and maturity-onset diabetes of the young (MODY) are the predominant causes of monogenic diabetes, accounting for a larger proportion of cases, while syndromic diabetes represents a smaller percentage. MODY, a group of inherited non-autoimmune diabetes mellitus disorders, is quite common. However, it remains frequently misdiagnosed despite increasing public awareness. The condition is characterized by insulin resistance, the development of diabetes at a young age (before 25 years), mild high blood sugar levels, inheritance in an autosomal dominant pattern, and the preservation of natural insulin production. RESULTS: Currently, there are 14 distinct subtypes of MODY that have been identified. Each subtype possesses distinct characteristics in terms of their frequency, clinical symptoms, severity of diabetes, related complications, and response to medicinal interventions. Due to the clinical similarities, lack of awareness, and high expense of genetic testing, distinguishing between type I (T1D) and type II diabetes mellitus (T2D) can be challenging, resulting in misdiagnosis of this type of diabetes. As a consequence, a significant number of individuals are being deprived of adequate medical attention. Accurate diagnosis enables the utilization of novel therapeutic strategies and enhances the management of therapy in comparison to type II and type I diabetes. CONCLUSION: This article offers a concise overview of the clinical subtypes and characteristics of monogenic diabetes. Furthermore, this article discusses the various subtypes of MODY, as well as the process of diagnosing, managing, and treating the condition. It also addresses the difficulties encountered in detecting and treating MODY.

3.
Artículo en Ruso | MEDLINE | ID: mdl-39113457

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a sporadic disease in most of the cases; in 10-15% of cases genetic forms are recorded. A genetic form of ALS associated with the mutation in the ERBB4 gene (ALS19) has been reported in 2013. A protein encoded by the ERBB4 is probably involved in ubiquitous component of the pathogenesis of ALS. We present a case of ALS associated with a new pathogenic variant of the ERBB4 gene, with early bulbar onset and slow progression of the disease within 10 years.


Asunto(s)
Esclerosis Amiotrófica Lateral , Receptor ErbB-4 , Humanos , Receptor ErbB-4/genética , Esclerosis Amiotrófica Lateral/genética , Mutación , Masculino , Persona de Mediana Edad , Progresión de la Enfermedad , Femenino
4.
Artículo en Inglés | MEDLINE | ID: mdl-39096159

RESUMEN

Monogenic kidney diseases result from an abundance of potential genes carrying pathogenic variants. These conditions are primarily recognized for manifesting as kidney disorders, defined as an impairment of the structure and/or function of the kidneys. However, the impact of these genetic disorders extends far beyond the kidneys, giving rise to a diverse spectrum of extrarenal manifestations. These manifestations can affect any organ system throughout the body, leading to a complex clinical presentation that demands a comprehensive understanding and interdisciplinary management of affected persons. The intricate interplay between genetic variants, molecular pathways, and systemic interactions underscores the importance of exploring the extrarenal aspects of inherited kidney diseases. This exploration not only deepens our comprehension of the diseases themselves but also opens avenues for more holistic diagnostics, treatment strategies, and improved interdisciplinary patient care. This article delves into the intricate realm of extrarenal manifestations in inherited kidney diseases, shedding light on the far-reaching impacts that these genetic conditions can exert beyond the confines of the kidney system.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39096524

RESUMEN

BACKGROUND: Monogenic lupus is a rare variant of systemic lupus erythematosus (SLE) that develops in patients with a single gene disorder. Early complement component deficiencies were the first forms of monogenic lupus to be described and C1Q gene mutations are one of the most common forms. C1QA complement deficiency has been reported to occur usually due to biallelic variants in C1QA gene and compound heterozygous variants in C1QA gene have rarely been reported. Majority of the monogenic lupus patients with C1Q deficiency present with mucocutaneous, renal, and musculoskeletal manifestations. Our patient is an unusual case of monogenic lupus with severe neurological manifestations along with cutaneous, haematological, and hepatic manifestations secondary to rare compound heterozygous variants in C1QA gene and anti-ribosomal P autoantibody positivity. She was treated with glucocorticoids, rituximab and fresh frozen plasma with partial neurological recovery. Thus, we present a unique case of monogenic lupus due to a rare compound heterozygous variant in C1QA gene with a brief review of literature.

6.
Clin Kidney J ; 17(8): sfae212, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135943

RESUMEN

Early-onset systemic lupus erythematous (SLE) is a distinct clinical entity characterized by the onset of disease manifestations during childhood. Despite some similarities to patients who are diagnosed during adulthood, early-onset SLE typically displays a greater disease severity, with aggressive multiorgan involvement, lower responsiveness to classical therapies, and more frequent flares. Lupus nephritis is one of the most severe complications of SLE and represents a major risk factor for long-term morbidity and mortality, especially in children. This review focuses on the clinical and histological aspects of early-onset lupus nephritis, aiming at highlighting relevant differences with adult patients, emphasizing long-term outcomes and discussing the management of long-term complications. We also discuss monogenic lupus, a spectrum of conditions caused by single gene variants affecting the complement cascade, extracellular and intracellular nucleic acid sensing and processing, and occasionally other metabolic pathways. These monogenic forms typically develop early in life and often have clinical manifestations that resemble sporadic SLE, whereas their response to standard treatments is poor.

7.
Front Med (Lausanne) ; 11: 1390693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161410

RESUMEN

Cell-free fetal DNA (cffDNA) screening is a valuable tool in clinical practice for detecting chromosomal abnormalities and autosomal dominant (AD) conditions. This study introduces a novel proof-of-concept assay designed for autosomal recessive (AR) cffDNA screening, focusing on cases involving the NPC1 gene. We aim to illustrate the significant benefits of AR cffDNA screening in managing high-risk pregnancies, specifically where biallelic pathogenic variants in NPC1 cause Niemann-Pick disease, type C1 (NPC), a disorder marked by progressive neurodegeneration. Three participants for this study were recruited and gave consent to a hospital in Saudi Arabia. These participants were either carriers of NPC or had a first- or second-degree relative affected by the disorder. No specific criteria were set for the age of the participants. All were between 15 and 18 weeks of gestation. Using amplicon-based next-generation sequencing (NGS), we analyzed the zygosity and variants in cffDNA extracted from maternal peripheral blood. After amplicon NGS, analysis was completed by a custom data analysis pipeline that included in-house-built data processing scripts and commonly used software packages. Importantly, the results were not disclosed to the patients. Our findings showed that in all three cases, AR cffDNA screening results were consistent with standard invasive diagnostic testing. This screening method offers several advantages: it provides critical information to families earlier in the pregnancy compared to invasive diagnostic tests, and it helps to alleviate parental anxiety. Moreover, this non-invasive method can determine pregnancy status in the first trimester for known familial variants. Future research may extend this approach to screen for known disease-causing variants in common AR conditions.

8.
Phytopathology ; : PHYTO02240050R, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135297

RESUMEN

The rice blast fungus Magnaporthe oryzae poses a significant challenge to maintaining rice production. Developing rice varieties with resistance to this disease is crucial for its effective control. To understand the genetic variability of blast isolates collected between 2015 and 2017, the 27 monogenic rice lines that carry specific resistance genes were used to evaluate blast disease reactions. Based on criteria such as viability, virulence, and reactions to resistance genes, 20 blast isolates were selected as representative strains. To identify novel resistance genes, a quantitative trait locus analysis was carried out utilizing a mixture of the 20 representative rice blast isolates and a rice population derived from crossing the blast-resistant cultivar 'Cheongcheong' with the blast-susceptible cultivar 'Nagdong'. This analysis revealed a significant locus, RM1227-RM1261 on chromosome 12, that is associated with rice blast resistance. Within this locus, 12 disease resistance-associated protein genes were identified. Among them, OsDRq12, a member of the nucleotide-binding, leucine-rich repeat disease resistance family, was chosen as the target gene for additional computational investigation. The findings of this study have significant implications for enhancing rice production and ensuring food security by controlling rice blast and developing resistant rice cultivars.

9.
Hum Genomics ; 18(1): 87, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148098

RESUMEN

BACKGROUND: Recent studies suggested that genetic variants associated with monogenic bone disorders were involved in the pathogenesis of atypical femoral fractures (AFF). Here, we aim to identify rare genetic variants by whole exome sequencing in genes involved in monogenic rare skeletal diseases in 12 women with AFF and 4 controls without any fracture. RESULTS: Out of 33 genetic variants identified in women with AFF, eleven (33.3%) were found in genes belonging to the Wnt pathway (LRP5, LRP6, DAAM2, WNT1, and WNT3A). One of them was rated as pathogenic (p.Pro582His in DAAM2), while all others were rated as variants of uncertain significance according to ClinVar and ACMG criteria. CONCLUSIONS: Osteoporosis, rare bone diseases, and AFFs may share the same genes, thus making it even more difficult to identify unique risk factors.


Asunto(s)
Secuenciación del Exoma , Fracturas del Fémur , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Humanos , Femenino , Fracturas del Fémur/genética , Fracturas del Fémur/patología , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Persona de Mediana Edad , Anciano , Predisposición Genética a la Enfermedad , Proteína Wnt1/genética , Proteína Wnt3A/genética , Vía de Señalización Wnt/genética , Osteoporosis/genética , Osteoporosis/patología , Enfermedades Óseas/genética , Estudios de Casos y Controles
10.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125643

RESUMEN

Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a neurodegenerative disorder caused by the ATXN3 CAG repeat expansion. Preimplantation genetic testing for monogenic disorders (PGT-M) of SCA3/MJD should include reliable repeat expansion detection coupled with high-risk allele determination using informative linked markers. One couple underwent SCA3/MJD PGT-M combining ATXN3 (CAG)n triplet-primed PCR (TP-PCR) with customized linkage-based risk allele genotyping on whole-genome-amplified trophectoderm cells. Microsatellites closely linked to ATXN3 were identified and 16 markers were genotyped on 187 anonymous DNAs to verify their polymorphic information content. In the SCA3/MJD PGT-M case, the ATXN3 (CAG)n TP-PCR and linked marker analysis results concurred completely. Among the three unaffected embryos, a single embryo was transferred and successfully resulted in an unaffected live birth. A total of 139 microsatellites within 1 Mb upstream and downstream of the ATXN3 CAG repeat were identified and 8 polymorphic markers from each side were successfully co-amplified in a single-tube reaction. A PGT-M assay involving ATXN3 (CAG)n TP-PCR and linkage-based risk allele identification has been developed for SCA3/MJD. A hexadecaplex panel of highly polymorphic microsatellites tightly linked to ATXN3 has been developed for the rapid identification of informative markers in at-risk couples for use in the PGT-M of SCA3/MJD.


Asunto(s)
Ataxina-3 , Enfermedad de Machado-Joseph , Repeticiones de Microsatélite , Diagnóstico Preimplantación , Expansión de Repetición de Trinucleótido , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/diagnóstico , Humanos , Ataxina-3/genética , Expansión de Repetición de Trinucleótido/genética , Femenino , Repeticiones de Microsatélite/genética , Diagnóstico Preimplantación/métodos , Pruebas Genéticas/métodos , Alelos , Genotipo , Embarazo , Masculino , Proteínas Represoras
11.
BMC Med Genomics ; 17(1): 214, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160549

RESUMEN

PURPOSE: The objective of this study is to assess the carrier frequency and pathogenic variation of monogenetic diseases in a population of 114 subjects in Han Chinese from Hebei province who are undergoing assisted reproductive technology through the utilization of Expanded Carrier Screening (ECS). METHODS: The study utilized a panel consisting of 155 severe monogenic recessive genetic diseases for ECS. Next-generation sequencing technology was employed to identify specific variants associated with ECS in a cohort of 114 subjects from 97 couples, comprising 97 females and 17 male spouses. RESULTS: A total of 114 individuals received ECS. The carrier rate of pathogenic genes in the enrolled population was 44.74% (51/114). Among the 97 females, the carrier rate of pathogenic genes was higher in those without assisted reproduction indicators than in those with assisted reproduction indicators (59.09% vs. 41.33%). However, the carrier rate of pathogenic genes in males without assisted reproductive technology was slightly lower than that with assisted reproductive technology (40% vs. 41.67%). Among both female and male participants, the carrier rate of pathogenic genes between individuals without indicators of assisted reproduction and those with such indicators was 55.55% vs. 41.38%. In 51 carriers, 72.55% (37/51) carried one genetic variant, 25.49% (13/51) carried two genetic variants, and 1.96% (1/51) carried three genetic variants. A total of 38 pathogenic genes were detected in this study, and GJB2 and MMACHC were most common. The carrier rates of the two genes were both 5.26% (6/114). A total of 55 variations were detected, and c.235delC was most frequently found. The carrier rate was 3.51% (4/114). The incidence of couples carrying the same pathogenic genes was 1.03% (1/97). CONCLUSIONS: The findings elucidate the carrier rate of pathogenic genes among 155 severe monogenic recessive genetic diseases and underscore the significance of ECS as a preventive measure against congenital anomalies. When both partners carry the same genetic mutation for a monogenic disease, preventive strategies can be taken in offspring through preimplantation genetic testing (PGT), prenatal genetic testing, or the utilization of donor gametes. ECS is instrumental in assessing reproductive risk, guiding fertility-related decisions, and reducing the prevalence of monogenic recessive genetic disorders in subsequent generations.


Asunto(s)
Enfermedades Genéticas Congénitas , Técnicas Reproductivas Asistidas , Humanos , Femenino , Masculino , Enfermedades Genéticas Congénitas/genética , Adulto , Heterocigoto , Tamización de Portadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Pruebas Genéticas
12.
Mov Disord ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39076159

RESUMEN

BACKGROUND: Until recently, about three-quarters of all monogenic Parkinson's disease (PD) studies were performed in European/White ancestry, thereby severely limiting our insights into genotype-phenotype relationships at a global scale. OBJECTIVE: To identify the multi-ancestry spectrum of monogenic PD. METHODS: The first systematic approach to embrace monogenic PD worldwide, The Michael J. Fox Foundation Global Monogenic PD Project, contacted authors of publications reporting individuals carrying pathogenic variants in known PD-causing genes. In contrast, the Global Parkinson's Genetics Program's Monogenic Network took a different approach by targeting PD centers underrepresented or not yet represented in the medical literature. RESULTS: In this article, we describe combining both efforts in a merger project resulting in a global monogenic PD cohort with the buildup of a sustainable infrastructure to identify the multi-ancestry spectrum of monogenic PD and enable studies of factors modifying penetrance and expressivity of monogenic PD. CONCLUSIONS: This effort demonstrates the value of future research based on team science approaches to generate comprehensive and globally relevant results. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

13.
Pediatr Endocrinol Diabetes Metab ; 30(2): 104-109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026488

RESUMEN

INTRODUCTION: To study the clinical profile and molecular diagnosis of children with severe early-onset non-syndromic monogenic obesity. METHODS: The clinical and molecular data (performed using whole exome sequencing) of 7 children with early-onset (< 5 years) non-syndromic monogenic obesity were extracted from the Obesity Clinic files and analysed retrospectively. RESULTS: The median (IQR) age at presentation was 18 (10.5-27) months. Of the 7 patients, 5 were boys, 3 had a history of parental consanguinity, and 4 had a family history of severe early-onset obesity. All patients exhibited hyperphagia and showed signs of insulin resistance. Dyslipidaemia and fatty liver were observed in 4. The variants identified in 6 patients included 2 in leptin receptor, and one each in melanocortin 4 receptor, pro-opiomelanocortin, leptin, and neurotrophic tyrosine kinase receptor type 2 genes. Notably, 4 of these variants were novel. CONCLUSIONS: This case series provides valuable insights into the spectrum of genetic mutations associated with non-syndromic monogenic obesity in North Indian children. The findings underscore the significance of next-generation sequencing in identifying the aetiology of severe early-onset obesity.


Asunto(s)
Obesidad Infantil , Receptores de Leptina , Humanos , Masculino , Femenino , Preescolar , Lactante , Obesidad Infantil/genética , Receptores de Leptina/genética , Estudios Retrospectivos , Mutación , Receptor de Melanocortina Tipo 4/genética , Secuenciación del Exoma , India
14.
BMC Genomics ; 25(1): 668, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961367

RESUMEN

Hb H disease is the most severe form of α-thalassemia compatible with post-natal life. Compound heterozygous α0-thalassemia- SEA deletion/α+-thalassemia- 3.7kb deletion is the commonest cause of Hb H disease in Thailand. Preimplantation genetics testing for monogenic disorders (PGT-M) is an alternative for couples at risk of the disorder to begin a pregnancy with a healthy baby. This study aims to develop a novel PCR protocol for PGT-M of Hb H disease- SEA/-3.7kb using multiplex fluorescent PCR. A novel set of primers for α+-thalassemia- 3.7kb deletion was developed and tested. The PCR protocol for α0-thalassemia- SEA deletion was combined for Hb H disease- SEA/-3.7kb genotyping. The PCR protocols were applied to genomic DNA extracted from subjects with different thalassemia genotypes and on whole genome amplification (WGA) products from clinical PGT-M cycles of the families at risk of Hb Bart's. The results were compared and discussed. The results showed three PCR products from α+-thalassemia- 3.7kb primer set, and three from α0thalassemiaSEA primer set. The results were consistent with the known thalassemia genotypes. The novel -α3.7 primers protocol was also tested on 37 WGA products from clinical PGT-M cycles giving accurate genotyping results and a satisfying amplification efficiency with the ADO rates of 2.7%, 0%, and 0% for HBA2, HBA1, and internal control fragments, respectively. This novel PCR protocol can precisely distinguish Hb H disease- SEA/-3.7kb from other genotypes. Additionally, this is the first PCR protocol for Hb H disease- SEA/-3.7kb which is optimal for PGT-M.


Asunto(s)
Pruebas Genéticas , Diagnóstico Preimplantación , Talasemia alfa , Humanos , Talasemia alfa/genética , Talasemia alfa/diagnóstico , Diagnóstico Preimplantación/métodos , Pruebas Genéticas/métodos , Femenino , Embarazo , Genotipo
15.
Biomimetics (Basel) ; 9(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39056863

RESUMEN

The concept of Image Phase Congruency (IPC) is deeply rooted in the way the human visual system interprets and processes spatial frequency information. It plays an important role in visual perception, influencing our capacity to identify objects, recognize textures, and decipher spatial relationships in our environments. IPC is robust to changes in lighting, contrast, and other variables that might modify the amplitude of light waves yet leave their relative phase unchanged. This characteristic is vital for perceptual tasks as it ensures the consistent detection of features regardless of fluctuations in illumination or other environmental factors. It can also impact cognitive and emotional responses; cohesive phase information across elements fosters a perception of unity or harmony, while inconsistencies can engender a sense of discord or tension. In this survey, we begin by examining the evidence from biological vision studies suggesting that IPC is employed by the human perceptual system. We proceed to outline the typical mathematical representation and different computational approaches to IPC. We then summarize the extensive applications of IPC in computer vision, including denoise, image quality assessment, feature detection and description, image segmentation, image registration, image fusion, and object detection, among other uses, and illustrate its advantages with a number of examples. Finally, we discuss the current challenges associated with the practical applications of IPC and potential avenues for enhancement.

16.
Front Endocrinol (Lausanne) ; 15: 1385463, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974580

RESUMEN

Melanocortin 4 receptor (MC4R) mutations are the commonest cause of monogenic obesity through dysregulation of neuronal pathways in the hypothalamus and prefrontal cortex that regulate hunger and satiety. MC4R also regulates neuropathic pain pathways via JNK signaling after nerve injury. We show evidence of corneal small fiber degeneration in 2 siblings carrying a heterozygous missense variant c.508A>G, p.Ille170Val in the MC4R gene. Both children were treated with once weekly semaglutide for 6 months with no change in weight, and only a minor improvement in HbA1c and lipid profile. However, there was evidence of nerve regeneration with an increase in corneal nerve fiber density (CNFD) [child A (13.9%), child B (14.7%)], corneal nerve branch density (CNBD) [child A (110.2%), child B (58.7%)] and corneal nerve fiber length (CNFL) [child A (21.5%), child B (44.0%)].


Asunto(s)
Regeneración Nerviosa , Receptor de Melanocortina Tipo 4 , Humanos , Receptor de Melanocortina Tipo 4/genética , Masculino , Femenino , Niño , Regeneración Nerviosa/efectos de los fármacos , Péptidos Similares al Glucagón/uso terapéutico , Péptidos Similares al Glucagón/farmacología , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/patología , Mutación , Obesidad/tratamiento farmacológico , Obesidad/genética , Córnea/efectos de los fármacos , Córnea/inervación , Córnea/patología , Obesidad Infantil/tratamiento farmacológico , Adolescente
17.
Mol Ther ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39044426

RESUMEN

The emergence of adeno-associated virus (AAV)-based gene therapy has brought hope to patients with severe monogenic disorders. However, immune responses to AAV vectors and transgene products present challenges that require effective immunosuppressive strategies. This systematic review focuses on the immunosuppressive protocols used in 38 clinical trials and 35 real-world studies, considering a range of monogenic diseases, AAV serotypes, and administration routes. The review underscores the need for a deeper understanding of immunosuppressive regimens to enhance the safety and effectiveness of AAV-based gene therapy. Characterizing the immunological responses associated with various gene therapy treatments is crucial for optimizing treatment protocols and ensuring the safety and efficacy of forthcoming gene therapy interventions. Further research and understanding of the impact of immunosuppression on disease, therapy, and route of administration will contribute to the development of more effective and safer gene therapy approaches in the future.

18.
HGG Adv ; 5(4): 100334, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033325

RESUMEN

The effective implementation of whole-exome sequencing- and whole-genome sequencing-based diagnostics in the management of children affected with genetic diseases and the rapid decrease in the cost of next-generation sequencing (NGS) enables the expansion of this method to newborn genetic screening programs. Such NGS-based screening greatly increases the number of diseases that can be detected compared to conventional newborn screening, as the latter is aimed at early detection of a limited number of inborn diseases. Moreover, genetic testing provides new possibilities for family members of the proband, as many variants responsible for adult-onset conditions are inherited from the parents. However, the idea of NGS-based screening in healthy children raises issues of medical and ethical integrity as well as technical questions, including interpretation of the observed variants. Pilot studies have shown that both parents and medical professionals have moved forward and are enthused about these new possibilities. However, either the number of participants or the number of genes studied in previous investigations thus far has been limited to a few hundred, restricting the scope of potential findings. Our current study (NCT05325749) includes 7,000 apparently healthy infants born at our center between February 2021 and May 2023, who were screened for pathogenic variants in 2,350 genes. Clinically significant variants associated with early-onset diseases that can be treated, prevented, or where symptoms can be alleviated with timely introduced symptomatic therapy, were observed in 0.9% of phenotypically normal infants, 2.1% of the screened newborns were found to carry variants associated with reduced penetrance or monogenic diseases of adult-onset and/or variable expressivity, and 0.3% had chromosomal abnormalities. Here, we report our results and address questions regarding the interpretation of variants in newborns who were presumed to be healthy.

19.
Am J Kidney Dis ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033956

RESUMEN

About 37 million people in the United States have chronic kidney disease, a disease that encompasses diseases of multiple causes. About 10% or more of kidney diseases in adults and about 70% of selected chronic kidney diseases in children are expected to be explained by genetic causes. Despite the advances in genetic testing and an increasing understanding of the genetic bases of certain kidney diseases, genetic testing in nephrology lags behind other medical fields. More understanding of the benefits and logistics of genetic testing is needed to advance the implementation of genetic testing in chronic kidney diseases. Accordingly, the National Kidney Foundation convened a Working Group of experts with diverse expertise in genetics, nephrology, and allied fields to develop recommendations for genetic testing for monogenic disorders and to identify genetic risk factors for oligogenic and polygenic causes of kidney diseases. Algorithms for clinical decision making on genetic testing and a road map for advancing genetic testing in kidney diseases were generated. An important aspect of this initiative was the use of a modified Delphi process to reach group consensus on the recommendations. The recommendations and resources described herein provide support to nephrologists and allied health professionals to advance the use of genetic testing for diagnosis and screening of kidney diseases.

20.
World J Diabetes ; 15(6): 1051-1059, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38983823

RESUMEN

Monogenic diabetes, constituting 1%-2% of global diabetes cases, arises from single gene defects with distinctive inheritance patterns. Despite over 50 ass-ociated genetic disorders, accurate diagnoses and management of monogenic diabetes remain inadequate, underscoring insufficient clinician awareness. The disease spectrum encompasses maturity-onset diabetes of the young (MODY), characterized by distinct genetic mutations affecting insulin secretion, and neonatal diabetes mellitus (NDM) - a heterogeneous group of severe hyperglycemic disorders in infants. Mitochondrial diabetes, autoimmune monogenic diabetes, genetic insulin resistance and lipodystrophy syndromes further diversify the monogenic diabetes landscape. A tailored approach based on phenotypic and biochemical factors to identify candidates for genetic screening is recommended for suspected cases of MODY. NDM diagnosis warrants immediate molecular genetic testing for infants under six months. Identifying these genetic defects presents a unique opportunity for precision medicine. Ongoing research aimed to develop cost-effective genetic testing methods and gene-based therapy can facilitate appropriate identification and optimize clinical outcomes. Identification and study of new genes offer a valuable opportunity to gain deeper insights into pancreatic cell biology and the pathogenic mechanisms underlying common forms of diabetes. The clinical review published in the recent issue of World Journal of Diabetes is such an attempt to fill-in our knowledge gap about this enigmatic disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA