RESUMEN
Chemodynamic therapy (CDT) is an emerging therapeutic paradigm for cancer treatment that utilizes reactive oxygen species (ROS) to induce apoptosis of cancer cells but few biomaterials have been developed to differentiate the cancer cells and normal cells to achieve precise and targeted CDT. Herein, a simple cascade enzyme system is developed, termed hemin-micelles-GOx, based on hemin and glucose oxidase (GOx)-encapsulated Pluronic F127 (F127) micelles with pH-sensitive enzymatic activities. Histidine-tagged GOx can be easily chelated to hemin-F127 micelles via the coordination of histidine and ferrous ions in the center of hemin by simple admixture in an aqueous solution. In tumor microenvironment (TME), hemin-micelles-GOx exhibits enhanced peroxidase (POD)-like activities to generate toxic hydroxyl radicals due to the acidic condition, whereas in normal cells the catalase (CAT)-like, but not POD-like activity is amplified, resulting in the elimination of hydrogen peroxide to generate oxygen. In a murine melanoma model, hemin-micelles-GOx significantly suppresses tumor growth, demonstrating its great potential as a pH-mediated enzymatic switch for tumor management by CDT.
RESUMEN
Flavin-dependent halogenase (FDH) is highly prized in pharmaceutical and chemical industries for its exceptional capacity to produce halogenated aromatic compounds with precise regioselectivity. This study has devised a multi-enzyme self-assembly strategy to construct an effective and reliable in vitro coenzyme cycling system tailored for FDHs. Initially, tri-enzyme self-assembling nanoclusters (TESNCs) were developed, comprising glucose dehydrogenase (GDH), flavin reductase (FR) and FDH. The TESNCs exhibited enhanced thermal stability and conversion efficiency compared to free triple enzyme mixtures during the conversion of L-Trp to 6-Cl-L-Trp, resulting in a 2.1-fold increase in yield. Subsequently, an ordered co-immobilization of GDH, FR, and FDH was established, further amplifying the stability and catalytic efficiency of the FDH coenzyme cycle system. Compared to the free TESNCs, the immobilized TESNCs demonstrated a 4.2-fold increase in catalytic efficiency in a 5 mL reaction system. This research provides an effective strategy for developing a robust and efficient coenzyme recycling system for FDHs.
RESUMEN
Arabinoside and derived nucleoside analogs, a family of nucleoside analogs, exhibit diverse typically biological activities and are widely used as antibacterial, antiviral, anti-inflammatory, antitumor, and other drugs in clinical and preclinical trials. Although with a long and rich history in the field of medicinal chemistry, the biosynthesis of arabinoside has only been sporadically designed and studied, and it remains a challenge. Here, we constructed an in vitro multi-enzymatic cascade for the biosynthesis of arabinosides. This artificial biosystem was systematically optimized, involving an exquisite pathway design, NADP+ regeneration, meticulous enzyme selection, optimization of the key enzyme dosage, and the concentration of inorganic phosphate. Under the optimized conditions, we achieved 0.37 mM of vidarabine from 5 mM of sucrose and 2 mM of adenine, representing 18.7% of the theoretical yield. Furthermore, this biosystem also has the capability to produce other arabinosides, such as spongouridine, arabinofuranosylguanine, hypoxanthine arabinofuranoside, fludarabine, and 2-methoxyadenine arabinofuranoside, from sucrose, and corresponding nucleobase by introducing different nucleoside phosphorylases. Overall, our biosynthesis approach provides a pathway for the biosynthesis of arabinose-derived nucleoside analogs, offering potential applications in the pharmaceutical industry.
Asunto(s)
Sacarosa , Sacarosa/metabolismo , Sacarosa/química , Vidarabina/análogos & derivados , Vidarabina/química , Vidarabina/metabolismo , Pentosiltransferasa/metabolismo , Pentosiltransferasa/genética , NADP/metabolismoRESUMEN
Chiral phenyllactic acid (PLA) is a new type of antiseptic agent and a valuable precursor for active ingredients in pharmaceuticals and agrochemicals. In this study, we designed a multi-enzyme cascade that combined stereocomplementary d- and l-lactate dehydrogenases with threonine aldolase, phenylserine dehydratase, and formate dehydrogenase for the one-pot conversion of achiral glycine and benzaldehyde to synthesize d-PLA and l-PLA. To overcome the imbalance of multi-enzymes in a single cell, two enzyme modules, overexpressing four enzymes, were assembled in Escherichia coli cells to construct whole-cell catalysis systems (WCCSs). Furthermore, by optimizing reaction conditions and components, recombinant E. coli (WCCS 26) was able to produce 100 mM d-PLA with >99 % ee using a fed-batch strategy, while E. coli (WCCS 60) produced 47.2 mM l-PLA with >99 % ee. This study presents a sustainable and efficient method for synthesizing chiral PLAs from food-grade achiral starting materials.
Asunto(s)
Escherichia coli , Lactatos , Escherichia coli/genética , Estereoisomerismo , Lactatos/química , L-Lactato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/química , L-Lactato Deshidrogenasa/genética , Formiato Deshidrogenasas/metabolismo , Formiato Deshidrogenasas/química , Formiato Deshidrogenasas/genética , Lactato DeshidrogenasasRESUMEN
Deoxynivalenol (DON) is the most abundant mycotoxin in cereal crops and derived foods and is of great concern in agriculture. Bioremediation strategies have long been sought to minimize the impact of mycotoxin contamination, but few direct and effective enzyme-catalyzed detoxification methods are currently available. In this study, we established a multi-enzymatic cascade reaction and successfully achieved detoxification at double sites: glutathionylation for the C-12,13 epoxide group and epimerization for the C-3 hydroxyl group. This yielded novel derivatives of DON, 3-epi-DON-13-glutathione (3-epi-DON-13-GSH) as well as its by-product, 3-keto-DON-13-GSH, for which precise structures were validated via liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Both cell viability and DNA synthesis assays demonstrated dramatically decreased cytotoxicity of the double-site modified product 3-epi-DON-13-GSH. These findings provide a promising and urgently needed novel method for addressing the problem of DON contamination in agricultural and industrial settings.
Asunto(s)
Tricotecenos , Tricotecenos/química , Tricotecenos/metabolismo , Contaminación de Alimentos/análisis , Humanos , Fusarium/metabolismo , Fusarium/química , Inactivación Metabólica , Micotoxinas/química , Micotoxinas/metabolismo , Supervivencia Celular/efectos de los fármacos , Glutatión/química , Glutatión/metabolismo , Biodegradación Ambiental , Espectrometría de Masas en TándemRESUMEN
Although many efforts have been devoted to the modification of polyethylene terephthalate (PET) hydrolases for improving the efficiency of PET degradation, the catalytic performance of these enzymes at near-ambient temperatures remains a challenge. Herein, a multi-enzyme cascade system (PT-EC) was developed and validated by assembling three well-developed PETases, PETaseEHA, Fast-PETase, and Z1-PETase, respectively, together with carboxylesterase TfCa, and hydrophobic binding module CBM3a using scaffold proteins. The resulting PT-ECEHA, PT-ECFPE, PT-ECZPE all demonstrated outstanding PET degradation efficacy. Notably, PT-ECEHA exhibited a 16.5-fold increase in product release compared to PETaseEHA, and PT-ECZPE yielded the highest amount of product. Subsequently, PT-ECs were displayed on the surface of Escherichia coli, respectively, and their degradation efficiency toward three PET types was investigated. The displayed PT-ECEHA exhibited a 20-fold increase in degradation efficiency with PET film compared to the surface-displayed PETaseEHA. Remarkably, an almost linear increase in product release was observed for the displayed PT-ECZPE over a one-week degradation period, reaching 11.56 ± 0.64 mM after 7 days. TfCaI69W/L281Y evolved using a docking-based virtual screening strategy showed a further 2.5-fold increase in the product release of PET degradation. Collectively, these advantages of PT-EC demonstrated the potential of a multi-enzyme cascade system for PET bio-cycling.
Asunto(s)
Biodegradación Ambiental , Escherichia coli , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Escherichia coli/metabolismo , Hidrolasas/metabolismo , Hidrolasas/química , Carboxilesterasa/metabolismo , Carboxilesterasa/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismoRESUMEN
Ethyl (S)-4-chloro-3-hydroxybutyrate ((S)-CHBE) is an important chiral intermediate in the synthesis of the cholesterol-lowering drug atorvastatin. Studying the use of SpyTag/SpyCatcher and SnoopTag/SnoopCatcher systems for the asymmetric reduction reaction and directed coupling coenzyme regeneration is practical for efficiently synthesizing (S)-CHBE. In this study, Spy and Snoop systems were used to construct a double-enzyme directed fixation system of carbonyl reductase (BsCR) and glucose dehydrogenase (BsGDH) for converting 4-chloroacetoacetate (COBE) to (S)-CHBE and achieving coenzyme regeneration. We discussed the enzymatic properties of the immobilized enzyme and the optimal catalytic conditions and reusability of the double-enzyme immobilization system. Compared to the free enzyme, the immobilized enzyme showed an improved optimal pH and temperature, maintaining higher relative activity across a wider range. The double-enzyme immobilization system was applied to catalyze the asymmetric reduction reaction of COBE, and the yield of (S)-CHBE reached 60.1% at 30 °C and pH 8.0. In addition, the double-enzyme immobilization system possessed better operational stability than the free enzyme, and maintained about 50% of the initial yield after six cycles. In summary, we show a simple and effective strategy for self-assembling SpyCatcher/SnoopCatcher and SpyTag/SnoopTag fusion proteins, which inspires building more cascade systems at the interface. It provides a new method for facilitating the rapid construction of in vitro immobilized multi-enzyme complexes from crude cell lysate.
Asunto(s)
Enzimas Inmovilizadas , Glucosa 1-Deshidrogenasa , Glucosa 1-Deshidrogenasa/metabolismo , Glucosa 1-Deshidrogenasa/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Biocatálisis , Concentración de Iones de Hidrógeno , Hidroxibutiratos/química , Temperatura , Catálisis , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Carbonil Reductasa (NADPH)/metabolismo , Carbonil Reductasa (NADPH)/químicaRESUMEN
D-glucuronic acid is a kind of glucose derivative, which has excellent properties such as anti-oxidation, treatment of liver disease and hyperlipidemia, and has been widely used in medicine, cosmetics, food and other fields. The traditional production methods of D-glucuronic acid mainly include natural extraction and chemical synthesis, which can no longer meet the growing market demand. The production of D-glucuronic acid by biocatalysis has become a promising alternative method because of its high efficiency and environmental friendliness. This review describes different production methods of D-glucuronic acid, including single enzyme catalysis, multi-enzyme cascade, whole cell catalysis and co-culture, as well as the intervention of some special catalysts. In addition, some feasible enzyme engineering strategies are provided, including the application of enzyme immobilized scaffold, enzyme mutation and high-throughput screening, which provide good ideas for the research of D-glucuronic acid biocatalysis.
Asunto(s)
Ingeniería , Biocatálisis , Catálisis , Técnicas de Cocultivo , Ácido GlucurónicoRESUMEN
Aliphatic ω-amino fatty acids (ω-AFAs) and α,ω-diamines (α,ω-DMs) are essential monomers for the production of nylons. Development of a sustainable biosynthesis route for ω-AFAs and α,ω-DMs is crucial in addressing the challenges posed by climate change. Herein, we constructed an unprecedented thermodynamically favorable multi-enzyme cascade (TherFavMEC) for the efficient sustainable biosynthesis of ω-AFAs and α,ω-DMs from cheap α,ω-dicarboxylic acids (α,ω-DAs). This TherFavMEC was developed by incorporating bioretrosynthesis analysis tools, reaction Gibbs free energy calculations, thermodynamic equilibrium shift strategies and cofactor (NADPH&ATP) regeneration systems. The molar yield of 6-aminohexanoic acid (6-ACA) from adipic acid (AA) was 92.3 %, while the molar yield from 6-ACA to 1,6-hexanediamine (1,6-HMD) was 96.1 %, which were significantly higher than those of previously reported routes. Furthermore, the biosynthesis of ω-AFAs and α,ω-DMs from 20.0â mM α,ω-DAs (C6-C9) was also performed, giving 11.2â mM 1,6-HMD (56.0 % yield), 14.8â mM 1,7-heptanediamine (74.0 % yield), 17.4â mM 1,8-octanediamine (87.0 % yield), and 19.7â mM 1,9-nonanediamine (98.5 % yield), respectively. The titers of 1,9-nonanediamine, 1,8-octanediamine, 1,7-heptanediamine and 1,6-HMD were improved by 328-fold, 1740-fold, 87-fold and 3.8-fold compared to previous work. Therefore, this work holds great potential for the bioproduction of ω-AFAs and α,ω-DMs.
Asunto(s)
Aminoácidos , Diaminas , Ácidos Dicarboxílicos , Ácidos GrasosRESUMEN
Oxidoreductases are a wide class of enzymes that can catalyze biological oxidation and reduction reactions. Nowadays, oxidoreductases play a vital part in most bioenergetic metabolic pathways, which have important applications in biodegradation, bioremediation, environmental applications, as well as biosensors. However, free oxidoreductases are not stable and hard to be recycled. In addition, cofactors are needed in most oxidoreductases catalyze reactions, which are so expensive and unstable that it hinders their industrial applications. Enzyme immobilization is a feasible strategy that can overcome these problems. Recently, metal-organic frameworks (MOFs) have shown great potential as support materials for immobilizing enzymes due to their unique properties, such as high surface-area-to-volume ratio, chemical stability, functional designability, and tunable pore size. This review discussed the application of MOFs and their composites as immobilized carriers of oxidoreductase, as well as the application of MOFs as catalysts and immobilized carriers in redox reactions in the perspective of the function of MOFs materials. The paper also focuses on the potential of MOF carrier-based oxidoreductase immobilization for designing an enzyme cascade reaction system.
RESUMEN
In modern agricultural practices, organophosphorus pesticides or insecticides (OPs) are regularly used to restrain pests. Their limits are closely monitored since their residual hinders the capability of acetylcholinesterase (AChE) and brings out a threatening accumulation of the neurotransmitter acetylcholine (ACh), which affects human well-being. Therefore, spotting OPs in food and the environment is compulsory to prevent human health. Several techniques are available to identify OPs but encounter shortcomings like time-consuming, operating costs, and slow results achievement, which calls for further solutions. Herein, we present a rapid colorimetric sensor for quantifying OPs in foods using TMB as a substrate, a multi-enzyme cascade system, and the synergistic property of core-shell Palladinum@Platinum (Pd@Pt) nanoparticles. The multi-enzyme cascade response framework is a straightforward and effective strategy for OPs recognition and can resolve the previously mentioned concerns. Numerous OPs, including Carbofuran, Malathion, Parathion, Phoxim, Rojor, and Phosmet, were successfully quantified at different concentrations. The cascade method established using Pd@Pt had a simple and easy operation, a lower detection limit range of (1-2.5 ng/mL), and a short detection time of about 50 min. With an R2 value of over 0.93, OPs showed a linear range of 10-200 ng/mL, portraying its achievement in quantifying pesticide residue. Lastly, the approach was utilized in food samples and recovered more than 80% of the residual OPs.
RESUMEN
Cell-free, chemoenzymatic platforms are emerging technologies towards generating glycoconjugates with defined and homogeneous glycoforms. Recombinant oligosaccharyltransferases can be applied to glycosylate "empty," i.e., aglycosyalted, peptides and proteins. While bacterial oligosaccharlytransferases have been extensively investigated, only recently a recombinant eukaryotic single-subunit oligosaccharyltransferase has been successfully used to in vitro N-glycosylate peptides. However, its applicability towards synthesizing full-length glycoproteins and utilizing glycans beyond mannose-type glycans for the transfer have not be determined. Here, we show for the first time the synthesis of hybrid- and complex-type glycans using synthetic lipid carriers as substrates for in vitro N-glycosylation reactions. For this purpose, transmembrane-deleted human ß-1,2 N-acetylglucosamintransferase I and II (MGAT1ΔTM and MGAT2ΔTM) and ß-1,4-galactosyltransferase (GalTΔTM) have been expressed in Escherichia coli and used to extend an existing multi-enzyme cascade. Both hybrid and agalactosylated complex structures were transferred to the N-glycosylation consensus sequence of peptides (10 amino acids: G-S-D-A-N-Y-T-Y-T-Q) by the recombinant oligosaccharyltransferase STT3A from Trypanosoma brucei.
RESUMEN
D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.
RESUMEN
L-2-aminobutyrate (L-ABA) is an important chiral drug intermediate with a key role in modern medicinal chemistry. Here, we describe the development of an efficient method for the asymmetric synthesis of L-ABA in a tri-enzymatic cascade in Escherichia coli BL21 (DE3) using a cost-effective L-Thr. Low activity of leucine dehydrogenase from Bacillus thuringiensis (BtLDH) and unbalanced expression of enzymes in the cascade were major challenges. Mechanism-based protein engineering generated the optimal triple variant BtLDHM3 (A262S/V296C/P150M) with 20.7-fold increased specific activity and 9.6-fold increased kcat /Km compared with the wild type. Optimizing plasmids with different copy numbers regulated enzymatic expression, thereby increasing the activity ratio (0.3 : 1:0.6) of these enzymes inâ vivo close to the optimal ratio (0.4 : 1 : 1) inâ vitro. Importing the optimal triple mutant BtLDHM3 into our constructed pathway inâ vivo and optimization of transformation conditions achieved one-pot conversion of L-Thr to 130.2â g/L L-ABA, with 95 % conversion, 99 % e.e. and 10.9â g L-1 h-1 productivity (the highest to date) in 12â h on a 500â mL scale. These results describe a potential biosynthesis approach for the industrial production of L-ABA.
Asunto(s)
Escherichia coli , Treonina , Treonina/metabolismo , Escherichia coli/metabolismo , Aminobutiratos/metabolismo , Ingeniería MetabólicaRESUMEN
Cascade reactions catalyzed by multi-enzyme systems are important in science and industry and can be used to synthesize drugs and nutrients. In this study, two types of macromolecules of bi-enzyme self-assembly clusters (BESCs) consisting of carbonyl reductase (CpCR) and glucose dehydrogenase (GDH) were examined. Stereoselective CpCR and GDH were successfully fused with SpyCatcher and SpyTag, respectively, to obtain four enzyme modules, namely: SpyCatcher-CpCR, SpyCatcher-GDH, SpyTag-CpCR, and SpyTag-GDH, which were covalently coupled in vitro to form two types of hydrogel-like BESCs: CpCR-SpyCatcher-SpyTag-GDH and GDH-SpyCatcher-SpyTag-CpCR. CpCR-SpyCatcher-SpyTag-GDH showed a better activity and efficiently converted ethyl 2-oxo-4-phenylbutyrate (OPBE) to ethyl(R)2-hydroxy-4-phenylbutanoate ((R)-HPBE), while regenerating NADPH. At 30 °C and pH 7, the conversion rate of OPBE with CpCR-SpyCatcher-SpyTag-GDH as a catalyst reached 99.9%, with the ee% of (R)-HPBE reaching above 99.9%. This conversion rate was 2.4 times higher than that obtained with the free bi-enzyme. The pH tolerance and temperature stability of the BESCs were also improved compared with those of the free enzymes. In conclusion, bi-enzyme assemblies were docked using SpyCatcher/SpyTag to produce BESCs with a special structure and excellent catalytic activity, improving the catalytic efficiency of the enzyme.
Asunto(s)
Temperatura , CiclizaciónRESUMEN
Danshensu (DSS), a traditional Chinese medicine, is widely used for the treatment of cardiovascular and cancer diseases. Here, a one-pot multi-enzyme cascade pathway was designed for DSS synthesis from l-DOPA using tyrosine aminotransferase from Escherichia coli (EcTyrB) and d-isomer-specific 2-hydroxyacid dehydrogenase from Lactobacillus frumenti (LfD2-HDH). Glutamate dehydrogenase from Clostridium difficile (CdgluD) was also introduced for a self-sufficient system of α-ketoglutaric acid and NADH. Under optimal conditions (35 °C, pH 7.0, EcTyrB:LfD2-HDH:CdgluD = 3:2:1, glutamate:NAD+ = 1:1), 98.3% yield (at 20 mM l-DOPA) and space-time yield of 6.61 g L-1 h-1 (at 40 mM l-DOPA) were achieved. Decreased yields of DSS at elevated l-DOPA concentrations (100 mM) could be attributed to an inhibited CdgluD activity caused by NH4+ accumulation. This developed multi-enzyme cascade pathway (including EcTyrB, LfD2-HDH, and CdgluD) provides an efficient and sustainable approach for the production of DSS from l-DOPA.
Asunto(s)
Lactatos , Levodopa , Levodopa/metabolismo , Lactatos/metabolismo , Escherichia coli/metabolismoRESUMEN
D-Psicose, a new-generation sugar substitute, has been enzymatically synthesized through D-fructose isomerization. However, isomerization often causes low yields due to unfavorable thermodynamic equilibria, which limited its further industrial application. In this study, we present a redox-driven multi-enzyme cascade, two-step biotransformation system to produce D-psicose from D-fructose. Compared to D-fructose isomerization, this method has a maximized theoretical conversion rate of 100%. D-Psicose-3-epimerase from Clostridiales (CBDPE), ribitol 2-dehydrogenase from Providencia alcalifaciens (PRDH), and formate dehydrogenase from Starkeya (SFDH) were co-expressed in Escherichia coli in the first step to produce D-allitol from D-fructose. Afterward, NADH oxidase from Streptococcus pyogenes (SPNOX), and ribitol 2-dehydrogenase from Rubrivivax sp. (RSRDH) were co-expressed in E. coli to oxidize D-allitol into D-psicose in the second step. The two-step biotransformation system was optimized to maximize the D-fructose-to-D-psicose conversion rate (up to 90%), corresponding to a concentration of 450 mM. This study suggests that this redox-driven multi-enzyme cascade strategy through a sugar-to-alcohol-to-sugar pathway has the advantage of great application for enhanced production of D-psicose and other rare sugars.
Asunto(s)
Escherichia coli , Fructosa , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Fructosa/metabolismo , Oxidación-ReducciónRESUMEN
ß-Nicotinamide mononucleotide (NMN) is an important precursor in the synthesis of nicotinamide adenine dinucleotide (NAD+) and confers multiple health benefits, resulting in the rapid growth of NMN market capacity in the fields of food and health care. To overcome the drawbacks of NMN production by the existing chemical or microbial fermentation method, there is an urgent need to develop a prospective NMN production strategy with low cost, low pollution, and high yield. In this study, we demonstrated an artificial in vitro multi-enzyme cascade biocatalysis using starch and nicotinamide (Nam) as substrates for the synthesis of NMN in one-pot. This multi-enzyme cascade reaction was optimized in terms of pH value, buffer concentration, inorganic phosphate concentration, enzyme composition, and phosphoenolpyruvate concentration. Under optimized conditions, a high molar yield of 87.8% for NMN was achieved using 3.2 mM Nam as substrate, and a molar yield of 55.37% for NMN was also achieved under the initial Nam concentration of 9.21 mM. This in vitro enzymatic platform provides an environmental friendliness biomanufacturing technology for the production of NMN, showing a highly promising alternative approach for NMN production.
Asunto(s)
Niacinamida , Mononucleótido de Nicotinamida , Mononucleótido de Nicotinamida/metabolismo , Biocatálisis , Almidón , Estudios Prospectivos , NAD/metabolismoRESUMEN
Multi-enzyme biocatalytic cascades are emerging as practical routes for the synthesis of complex bioactive molecules. However, the relative sparsity of water-stable carbon electrophiles limits the synthetic complexity of molecules made from such cascades. Here, we develop a chemoenzymatic platform that leverages styrene oxide isomerase (SOI) to covert readily accessible aryl epoxides into α-aryl aldehydes through a Meinwald rearrangement. These unstable aldehyde intermediates are then intercepted with a C-C bond forming enzyme, ObiH, that catalyzes a transaldolase reaction with l-threonine to yield synthetically challenging ß-hydroxy-α-amino acids. Co-expression of both enzymes in E. coli yields a whole cell biocatalyst capable of synthesizing a variety of stereopure non-standard amino acids (nsAA) and can be produced on gram-scale. We used isotopically labelled substrates to probe the mechanism of SOI, which we show catalyzes a concerted isomerization featuring a stereospecific 1,2-hydride shift. The viability of in situ generated α-aryl aldehydes was further established by intercepting them with a recently engineered decarboxylative aldolase to yield γ-hydroxy nsAAs. Together, these data establish a versatile method of producing α-aryl aldehydes in simple, whole cell conditions and show that these intermediates are useful synthons in CâC bond forming cascades.
RESUMEN
(S)-Equol is the terminal metabolite of daidzein and plays important roles in human health. However, due to anaerobic inefficiency, limited productivity in (S)-equol-producing strains often hinders (S)-equol mass production. Here, a multi-enzyme cascade system was designed to generate a higher (S)-equol titer. First, full reversibility of the (S)-equol synthesis pathway was found and a blocking reverse conversion strategy was established. As biosynthetic genes are present in the microbial genome, an effective daidzein reductase was chosen using evolutionary principles. And our analyses showed that NADPH was crucial for the pathway. In response to this, a novel NADPH pool was redesigned after analyzing a cofactor metabolism model. By adjusting synthesis pathway genes at the right expression level, the entire synthesis pathway can take place smoothly. Thus, the cascade system was optimized by regulating the gene expression intensity. Finally, after optimizing fermentation conditions, a 5 L bioreactor was used to generate a high (S)-equol production titer (3418.5 mg/L), with a conversion rate of approximately 85.9%. This study shows a feasible green process route for the production of (S)-equol.