Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(19)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39409254

RESUMEN

Researchers have attempted to control robotic hands and prostheses through biosignals but could not match the human hand. Surface electromyography records electrical muscle activity using non-invasive electrodes and has been the primary method in most studies. While surface electromyography-based hand motion decoding shows promise, it has not yet met the requirements for reliable use. Combining different sensing modalities has been shown to improve hand gesture classification accuracy. This work introduces a multimodal bracelet that integrates a 24-channel force myography system with six commercial surface electromyography sensors, each containing a six-axis inertial measurement unit. The device's functionality was tested by acquiring muscular activity with the proposed device from five participants performing five different gestures in a random order. A random forest model was then used to classify the performed gestures from the acquired signal. The results confirmed the device's functionality, making it suitable to study sensor fusion for intent detection in future studies. The results showed that combining all modalities yielded the highest classification accuracies across all participants, reaching 92.3±2.6% on average, effectively reducing misclassifications by 37% and 22% compared to using surface electromyography and force myography individually as input signals, respectively. This demonstrates the potential benefits of sensor fusion for more robust and accurate hand gesture classification and paves the way for advanced control of robotic and prosthetic hands.


Asunto(s)
Electromiografía , Mano , Humanos , Electromiografía/métodos , Mano/fisiología , Gestos , Masculino , Adulto , Robótica/métodos , Procesamiento de Señales Asistido por Computador , Femenino , Músculo Esquelético/fisiología , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación
2.
Function (Oxf) ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39322240

RESUMEN

Essential hypertension (HT) is a highly prevalent cardiovascular disease of unclear physiopathology. Pharmacological studies suggest that purinergic P2Y6 receptors (P2ry6) play important roles in cardiovascular function and may contribute to angiotensin II (AgtII) pathophysiological effects. Here, we tested the hypothesis that functional coupling between P2ry6 and AgtII receptors mediates altered vascular reactivity in HT. For this, a multipronged approach was implemented using mesenteric vascular smooth muscle cells (VSMCs) and arteries from BPN (Blood Pressure Normal) and BPH (Blood Pressure High) mice. Differential transcriptome profiling of mesenteric artery VSMCs identified P2ry6 purinergic receptor mRNA as one of the top upregulated transcripts in BPH. P2Y receptor activation elicited distinct vascular responses in mesenteric arteries from BPN and BPH mice. Accordingly, 10 µM UTP produced a contraction close to half-maximal activation in BPH arteries but no response in BPN vessels. AgtII-induced contraction was also higher in BPH mice despite having lower AgtII receptor type-1 (Agtr1) expression and was sensitive to P2ry6 modulators. Proximity Ligation Assay (PLA) and super-resolution microscopy (SRM) showed closer localization of Agtr1 and P2ry6 at/near the membrane of BPH mice. This proximal association was reduced in BPN mice, suggesting a functional role for Agtr1-P2ry6 complexes in the hypertensive phenotype. Intriguingly, BPN mice were resistant to AgtII-induced HT and showed reduced P2ry6 expression in VSMCs. Altogether, results suggest that increased functional coupling between P2ry6 and Agtr1 may contribute to enhanced vascular reactivity during HT. In this regard, blocking P2ry6 could be a potential pharmacological strategy to treat HT.

3.
Sensors (Basel) ; 24(18)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39338868

RESUMEN

Wearable technologies represent a significant advancement in facilitating communication between humans and machines. Powered by artificial intelligence (AI), human gestures detected by wearable sensors can provide people with seamless interaction with physical, digital, and mixed environments. In this paper, the foundations of a gesture-recognition framework for the teleoperation of infrared consumer electronics are established. This framework is based on force myography data of the upper forearm, acquired from a prototype novel soft pressure-based force myography (pFMG) armband. Here, the sub-processes of the framework are detailed, including the acquisition of infrared and force myography data; pre-processing; feature construction/selection; classifier selection; post-processing; and interfacing/actuation. The gesture recognition system is evaluated using 12 subjects' force myography data obtained whilst performing five classes of gestures. Our results demonstrate an inter-session and inter-trial gesture average recognition accuracy of approximately 92.2% and 88.9%, respectively. The gesture recognition framework was successfully able to teleoperate several infrared consumer electronics as a wearable, safe and affordable human-machine interface system. The contribution of this study centres around proposing and demonstrating a user-centred design methodology to allow direct human-machine interaction and interface for applications where humans and devices are in the same loop or coexist, as typified between users and infrared-communicating devices in this study.


Asunto(s)
Gestos , Dispositivos Electrónicos Vestibles , Humanos , Inteligencia Artificial , Rayos Infrarrojos , Adulto , Masculino , Femenino , Interfaz Usuario-Computador , Reconocimiento de Normas Patrones Automatizadas/métodos
4.
Front Cell Neurosci ; 18: 1435619, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280794

RESUMEN

Amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is characterized by progressive motor neuron degeneration, leading to widespread weakness and respiratory failure. While a variety of mechanisms have been proposed as causes of this disease, a full understanding remains elusive. Electrophysiological alterations, including increased motor axon excitability, likely play an important role in disease progression. There remains a critical need for non-animal disease models that can integrate electrophysiological tools to better understand underlying mechanisms, track disease progression, and evaluate potential therapeutic interventions. This review explores the integration of electrophysiological technologies with ALS disease models. It covers cellular and clinical electrophysiological tools and their applications in ALS research. Additionally, we examine conventional animal models and highlight advancements in humanized models and 3D organoid technologies. By bridging the gap between these models, we aim to enhance our understanding of ALS pathogenesis and facilitate the development of new therapeutic strategies.

5.
Stem Cell Res Ther ; 15(1): 291, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256865

RESUMEN

BACKGROUND: Stem-cell-derived therapy is a promising option for tissue regeneration. Human iPSC-derived progenitors of smooth muscle cells (pSMCs) exhibit limited proliferation and differentiation, which minimizes the risk of tumor formation while restoring smooth muscle cells (SMCs). Up to 29% of women suffer from recurrence of vaginal prolapse after prolapse surgery. Therefore, there is a need for therapies that can restore vaginal function. SMCs contribute to vaginal tone and contractility. We sought to examine whether human pSMCs can restore vaginal function in a rat model. METHODS: Female immunocompromised RNU rats were divided into 5 groups: intact controls (n = 12), VSHAM (surgery + saline injection, n = 35), and three cell-injection groups (surgery + cell injection using pSMCs from three patients, n = 14/cell line). The surgery to induce vaginal injury was analogous to prolapse surgery. Menopause was induced by surgical ovariectomy. The vagina, urethra, bladder were harvested 10 weeks after surgery (5 weeks after cell injection). Organ bath myography was performed to evaluate the contractile function of the vagina, and smooth muscle thickness was examined by tissue immunohistochemistry. Collagen I, collagen III, and elastin mRNA and protein expressions in tissues were assessed. RESULTS: Vaginal smooth muscle contractions induced by carbachol and KCl in the cell-injection groups were significantly greater than those in the VSHAM group. Collagen I protein expression in the vagina of the cell-injections groups was significantly higher than in the VSHAM group. Vaginal elastin protein expression was similar between the cell-injection and VSHAM groups. In the urethra, gene expression levels of collagen I, III, and elastin were all significantly greater in the cell-injection groups than in the VSHAM group. Collagen I, III, and elastin protein expression of the urethra did not show a consistent trend between cell-injection groups and the VSHAM group. CONCLUSIONS: Human iPSC-derived pSMCs transplantation appears to be associated with improved contractile function of the surgically injured vagina in a rat model. This is accompanied by changes in extracellular protein expression the vagina and urethra. These observations support further efforts in the translation of pSMCs into a treatment for regenerating the surgically injured vagina in women who suffer recurrent prolapse after surgery.


Asunto(s)
Modelos Animales de Enfermedad , Miocitos del Músculo Liso , Vagina , Animales , Femenino , Ratas , Humanos , Miocitos del Músculo Liso/metabolismo , Trasplante de Células Madre/métodos , Elastina/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Contracción Muscular , Diferenciación Celular
6.
Pathophysiology ; 31(3): 488-501, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39311310

RESUMEN

High systolic blood pressure and increased blood pressure variability after the onset of ischemic stroke are associated with poor clinical outcomes. One of the key determinants of blood pressure is arteriolar size, determined by vascular smooth muscle tone and vasodilatory and vasoconstrictor substances that are released by the endothelium. The aim of this study is to outline alterations in vasomotor function in isolated peripheral arteries following ischemic stroke. The reactivity of thoracic aortic segments from male C57BL/6 mice to dilators and constrictors was quantified using wire myography. Acetylcholine-induced endothelium-dependent vasodilation was impaired after ischemic stroke (LogIC50 Sham = -7.499, LogIC50 Stroke = -7.350, p = 0.0132, n = 19, 31 respectively). The vasodilatory responses to SNP were identical in the isolated aortas in the sham and stroke groups. Phenylephrine-induced vasoconstriction was impaired in the aortas isolated from the stroke animals in comparison to their sham treatment counterparts (Sham LogEC50= -6.652 vs. Stroke LogEC50 = -6.475, p < 0.001). Our study demonstrates that 24 h post-ischemic stroke, peripheral vascular responses are impaired in remote arteries. The aortas from the stroke animals exhibited reduced vasoconstrictor and endothelium-dependent vasodilator responses, while the endothelium-independent vasodilatory responses were preserved. Since both the vasodilatory and vasoconstrictor responses of peripheral arteries are impaired following ischemic stroke, our findings might explain increased blood pressure variability following ischemic stroke.

7.
Physiol Meas ; 45(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39197472

RESUMEN

Objective.To evaluate electrical impedance myography (EIM) in conjunction with machine learning (ML) to detect infantile spinal muscular atrophy (SMA) and disease progression.Approach. Twenty-six infants with SMA and twenty-seven healthy infants had been enrolled and assessed with EIM as part of the NeuroNEXT SMA biomarker study. We applied a variety of modern, supervised ML approaches to this data, first seeking to differentiate healthy from SMA muscle, and then, using the best method, to track SMA progression.Main Results.Several of the ML algorithms worked well, but linear discriminant analysis (LDA) achieved 88.6% accuracy on subject muscles studied. This contrasts with a maximum of 60% accuracy that could be achieved using the single or multifrequency assessment approaches available at the time. LDA scores were also able to track progression effectively, although a multifrequency reactance-based measure also performed very well in this context.Significance.EIM enhanced with ML promises to be effective for providing effective diagnosis and tracking children and adults with SMA treated with currently available therapies. The normative trends identified here may also inform future applications of the technology in very young children. The basic analyses applied here could also likely be applied to other neuromuscular disorders characterized by muscle atrophy.


Asunto(s)
Progresión de la Enfermedad , Impedancia Eléctrica , Aprendizaje Automático , Atrofia Muscular Espinal , Miografía , Humanos , Lactante , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/fisiopatología , Miografía/métodos , Masculino , Femenino , Análisis Discriminante
8.
J Physiol ; 602(17): 4271-4289, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39106241

RESUMEN

Studies have shown cerebrovascular dysfunction in offspring with full-gestational electronic cigarette (Ecig) exposure, but little is known about how individual trimester exposure impacts offspring health. This study aimed to determine if there is a critical window during gestation that contributes to vascular and anxiety-like behavioural changes seen with full-term exposure. To test this, rats were time-mated, and the pregnant dams were randomly assigned to Ecig exposure during first trimester (gestational day, GD2-7), second trimester (GD8-14), third trimester (GD15-21) or full-term gestation (GD2-21). We also assessed the effect of maternal preconception exposure. Both male and female offspring from all maternal exposure conditions were compared to offspring from dams under ambient air (control) conditions. Ecig exposure consisted of 60-puffs/day (5 days/week) using either 5 or 30 watts for each respective exposure group. We found that maternal exposure to Ecig in the second and third trimesters resulted in a decrease (23-38%) in vascular reactivity of the middle cerebral artery (MCA) reactivity in 3- and 6-month-old offspring compared to Air offspring. Further, the severity of impairment was comparable to the full-term exposure (31-46%). Offspring also displayed changes in body composition, body mass, anxiety-like behaviour and locomotor activity, indicating that Ecigs influence neurodevelopment and metabolism. Maternal preconception exposure showed no impact on offspring body mass, anxiety-like behaviour, or vascular function. Thus, the critical exposure window where Ecig affects vascular development in offspring occurs during mid- to late-gestation in pregnancy, and both 5 W and 30 W exposure produce significant vascular dysfunction compared to Air. KEY POINTS: Exposure to electronic cigarettes (Ecigs) is known to increase risk factors for cardiovascular disease in both animals and humans. Maternal Ecig use during pregnancy in rodents is found to impair the vascular health of adolescent and adult offspring, but the critical gestation window for Ecig-induced vascular impairment is not known. This study demonstrates Ecig exposure during mid- and late-gestation (i.e. second or third trimester) results in impaired endothelial cell-mediated dilatation (i.e. middle cerebral artery reactivity) and alters anxiety-like behaviour in offspring. Maternal exposure prior to conception did not impact offspring's vascular or anxiety-like behavioural outcomes. Rodent models have been a reliable and useful predictor of inhalation-induced harm to humans. These data indicate maternal use of Ecigs during pregnancy should not be considered safe, and begin to inform clinicians and women about potential long-term harm to their offspring.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Efectos Tardíos de la Exposición Prenatal , Ratas Sprague-Dawley , Animales , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Masculino , Ratas , Ansiedad , Arteria Cerebral Media/efectos de los fármacos , Exposición Materna/efectos adversos
9.
Res Sq ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38946968

RESUMEN

Background: Stem-cell-derived therapy is a promising option for tissue regeneration. Human iPSC-derived progenitors of smooth muscle cells (pSMCs) have limited proliferation and differentiation, which may minimize the risk of in vivo tumor formation while restoring smooth muscle cell deficiencies. Up to 30 % of women who suffer from recurrence of vaginal prolapse after prolapse surgery are faced with reoperation. Therefore, there is an unmet need for therapies that can restore vaginal tissue function. We hypothesize that human pSMCs can restore vaginal function in a vaginal-injury rat model. Methods: Female immune-compromised RNU rats were divided into 5 groups: intact controls (n=12), VSHAM (surgery + saline injection, n=33), and cell-injection group (surgery + cell injection using three patient pSMCs lines, n=14/cell line). The surgery, similar to what is done in vaginal prolapse surgery, involved ovariectomy, urethrolysis, and vagina injury. The vagina, urethra, bladder dome and trigone were harvested 10 weeks after surgery (5 weeks after injection). Organ bath myography was performed to evaluate the contractile function of vagina, and smooth muscle thickness was examined by tissue immunohistochemistry. Collagen I, collagen III, and elastin mRNA and protein expressions in tissues were assessed. Results: When compared to the VSHAM group, cell-injection groups showed significantly increased vaginal smooth muscle contractions induced by carbachol (groups A and C) and by KCl (group C), and significantly higher collagen I protein expression in the vagina (groups A and B). Elastin mRNA and protein expressions in the vagina did not correlate with injection group. In the urethra, mRNA expressions of collagen I, collagen III, and elastin were all significantly higher in the cell-injection groups compared to the VSHAM group. Collagen I protein expression of the urethra was also higher in the cell-injection group compared to the VSHAM group. Elastin protein expression in the urethra did not correlate with injection group. Conclusions: Human iPSC-derived pSMCs improved contractile function of the post-surgery vagina. Additionally, pSMC injection modulated collagen I, collagen III and elastin mRNA and protein expressions in the vagina and urethra. These findings suggest that pSMCs may be a possible therapy for vaginal prolapse recurrence after surgical intervention.

10.
Comput Biol Med ; 179: 108817, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004049

RESUMEN

Force myography (FMG) is increasingly gaining importance in gesture recognition because of it's ability to achieve high classification accuracy without having a direct contact with the skin. In this study, we investigate the performance of a bracelet with only six commercial force sensitive resistors (FSR) sensors for classifying many hand gestures representing all letters and numbers from 0 to 10 in the American sign language. For this, we introduce an optimized feature selection in combination with the Extreme Learning Machine (ELM) as a classifier by investigating three swarm intelligence algorithms, which are the binary grey wolf optimizer (BGWO), binary grasshopper optimizer (BGOA), and binary hybrid grey wolf particle swarm optimizer (BGWOPSO), which is used as an optimization method for ELM for the first time in this study. The findings reveal that the BGWOPSO, in which PSO supports the GWO optimizer by controlling its exploration and exploitation using inertia constant to improve the convergence speed to reach the best global optima, outperformed the other investigated algorithms. In addition, the results show that optimizing ELM with BGWOPSO for feature selection can efficiently improve the performance of ELM to enhance the classification accuracy from 32% to 69.84% for classifying 37 gestures collected from multiple volunteers and using only a band with 6 FSR sensors.


Asunto(s)
Algoritmos , Gestos , Humanos , Aprendizaje Automático , Miografía/métodos , Masculino , Femenino
11.
Sensors (Basel) ; 24(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38894429

RESUMEN

Effective feature extraction and selection are crucial for the accurate classification and prediction of hand gestures based on electromyographic signals. In this paper, we systematically compare six filter and wrapper feature evaluation methods and investigate their respective impacts on the accuracy of gesture recognition. The investigation is based on several benchmark datasets and one real hand gesture dataset, including 15 hand force exercises collected from 14 healthy subjects using eight commercial sEMG sensors. A total of 37 time- and frequency-domain features were extracted from each sEMG channel. The benchmark dataset revealed that the minimum Redundancy Maximum Relevance (mRMR) feature evaluation method had the poorest performance, resulting in a decrease in classification accuracy. However, the RFE method demonstrated the potential to enhance classification accuracy across most of the datasets. It selected a feature subset comprising 65 features, which led to an accuracy of 97.14%. The Mutual Information (MI) method selected 200 features to reach an accuracy of 97.38%. The Feature Importance (FI) method reached a higher accuracy of 97.62% but selected 140 features. Further investigations have shown that selecting 65 and 75 features with the RFE methods led to an identical accuracy of 97.14%. A thorough examination of the selected features revealed the potential for three additional features from three specific sensors to enhance the classification accuracy to 97.38%. These results highlight the significance of employing an appropriate feature selection method to significantly reduce the number of necessary features while maintaining classification accuracy. They also underscore the necessity for further analysis and refinement to achieve optimal solutions.


Asunto(s)
Electromiografía , Gestos , Mano , Humanos , Electromiografía/métodos , Mano/fisiología , Algoritmos , Masculino , Adulto , Femenino , Procesamiento de Señales Asistido por Computador
12.
Lasers Med Sci ; 39(1): 122, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703271

RESUMEN

Pulsed dye lasers are used effectively in the treatment of psoriasis with long remission time and limited side effects. It is, however, not completely understood which biological processes underlie its favorable outcome. Pulsed dye laser treatment at 585-595 nm targets hemoglobin in the blood, inducing local hyperthermia in surrounding blood vessels and adjacent tissues. While the impact of destructive temperatures on blood vessels has been well studied, the effects of lower temperatures on the function of several cell types within the blood vessel wall and its periphery are not known. The aim of our study is to assess the functionality of isolated blood vessels after exposure to moderate hyperthermia (45 to 60°C) by evaluating the function of endothelial cells, smooth muscle cells, and vascular nerves. We measured blood vessel functionality of rat mesenteric arteries (n=19) by measuring vascular contraction and relaxation before and after heating vessels in a wire myograph. To this end, we elicited vascular contraction by addition of either high potassium solution or the thromboxane analogue U46619 to stimulate smooth muscle cells, and electrical field stimulation (EFS) to stimulate nerves. For measurement of endothelium-dependent relaxation, we used methacholine. Each vessel was exposed to one temperature in the range of 45-60°C for 30 seconds and a relative change in functional response after hyperthermia was determined by comparison with the response per stimulus before heating. Non-linear regression was used to fit our dataset to obtain the temperature needed to reduce blood vessel function by 50% (Half maximal effective temperature, ET50). Our findings demonstrate a substantial decrease in relative functional response for all three cell types following exposure to 55°C-60°C. There was no significant difference between the ET50 values of the different cell types, which was between 55.9°C and 56.9°C (P>0.05). Our data show that blood vessel functionality decreases significantly when exposed to temperatures between 55°C-60°C for 30 seconds. The results show functionality of endothelial cells, smooth muscle cells, and vascular nerves is similarly impaired. These results help to understand the biological effects of hyperthermia and may aid in tailoring laser and light strategies for selective photothermolysis that contribute to disease modification of psoriasis after pulsed dye laser treatment.


Asunto(s)
Láseres de Colorantes , Animales , Ratas , Masculino , Láseres de Colorantes/uso terapéutico , Miocitos del Músculo Liso/fisiología , Miocitos del Músculo Liso/efectos de la radiación , Vasodilatación/efectos de la radiación , Vasodilatación/fisiología , Temperatura , Músculo Liso Vascular/efectos de la radiación , Músculo Liso Vascular/fisiología , Células Endoteliales/efectos de la radiación , Células Endoteliales/fisiología , Vasoconstricción/efectos de la radiación , Vasoconstricción/fisiología , Endotelio Vascular/efectos de la radiación , Ratas Wistar
13.
Microcirculation ; 31(6): e12871, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38805589

RESUMEN

OBJECTIVE: This study aimed to determine nicotine's impact on receptor-mediated cyclic adenosine monophosphate (cAMP) synthesis in vascular smooth muscle (VSM). We hypothesize that nicotine impairs ß adrenergic-mediated cAMP signaling in VSM, leading to altered vascular reactivity. METHODS: The effects of nicotine on cAMP signaling and vascular function were systematically tested in aortic VSM cells and acutely isolated aortas from mice expressing the cAMP sensor TEpacVV (Camper), specifically in VSM (e.g., CamperSM). RESULTS: Isoproterenol (ISO)-induced ß-adrenergic production of cAMP in VSM was significantly reduced in cells from second-hand smoke (SHS)-exposed mice and cultured wild-type VSM treated with nicotine. The decrease in cAMP synthesis caused by nicotine was verified in freshly isolated arteries from a mouse that had cAMP sensor expression in VSM (e.g., CamperSM mouse). Functionally, the changes in cAMP signaling in response to nicotine hindered ISO-induced vasodilation, but this was reversed by immediate PDE3 inhibition. CONCLUSIONS: These results imply that nicotine alters VSM ß adrenergic-mediated cAMP signaling and vasodilation, which may contribute to the dysregulation of vascular reactivity and the development of vascular complications for nicotine-containing product users.


Asunto(s)
AMP Cíclico , Músculo Liso Vascular , Nicotina , Transducción de Señal , Animales , Nicotina/farmacología , AMP Cíclico/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Isoproterenol/farmacología , Masculino , Aorta/metabolismo , Aorta/efectos de los fármacos , Células Cultivadas
14.
Arterioscler Thromb Vasc Biol ; 44(7): 1601-1616, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38660803

RESUMEN

BACKGROUND: RAB27A is a member of the RAS oncogene superfamily of GTPases and regulates cell secretory function. It, is expressed within blood vessels and perivascular adipose tissue. We hypothesized that loss of RAB27A would alter cardiovascular function. METHODS: Body weight of Rab27aash mice was measured from 2 to 18 months of age, along with glucose resorption at 6 and 12 months of age and glucose sensitivity at 18 months of age. Body weight and cellular and molecular features of perivascular adipose tissue and aortic tissue were examined in a novel C57BL/6J Rab27a null strain. Analyses included morphometric quantification and proteomic analyses. Wire myography measured vasoreactivity, and echocardiography measured cardiac function. Comparisons across ages and genotypes were evaluated via 2-way ANOVA with multiple comparison testing. Significance for myography was determined via 4-parameter nonlinear regression testing. RESULTS: Genome-wide association data linked rare human RAB27A variants with body mass index and glucose handling. Changes in glucose tolerance were observed in Rab27aash male mice at 18 months of age. In WT (wild-type) and Rab27a null male mice, body weight, adipocyte lipid area, and aortic area increased with age. In female mice, only body weight increased with age, independent of RAB27A presence. Protein signatures from male Rab27a null mice suggested greater associations with cardiovascular and metabolic phenotypes compared with female tissues. Wire myography results showed Rab27a null males exhibited increased vasoconstriction and reduced vasodilation at 8 weeks of age. Rab27a null females exhibited increased vasoconstriction and vasodilation at 20 weeks of age. Consistent with these vascular changes, male Rab27a null mice experienced age-related cardiomyopathy, with severe differences observed by 21 weeks of age. CONCLUSIONS: Global RAB27A loss impacted perivascular adipose tissue and thoracic aorta proteomic signatures, altered vasocontractile responses, and decreased left ventricular ejection fraction in mice.


Asunto(s)
Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas rab27 de Unión a GTP , Animales , Proteínas rab27 de Unión a GTP/genética , Proteínas rab27 de Unión a GTP/metabolismo , Masculino , Femenino , Ratones , Fenotipo , Tejido Adiposo/metabolismo , Vasodilatación , Vasoconstricción , Factores de Edad , Proteómica , Factores Sexuales , Aorta/metabolismo , Aorta/fisiopatología , Humanos
16.
Clin Neurophysiol ; 162: 91-120, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38603949

RESUMEN

This chapter discusses comprehensive neurophysiological biomarkers utilised in motor neuron disease (MND) and, in particular, its commonest form, amyotrophic lateral sclerosis (ALS). These encompass the conventional techniques including nerve conduction studies (NCS), needle and high-density surface electromyography (EMG) and H-reflex studies as well as novel techniques. In the last two decades, new methods of assessing the loss of motor units in a muscle have been developed, that are more convenient than earlier methods of motor unit number estimation (MUNE),and may use either electrical stimulation (e.g. MScanFit MUNE) or voluntary activation (MUNIX). Electrical impedance myography (EIM) is another novel approach for the evaluation that relies upon the application and measurement of high-frequency, low-intensity electrical current. Nerve excitability techniques (NET) also provide insights into the function of an axon and reflect the changes in resting membrane potential, ion channel dysfunction and the structural integrity of the axon and myelin sheath. Furthermore, imaging ultrasound techniques as well as magnetic resonance imaging are capable of detecting the constituents of morphological changes in the nerve and muscle. The chapter provides a critical description of the ability of each technique to provide neurophysiological insight into the complex pathophysiology of MND/ALS. However, it is important to recognise the strengths and limitations of each approach in order to clarify utility. These neurophysiological biomarkers have demonstrated reliability, specificity and provide additional information to validate and assess lower motor neuron dysfunction. Their use has expanded the knowledge about MND/ALS and enhanced our understanding of the relationship between motor units, axons, reflexes and other neural circuits in relation to clinical features of patients with MND/ALS at different stages of the disease. Taken together, the ultimate goal is to aid early diagnosis, distinguish potential disease mimics, monitor and stage disease progression, quantify response to treatment and develop potential therapeutic interventions.


Asunto(s)
Esclerosis Amiotrófica Lateral , Biomarcadores , Electromiografía , Enfermedad de la Neurona Motora , Neuronas Motoras , Conducción Nerviosa , Humanos , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Neuronas Motoras/fisiología , Enfermedad de la Neurona Motora/fisiopatología , Enfermedad de la Neurona Motora/diagnóstico por imagen , Enfermedad de la Neurona Motora/diagnóstico , Electromiografía/métodos , Conducción Nerviosa/fisiología
17.
J Orthop Res ; 42(9): 2072-2079, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38594874

RESUMEN

Paraspinal muscle atrophy is gaining attention in spine surgery due to its link to back pain, spinal degeneration and worse postoperative outcomes. Electrical impedance myography (EIM) is a noninvasive diagnostic tool for muscle quality assessment, primarily utilized for patients with neuromuscular diseases. However, EIM's accuracy for paraspinal muscle assessment remains understudied. In this study, we investigated the correlation between EIM readings and MRI-derived muscle parameters, as well as the influence of dermal and subcutaneous parameters on these readings. We retrospectively analyzed patients with lumbar spinal degeneration who underwent paraspinal EIM assessment between May 2023 to July 2023. Paraspinal muscle fatty infiltration (FI) and functional cross-sectional area (fCSA), as well as the subcutaneous thickness were assessed on MRI scans. Skin ultrasound imaging was assessed for dermal thickness and the echogenicities of the dermal and subcutaneous layers. All measurements were performed on the bilaterally. The correlation between EIM readings were compared with ultrasound and MRI parameters using Spearman's correlation analyses. A total of 20 patients (65.0% female) with a median age of 69.5 years (IQR, 61.3-73.8) were analyzed. The fCSA and FI did not significantly correlate with the EIM readings, regardless of frequency. All EIM readings across frequencies correlated with subcutaneous thickness, echogenicity, or dermal thickness. With the current methodology, paraspinal EIM is not a valid alternative to MRI assessment of muscle quality, as it is strongly influenced by the dermal and subcutaneous layers. Further studies are required for refining the methodology and confirming our results.


Asunto(s)
Impedancia Eléctrica , Imagen por Resonancia Magnética , Atrofia Muscular , Músculos Paraespinales , Humanos , Femenino , Masculino , Músculos Paraespinales/diagnóstico por imagen , Músculos Paraespinales/patología , Músculos Paraespinales/fisiopatología , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Atrofia Muscular/diagnóstico por imagen , Ultrasonografía , Miografía
19.
Anesth Pain Med (Seoul) ; 19(1): 54-61, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38311355

RESUMEN

BACKGROUND: Charcot-Marie-Tooth disease (CMTD) is a hereditary polyneuropathy associated with a life-threatening risk of pulmonary complications. CASE: A 61-year-old male with CMTD for 40 years was admitted for the drainage of an abscess in his left ankle. Total intravenous anesthesia was administered, and an electromyography device was attached to the hand for neuromuscular monitoring; however, the response was not measured. Kinemyography and acceleromyography devices were attached to both hands, and responses were obtained. After neuromuscular blockade (NMB) with rocuronium 0.6 mg/kg, the train-of-four (TOF) response on kinemyography was normally measured, but the post-tetanic count on acceleromyography consistently showed 0 during anesthesia. Sugammadex 200 mg was injected to reverse the NMB. After 5 min, the TOF ratios for kinemyography and acceleromyography exceeded 90%. The patient recovered without any complications. CONCLUSIONS: For CMTD patients, acceleromyography or kinemyography is superior to electromyography, and sugammadex can be used to reverse NMB successfully.

20.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38400266

RESUMEN

Hand-gripping training is important for improving the fundamental functions of human physical activity. Bernstein's idea of "repetition without repetition" suggests that motor control function should be trained under changing states. The randomness level of load should be visualized for self-administered screening when repeating various training tasks under changing states. This study aims to develop a sensing methodology of random loads applied to both the agonist and antagonist skeletal muscles when performing physical tasks. We assumed that the time-variability and periodicity of the applied load appear in the time-series feature of muscle deformation data. In the experiment, 14 participants conducted the gripping tasks with a gripper, ball, balloon, Palm clenching, and paper. Crumpling pieces of paper (paper exercise) involves randomness because the resistance force of the paper changes depending on the shape and layers of the paper. Optical myography during gripping tasks was measured, and time-series features were analyzed. As a result, our system could detect the random movement of muscles during training.


Asunto(s)
Mano , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Electromiografía/métodos , Mano/fisiología , Ejercicio Físico/fisiología , Fuerza de la Mano/fisiología , Miografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA