Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Molecules ; 29(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274959

RESUMEN

The combination of metal-phthalocyanine complexes and axially coordinated organic molecules into polymer chains presents a significant challenge in the synthesis of hybrid materials. A calculated structure for one-dimensional coordinate polymers with N-donor ligands using ab initio (PM6) and DFT (LanL2Dz) methods is presented. DFT methods have shown that there is a linear, one-dimensional structure without distorted geometry for the two bipyridine ligands. The components of the proposed polymers consist of square-planar Zn complexes of phthalocyanine (PcZn) connected via bridging ligands (L). Electronic properties of the monomer PcZnL of zinc phthalocyanine with bidentate ligands have been analyzed using calculations based on density functional theory (B3LYP6-31G(d,p)). Molecular orbital calculations show that this connection between the metallomacrocycle and the conjugated ligand results in a small energy gap, promising molecularly active materials as conductors. The crystallographic reports indicate that obtaining this kind of polymer with the participation of Pc Zn and bidentate ligands is possible.

2.
Chemistry ; 29(35): e202300610, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37084129

RESUMEN

The reactions of the organometallic ligand complex [Cp2 Mo2 (CO)4 (µ,η2 -Sb2 )] (C) with Ag[TEF] ([TEF]- =[Al{OC(CF3 )3 }4 ]- ) in the presence of a number of di- or polytopic N-donor molecules (1,6,7,12-tetraazaperylene (L1), 2,2'-bipyrimidine (L2), 4,4'-bipyridine (L3), trans-1,2-di(4-pyridyl)ethylene (L4) and 1,3-di(4-pyridyl)propane (L5)), were studied. Depending on the reaction stoichiometry and choice of linker, these reactions lead to the selective formation of dimeric or tetrameric supramolecular coordination complexes as well as 1D and 2D coordination polymers (CPs). The presented compounds are unique examples of supramolecular complexes incorporating both organometallic Sb-donor and organic N-donor molecules as ligands to stabilize metal ions. Moreover, one of the formed compounds, the CP [Ag4 (η2 : 1 -C)4 (L4)4 ]n [TEF]4n , represents an exceptional 1D polymer incorporating both N- and Sb-donor ligands as connectors for metal ions.


Asunto(s)
Compuestos Organometálicos , Modelos Moleculares , Ligandos , Iones , Plata
3.
Chemistry ; 29(2): e202202712, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36195558

RESUMEN

The reaction of the lithium aryl(silyl)amide Dipp(i Pr3 Si)NLi (Dipp=2,6-i Pr2 C6 H3 ) with one equivalent of SnCl2 in THF gave a novel stannylenoid Dipp(i Pr3 Si)NSnCl⋅LiCl(THF)2 . Heating the solution of amidostannylenoid in toluene to 80 °C resulted in dimeric amido(chloro)stannylene [Dipp(i Pr3 Si)NSnCl]2 , which can be converted to bis(amido)stannylene Sn[N(Dipp)(i Pr3 Si)]2 and amido(imino)stannylene Sn[N(Dipp)(i Pr3 Si)][IPrN] (IPrN=bis(2,6-diisopropylphenyl)imidazolin-2-imino). Treatment of bis(imino)stannylenoid [IPrN]2 Sn(Cl)Li with N2 O resulted in the dimeric complex [IPrNSn(Cl)OLi]2 . All compounds were characterized by NMR, elementary analysis, and X-ray structural determination.

4.
J Comput Chem ; 42(29): 2103-2115, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34420225

RESUMEN

The metal-ligand bond in a set of 60 σ-complexes has been investigated by electronic structure computations. These σ-complexes originate from the unique combination of 12 stannylenes (SnX2 ) with five azabenzene ligands (pyridine, pyrazine, pyrimidine, pyridazine, and s-triazine), where the nitrogen center of the ligand acts as σ-donor and the tin(II) center as σ-acceptor in a 1:1 fashion. The Sn ← N bond and the total interaction between the stannylene and azabenzene moieties of the σ-complexes are characterized in depth to relate the Sn ← N strength to the substitution pattern at SnX2 and to the number and the positioning of N atoms in the azabenzenes. Such X substituents as (iso)cyano and trifluoromethyl groups enhance the interaction strength, while the presence of alkyl, phenyl, and silyl substituents in SnX2 diminishes the stability of σ-complexes. A gradual weakening of the total interaction is associated with the growing number of N atoms in the azabenzenes, while the N-atom positioning in pyridazine is particularly effective in strengthening the interaction with stannylenes. Variations in the Sn ← N bond strength usually follow those in the total interaction between the moieties but the interacting quantum atoms picture of Sn ← N reveals certain intriguing exceptions.

5.
Molecules ; 25(24)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317158

RESUMEN

The search for anticancer metal-based drugs alternative to platinum derivatives could not exclude zinc derivatives due to the importance of this metal for the correct functioning of the human body. Zinc, the second most abundant trace element in the human body, is one of the most important micro-elements essential for human physiology. Its ubiquity in thousands of proteins and enzymes is related to its chemical features, in particular its lack of redox activity and its ability to support different coordination geometries and to promote fast ligands exchange. Analogously to other trace elements, the impairment of its homeostasis can lead to various diseases and in some cases can be also related to cancer development. However, in addition to its physiological role, zinc can have beneficial therapeutic and preventive effects on infectious diseases and, compared to other metal-based drugs, Zn(II) complexes generally exert lower toxicity and offer few side effects. Zinc derivatives have been proposed as antitumor agents and, among the great number of zinc coordination complexes which have been described so far, this review focuses on the design, synthesis and biological studies of zinc complexes comprising N-donor ligands and that have been reported within the last five years.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Zinc/química , Zinc/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ligandos , Estructura Molecular , Nitrógeno/química , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Bases de Schiff/química , Bases de Schiff/farmacología , Zinc/metabolismo
6.
Chempluschem ; 85(11): 2518-2527, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33226192

RESUMEN

The combined action of ultraviolet irradiation and microwave heating onto acetonitrile solution of [Re( NN )(CO)3 (NCMe)]OTf ( NN =phenantroline and neocuproine) afforded cis,trans-Re( NN )(CO)2 (NCMe)2 ]+ acetonitrile derivatives. Substitution of relatively labile NCMe with a series of aromatic N-donor ligands (pyridine, pyrazine, 4,4'-bipyridine, N-methyl-4,4'-bipyridine) gave a novel family of the diimine cis,trans-[Re( NN )(CO)2 (L)2 ]+ complexes. Photophysical studies of the obtained compounds in solution revealed unusually high absorption across the visible region and NIR phosphorescence with emission band maxima ranging from 711 to 805 nm. The nature of emissive excited states was studied using DFT calculations to show dominant contribution of 3 MLCT (dπ(Re)→π*( NN )) character. Electrochemical (CV and DPV) studies of the monocationic diimine complexes revealed one reduction and one oxidation wave assigned to reduction of the diimine moiety and oxidation of the rhenium center, respectively.

7.
Angew Chem Int Ed Engl ; 59(23): 8932-8936, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32100371

RESUMEN

An exceptionally efficient ruthenium-based catalyst for olefin oxidation has been designed by exploiting N,N'-bis(pyridylidene)oxalamide (bisPYA) as a donor-flexible ligand. The dynamic donor ability of the bisPYA ligand, imparted by variable zwitterionic and neutral resonance structure contributions, paired with the redox activity of ruthenium provided catalytic activity for Lemieux-Johnson-type oxidative cleavage of olefins to efficiently prepare ketones and aldehydes. The ruthenium bisPYA complex significantly outperforms state-of-the-art systems and displays extraordinary catalytic activity in this oxidation, reaching turnover frequencies of 650 000 h-1 and turnover numbers of several millions.

8.
Acta Crystallogr C Struct Chem ; 75(Pt 8): 1073-1083, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31380790

RESUMEN

Two CoII-based coordination polymers, namely poly[(µ4-biphenyl-2,2',5,5'-tetracarboxylato){µ2-1,3-bis[(1H-imidazol-1-yl)methyl]benzene}dicobalt(II)], [Co2(C16H6O8)(C14H14N4)2]n or [Co2(o,m-bpta)(1,3-bimb)2]n (I), and poly[[aqua(µ4-biphenyl-2,2',5,5'-tetracarboxylato){1,4-bis[(1H-imidazol-1-yl)methyl]benzene}dicobalt(II)] dihydrate], {[Co2(C16H6O8)(C14H14N4)2(H2O)2]·4H2O}n or {[Co2(o,m-bpta)(1,4-bimb)2(H2O)2]·4H2O}n (II), were synthesized from a mixture of biphenyl-2,2',5,5'-tetracarboxylic acid, i.e. [H4(o,m-bpta)], CoCl2·6H2O and N-donor ligands under solvothermal conditions. The complexes were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction and powder X-ray diffraction analysis. The bridging (o,m-bpta)4- ligands combine with CoII ions in different µ4-coordination modes, leading to the formation of one-dimensional chains. The central CoII atoms display tetrahedral [CoN2O2] and octahedral [CoN2O4] geometries in I and II, respectively. The bis[(1H-imidazol-1-yl)methyl]benzene (bimb) ligands adopt trans or cis conformations to connect CoII ions, thus forming two three-dimensional (3D) networks. Complex I shows a (2,4)-connected 3D network with left- and right-handed helical chains constructed by (o,m-bpta)4- ligands. Complex II is a (4,4)-connected 3D novel network with ribbon-like chains formed by (o,m-bpta)4- linkers. Magnetic studies indicate an orbital contribution to the magnetic moment of I and II due to the longer Co...Co distances. An attempt has been made to fit the χMT results to the magnetic formulae for mononuclear CoII complexes, the fitting indicating the presence of weak antiferromagnetic interactions between the CoII ions.

9.
J Hazard Mater ; 376: 188-199, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31128398

RESUMEN

The synthesis and characterization of two novel symmetric triazine-ring opening ligands CA-MP (pyridine derivative)/CA-BOPhen (1,10-phenanthroline derivative) functionalized SiO2-P (P = Polymer) adsorbents for separation of Pd(II) from HNO3 solutions are presented. SEM, N2 adsorption/desorption isotherms, TGA and EDS spectroscopy characterization results showed that CA-MP and CA-BOPhen were successfully introduced into the pores of SiO2-P carrier via physical intermolecular interactions. CA-MP@SiO2-P and CA-BOPhen@SiO2-P show high efficiency, high selectivity, extremely fast adsorption rates towards Pd(II) over 19 typical fission or corrosion products in HNO3 solution. The distribution coefficient Kd values of CA-MP@SiO2-P and CA-BOPhen@SiO2-P are up to 206.5 and 205.7 cm3/g, respectively, within 10-15 min of contact time in 0.4 M HNO3. The adsorption capacities of them to Pd(II) were determined to be 0.36 mmol/g and 0.23 mmol/g, respectively. The fast adsorption rates and high selectivity of two adsorbents towards Pd(II) were related to the formation of the highly preorganized complex [Pd(NO3)(L)]+ (L = CA-MP or CA-BOPhen). These results demonstrate that CA-MP@SiO2-P and CA-BOPhen@SiO2-P possess great potential for highly efficient removal of Pd(II) from highly active liquid waste (HLW).

10.
Nanomedicine (Lond) ; 13(21): 2691-2708, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30398084

RESUMEN

AIM: To study of the interactions of two new ruthenium(II) complexes (C1 and C2) with calf thymus (CT)-DNA; production of RuO2 nanoparticles using the complexes precursor. MATERIALS & METHODS: Complex C1 was characterized by x-ray crystallography. The binding of the complexes with (CT)-DNA was studied using techniques that include electronic absorption spectra, fluorescence and redox behavior. The preparation of RuO2 nanoparticles was carried out by thermal decomposition. RESULTS: The interaction mode of DNA with complexes is the type of electrostatic. It was revealed that sonication of the samples, before thermal decomposition, has been affected the morphologies and sizes of the resulting nanoparticles. CONCLUSION: The complexes are capable of interaction with DNA molecules and they have a good potential to prepare nanostructures.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Nanopartículas/química , Rutenio/química , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Humanos , Ligandos , Nanopartículas/ultraestructura , Oxidación-Reducción , Electricidad Estática , Ultrasonido
11.
J Radioanal Nucl Chem ; 316(2): 849-854, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29725153

RESUMEN

The use of replacement lanthanoid ions in actinoid chemistry is commonplace, which requires a full understanding of the similarities and differences between the two series. This overview lists, compares and discusses the available crystallographic data for N-donors for the lanthanoids and the actinoids using their trivalent state as a natural starting point for comparison.

12.
Chemistry ; 24(24): 6386-6398, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29441624

RESUMEN

The synthetic versatility of pyridylidene amide (PYA) ligands has been exploited to prepare and evaluate a diverging series of iridium complexes containing C,N-bidentate chelating aryl-PYA ligands for water oxidation catalysis. The phenyl-PYA lead structure 1 was modified (i) electronically through introduction of one, two, or three electron-donating methoxy substituents on the aryl ring, (ii) by incorporating long aliphatic chains to the pyridyl fragment of the PYA unit, and (iii) by altering the PYA positions from para-PYA to its ortho- and meta-isomers. Electrochemistry indicated no substantial electronic effect of the aliphatic chains, and only minor changes of the electron density at iridium when modifying the aryl ligand site, yet substantial alteration if the PYA ligand is the ortho- (E1/2 =+0.72 V), para- (E1/2 =+0.64 V), or meta-isomer (E1/2 =+0.56 V vs. saturated calomel electrode; SCE). In water oxidation catalysis, the long alkyl chains did not induce any rate enhancement compared with the phenyl-PYA lead compound, whereas MeO groups incorporated in the aryl group enhanced the catalytic activity from a turnover frequency (TOFmax )=1600 h-1 in the original Ph-PYA system gradually as more MeO groups were introduced up to a TOFmax =3300 h-1 for a tris(MeO)-substituted aryl-PYA system. The variation of the PYA substitution had only a minor impact on catalytic activity and revealed only a weak trend in the sequence ortho>meta>para. The high activity of the tris(MeO) system and the ortho-PYA isomer were attributed to efficient hydrogen bonding, which assists O-H bond activation and proton transfer. Remarkably, merging of the two optimized motifs, that is, an aryl unit with three MeO substituents and the PYA as the ortho isomer, into a single new aryl-PYA ligand system failed to improve the catalytic activity. Computational analysis suggests too much congestion at the active site, which hinders catalytic turnover. These results illustrate the complexity of ligand design and the subtle effects at play in water oxidation catalysis.

13.
Chemistry ; 23(55): 13574-13578, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28805935

RESUMEN

A simple synthesis based on UO2 Cl2 ⋅n H2 O and 1,10-phenanthroline (phen) resulted in the formation of a new uranyl(VI) complex [UO2 Cl2 (phen)2 ] (1), revealing a unique dodecadeltahedron coordination geometry around the uranium center with significant bending of the robust linear arrangement of the uranyl (O-U-O) unit. Quantum chemical calculations on complex 1 indicated that the weak but distinct interactions between the uranyl oxygens and the adjacent hydrogens of phen molecules play an important role in forming the dodecadeltahedron geometry that fits to the crystal structure of 1, resulting in the bending the uranyl unit. The uranyl oxygens in 1 are anticipated to be activated as compared with those in other linear uranyl(VI) compounds.

14.
Chemistry ; 23(50): 12171-12183, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28425134

RESUMEN

Tyrosinase model systems pinpoint pathways to translating Nature's synthetic abilities for useful synthetic catalysts. Mostly, they use N-donor ligands which mimic the histidine residues coordinating the two copper centres. Copper complexes with bis(pyrazolyl)methanes with pyridinyl or imidazolyl moieties are already reported as excellent tyrosinase models. Substitution of the pyridinyl donor results in the new ligand HC(3-tBuPz)2 (4-CO2 MePy) which stabilises a room-temperature stable µ-η2 :η2 -peroxide dicopper(II) species upon oxygenation. It reveals highly efficient catalytic activity as it hydroxylates 8-hydroxyquinoline in high yields (TONs of up to 20) and much faster than all other model systems (max. conversion within 7.5 min). Stoichiometric reactions with para-substituted sodium phenolates show saturation kinetics which are nearly linear for electron-rich substrates. The resulting Hammett correlation proves the electrophilic aromatic substitution mechanism. Furthermore, density functional theory (DFT) calculations elucidate the influence of the substituent at the pyridinyl donor: the carboxymethyl group adjusts the basicity and nucleophilicity without additional steric demand. This substitution opens up new pathways in reactivity tuning.

15.
Chemistry ; 22(20): 6740-5, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-26919306

RESUMEN

A pyridylideneamide ligand with variable donor properties owing to a pronounced zwitterionic and a neutral diene-type resonance structure was used as a dynamic ligand at a Cp* iridium center to facilitate water oxidation catalysis, a reaction that requires the stabilization of a variety of different iridium oxidation states and that is key for developing an efficient solar fuel device. The ligand imparts high activity (nearly three-fold increase of turnover frequency compared to benchmark systems), and exceptionally high turnover numbers, which indicate a robust catalytic cycle and little catalyst degradation.

16.
J Comput Chem ; 35(27): 1943-50, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25124719

RESUMEN

For the description of steric effects, dispersion correction is important in density functional theory. By investigation of sterically encumbered guanidine-quinoline copper bis(chelate) complexes, we could show that the correct description requires modern dispersion correction using Becke-Johnson (BJ) damping and that earlier dispersion corrections are not sufficient. The triple-zeta basis set def2-TZVP of the Ahlrichs series is balanced and converged for the structural description. With regard to functionals, the best structural description is obtained with the TPSSh functional but B3LYP is very suited as well. Cutting of ligand substituents leads to distortions which limit the predictive ability of such calculations. We recommend the calculation of "full" chemical systems with inclusion of dispersion correction using BJ damping. In the further analysis of the regarded copper bis(chelate) complexes, we found that the theoretical description of optical and Raman spectra is not much affected by the dispersion although charge transfer excitations come into play and that B3LYP/def2-TZVP is the best choice. Hence, we can derive the result that the correct structural description with dispersion serves as crucial basis for subsequent calculation steps.

17.
Chemistry ; 19(30): 9987-94, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23852961

RESUMEN

A series of cholesterol-/estradiol-appended alkynylplatinum(II) complexes with tridentate N-donor ligands, based on 2,6-bis(1-alkylpyrazol-3-yl)pyridine, has been synthesized and characterized by (1)H NMR spectroscopy, FAB-mass spectrometry, and elemental analysis. Their photophysical properties have also been investigated. Computational studies have been performed to provide insights into the nature of the electronic transitions. Some of the complexes have been found to form stable thermo- and mechanoresponsive supramolecular gels.


Asunto(s)
Alquinos/química , Colesterol/análogos & derivados , Colesterol/química , Complejos de Coordinación/química , Estradiol/análogos & derivados , Estradiol/química , Platino (Metal) , Dicroismo Circular , Complejos de Coordinación/síntesis química , Geles , Espectroscopía de Resonancia Magnética , Pirazoles/química , Piridinas/química , Espectrofotometría/métodos
18.
Chempluschem ; 78(9): 1109-1123, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31986729

RESUMEN

The third-sequential binding energies of the late first-row divalent transition-metal cations with 2,2'-bipyridine (Bpy) are determined using guided-ion-beam tandem mass spectrometry (GIBMS) techniques. The metal cations investigated include the late first-row divalent transition-metal cations, Fe2+ , Co2+ , Ni2+ , Cu2+ , and Zn2+ . The kinetic-energy-dependent cross sections for collision-induced dissociation (CID) of the M2+ (Bpy)3 complexes are analyzed to extract absolute 0 and 298 K bond dissociation energies (BDEs) for the loss of an intact Bpy ligand. Theoretical electronic structure calculations at the B3LYP, BHandHLYP, and M06 levels of theory are performed to determine stable geometries and sequential BDEs of the M2+ (Bpy)x complexes (x=1-3). BDEs computed using the M06 functional are the largest, BHandHLYP values are intermediate, whereas B3LYP produces the smallest values. Very good agreement between the B3LYP theoretically calculated and threshold collision-induced dissociation experimentally determined BDEs is found, which suggests that the B3LYP functional is capable of accurately describing the binding in these M2+ (Bpy)3 complexes. Periodic trends in the binding of the M2+ (Bpy)x complexes are examined and compared to the analogous complexes with 1,10-phenanthroline (Phen), M2+ (Phen)x . Comparisons are also made to the analogous Bpy complexes, M+ (Bpy)x , with the late first-row monovalent transition-metal cations, Co+ , Ni+ , Cu+ , and Zn+ investigated previously.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA