Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Arch Toxicol ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356346

RESUMEN

Chemical warfare nerve agents (CWNA) are neurotoxic chemicals unethically used as agents of mass destruction by terrorist outfits and during war. The available antidote against CWNA-mediated toxicity is not sufficiently effective and possesses several limitations. As a countermeasure, paraoxonase 1 (PON1), a catalytic bioscavenger, is being developed as a prophylactic treatment. However, the catalytic activity and substrate specificity of human PON1 are insufficient to be used as a potential antidote. Several laboratories have made different approaches to enhance the CWNA hydrolytic activity against various nerve agents. This review explores the holistic view of PON1 as a potential prophylactic agent against G-series CWNA poisoning, from its initial development to recent advancements and limitations. Apart from this, the review also provides an overview of all available PON1 variants that could be used as a potential prophylactic agent and discusses several possible ways to counteract immunogenicity.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125179, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39316854

RESUMEN

Among all kinds of chemical warfare agents, only cyanide and nerve agents can cause massive mortality at low concentrations. In this work, a dual-channel fluorescent probe CWAs-Thia capable of detecting cyanide and nerve agents is presented. The two reactive recognition units, pyridine and the thiazole-2-carbonyl group, of the probe for cyanide and nerve agents, respectively, produced red and blue fluorescent responses, respectively, which were attributed to excited-state intramolecular proton transfer and intramolecular charge transfer. CWAs-Thia is the first probe that can selectively recognize cyanide and nerve agent. And it has proven to be effective in visualizing cyanide and nerve agents in living cells.

3.
Small ; : e2405831, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308233

RESUMEN

Recent research has demonstrated the degradation of organophosphonates through hydrolysis using microporous UiO-66-NH2-fabric composites. Yet, challenges remain due to the limitations of organophosphonates accessing active sites in large, engineered granules. To address this, an innovative approach to integrate mesoporous UiO-66-NH2 onto various fabrics is provided, thereby overcoming previous mass transfer limitations. Mesoporosity in the UiO-66-NH2-fabric is attributed to the amphoteric cocamidopropylbetaine (CAPB) surfactant which templates the mesochannel construction. Unexpectedly, because the synthesis is aqueous, benign, low temperature (60°C), and avoids strong acids and toxic solvents, it is compatible with fragile supports such as untreated cotton. The UiO-66-NH2-fabric composite formed using treated polypropylene (PP) attains a BET specific surface area of 360 m2 g-1 comp. Remarkably, the mesoporous UiO-66-NH2-composites exhibit a pore volume as large as 0.2 cm3 g-1 comp, 33% in the mesoporous range, which is higher than other previous reports. Practically, the mesoporous UiO-66-NH2-treated PP composite enhances the rate of methyl paraoxon (DMNP) degradation, showing a t1/2 value that is 15 times faster than microporous UiO-66-NH2 composites measured under the same conditions. Similar trends are observed in the degradation of actual nerve agents. These composites hold significant potential across diverse applications, including filtration, protection, and catalysis.

4.
J Appl Toxicol ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39228234

RESUMEN

The exposure to highly toxic organophosphorus (OP) compounds, including pesticides and nerve agents, is an ongoing medical challenge. OP can induce the uncontrolled overstimulation of the cholinergic system through inhibition of the enzyme acetylcholinesterase (AChE). The cytochrome P450 (CYP) enzymes in the liver play a predominant role in the metabolism of xenobiotics and are involved in the oxidative biotransformation of most clinical drugs. Previous research concerning the interactions between OP and CYP has usually focused on organothiophosphate pesticides that require CYP-mediated bioactivation to their active oxon metabolites to act as inhibitors of AChE. Since there has been little data available concerning the effect of nerve agents on CYP, we performed a study with cyclosarin (GF) and O-ethyl-S-[2-(diisopropylamino)-ethyl]-methylphosphonothioate (VX) by using a well-established, metabolically competent in vitro liver model (HepaRG cells). The inhibitory effect of the nerve agents GF and VX on the CYP3A4 enzyme was investigated showing a low CYP3A4 inhibitory potency. Changes on the transcription level of CYP and associated oxygenases were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using the two nerve agent concentrations 250 nM and 250 µM. In conclusion, the results demonstrated various effects on oxygenase-associated genes in dependence of the concentration and the structure of the nerve agent. Such information might be of relevance for potential interactions between nerve agents, antidotes or other clinically administered drugs, which are metabolized by the affected CYP, for example, for the therapy with benzodiazepines, that are used for the symptomatic treatment of OP poisoning and that require CYP-mediated biotransformation.

5.
Chem Biol Interact ; 403: 111219, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222902

RESUMEN

Current medical countermeasures (MCMs) for nerve agent poisoning have limited efficacy, and can cause serious adverse effects, prompting the requirement for new broad-spectrum therapeutics. Human plasma-derived butyrylcholinseterase (huBChE) is a promising novel bioscavenger MCM which has shown potential in animal studies, however, is economically prohibitive to manufacture at scale. This study addresses current challenges for the economical production of a bioactive and long-acting recombinant huBChE (rBChE) in mammalian cells by being the first to directly compare novel rBChE design strategies. These include co-expression of a proline rich attachment domain (PRAD) and fusion of BChE with a protein partner. Additionally, a pre-purification screening method developed in this study enables parallel comparison of the expression efficiency, activity and broad-spectrum binding to nerve agents for ten novel rBChE molecular designs. All designed rBChE demonstrated functionality to act as broad-spectrum MCMs to G, V and A series nerve agents. Expression using the ExpiCHO™ Max protocol provided greatest expression levels and activity for all constructs, with most rBChE expressing poorly in Expi293™. Fc- or hSA-fused rBChE significantly outperformed constructs designed to mimic huBChE, including PRAD-BChE, and proved an effective strategy to significantly improve enzyme activity and expression. Choice of protein partner, directionality and the addition of a linker also impacted fusion rBChE activity and expression. Overall, hSA fused rBChE provided greatest expression yield and activity, with BChE-hSA the best performing construct. The purified and characterised BChE-hSA demonstrated similar functionality to huBChE to be inhibited by GD, VX and A-234, supporting the findings of the pre-screening study and validating its capacity to assess and streamline the selection process for rBChE constructs in a cost-effective manner. Collectively, these outcomes contribute to risk mitigation in early-stage development, providing a systematic method to compare rBChE designs and a focus for future development.

6.
J Chromatogr A ; 1736: 465385, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39326381

RESUMEN

The present study explores the potential of silica solid phase extraction for gas chromatography mass spectrometric analyses of A- and V-series nerve agents. Owing to the presence of basic amidine and amine moieties, these analyte undergo strong ionic interactions with inherently acidic silica surfaces, producing poor recoveries. Subtle optimizations in the elution composition empowered the analytes to overcome the retention barriers from sorbent surfaces. Acetone containing 10 % (v/v) NH4OH effectively minimized strong analyte-sorbent interactions allowing good to excellent recoveries. Recoveries for A-series agents ranged from 88 to 96 %. VX, which is reported to be poorly recoverable from such sorbent matrices offered best data so far, reaching up to 74 % under optimized conditions. The method detection limits for the selected analytes in mass spectrometric analysis ranged from 47 to 171 ng/ml. Strong affinities of analytes towards silica sorbent were further exploited to expand the scope of analysis and establish the method's efficacy for a wide range of organic matrices. The applicability of the method to the real world applications was also validated in blind spiking exercises in diverse organic liquid samples received in 48th, 50th and 52nd proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW).

7.
ACS Appl Mater Interfaces ; 16(37): 49305-49317, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39239733

RESUMEN

Organophosphate nerve agents (OPs) are widely used as pesticides and chemical agents and pose a threat to human health and life. At present, most personal protective equipment usually only serves as physical protection and does not have an effect of chemical detoxification. In this work, ultra lightweight graphene oxide aerogels (GAs) have been used as a multifunctional skeleton to integrate the metal-organic frameworks (MOFs) and molecularly imprinted polymers (MIPs) together for obtaining a high-performance hybrid material (MOFs/MIPs@GAs) on hydrolysis detoxification of OPs. As a porous three-dimensional material full of carboxyl groups, GAs can not only support excellent mass transfer performance but also provide a proper pH self-buffering catalytic reaction external environment for hydrolyzing OPs. The obtained MOFs/MIPs@GAs can catalyze dimethyl-4-nitrophenyl phosphate (DMNP) hydrolysis detoxification rapidly in pure water (kobs = 0.2227 min-1, t1/2 = 3.11 min). This ternary hybrid material with exceptional performance and practical applicability has vast application prospects for the development of protective equipment.

8.
J Hazard Mater ; 478: 135508, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39182297

RESUMEN

Chemical nerve agents are hazardous compounds that terrorists can exploit to pose a significant threat to public safety and national security. The nucleophilic behaviour of these agents enables their interaction with acetyl cholinesterase in the body, leading to paralysis and potentially fatal consequences. Therefore, developing robust and efficient detection methods for these agents is crucial for preventing their misuse. In this manuscript, (E)-12-(1-hydrazineylideneethyl)benzo[f]pyrido[1,2-a]indole-6,11-dione (HBID) is developed as a novel colorimetric and fluorometric probe for the detection of specific chemical nerve agent simulants in both liquid and vapor phase. HBID reacts rapidly with diethyl chlorophosphate (DCP), a common nerve agent simulant, leading to a significant increase in the fluorescence intensity. Under optimized conditions, HBID exhibits high sensitivity, good recyclability, fast response and low limit of detection (0.092 µM). NMR and mass spectral studies suggest that the reaction involves the nucleophilic addition of HBID to DCP, forming a phosphate ester. Additionally, the developed sensor demonstrates viscosity-sensitive AIE phenomena thus greatly expanding its potential applications in biological systems. This sensitivity enables precise detection and visualization of viscosity changes within cellular environments, making the sensor an invaluable tool for studying complex biological processes. The developed probe also detects pH within biologically relevant range (4-6). In practical applications, the probe-treated strips efficiently detected DCP vapor in real time, showing a noticeable fluorescence response. Further, the probe has a strong potential to detect the presence of DCP in the soil samples.


Asunto(s)
Agentes Nerviosos , Agentes Nerviosos/análisis , Agentes Nerviosos/química , Colorantes Fluorescentes/química , Colorimetría/métodos , Organofosfatos/química , Organofosfatos/análisis , Espectrometría de Fluorescencia , Límite de Detección , Reproducibilidad de los Resultados , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química , Indoles/química , Fluorometría/métodos , Compuestos Organofosforados
9.
Molecules ; 29(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39125089

RESUMEN

Nerve agents are organophosphates (OPs) that act as potent inhibitors of acetylcholinesterase (AChE), the enzyme responsible for the hydrolysis of acetylcholine. After inhibition, a dealkylation reaction of the phosphorylated serine, known as the aging of AChE, can occur. When aged, reactivators of OP-inhibited AChE are no longer effective. Therefore, the realkylation of aged AChE may offer a pathway to reverse AChE aging. In this study, molecular modeling was conducted to propose new ligands as realkylators of aged AChE. We applied a methodology involving docking and quantum mechanics/molecular mechanics (QM/MM) calculations to evaluate the resurrection kinetic constants and ligand interactions with OP-aged AChE, comparing them to data found in the literature. The results obtained confirm that this method is suitable for predicting kinetic and thermodynamic parameters of ligands, which can be useful in the design and selection of new and more effective ligands for AChE realkylation.


Asunto(s)
Acetilcolinesterasa , Inhibidores de la Colinesterasa , Indolquinonas , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Cinética , Indolquinonas/química , Simulación del Acoplamiento Molecular , Ligandos , Termodinámica , Modelos Moleculares , Humanos , Simulación de Dinámica Molecular
10.
Toxicology ; 507: 153890, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39029734

RESUMEN

In the absence of appropriate medical care, exposure to organophosphorus nerve agents, such as VX, can lead to respiratory failure, and potentially death by asphyxiation. Despite the critical role of respiratory disturbances in organophosphorus-induced toxicity, the nature and underlying mechanisms of respiratory failure remain poorly understood. This study aimed to characterize respiratory alterations by determining their type and duration in mice exposed to a subcutaneous sublethal dose of VX. Respiratory ventilation in Swiss mice was monitored using dual-chamber plethysmography for up to 7 days post-exposure. Cholinesterase activity was assessed via spectrophotometry, and levels of inflammatory biomarkers were quantified using Luminex technology in blood and tissues involved in respiration (diaphragm, lung, and medulla oblongata). Additionally, a histological study was conducted on these tissues to ensure their structural integrity. Ventilatory alterations appeared 20-25 minutes after the injection of 0.9 LD50 VX and increased until the end of the recording, i.e., 40 minutes after intoxication. Concurrent with the occurrence of apnea, increased inspiratory and expiratory times resulted in a significant decrease in respiratory rate in exposed mice compared to controls. Ventilatory amplitude and, consequently, minute volume were reduced, while specific airway resistance significantly increased, indicating bronchoconstriction. These ventilatory effects persisted up to 24 or even 72 hours post-intoxication, resolving on the 7th day. They were correlated with a decrease in acetylcholinesterase activity in the diaphragm, which persisted for up to 72 hours, and with the triggering of an inflammatory reaction in the same tissue. No significant histologic lesions were observed in the examined tissues. The ventilatory alterations observed up to 72 hours post-VX exposure appear to result from a functional failure of the respiratory system rather than tissue damage. This comprehensive characterization contributes to a better understanding of the respiratory effects induced by VX exposure, which is crucial for developing specific medical countermeasures.


Asunto(s)
Sustancias para la Guerra Química , Compuestos Organotiofosforados , Animales , Sustancias para la Guerra Química/toxicidad , Ratones , Masculino , Compuestos Organotiofosforados/toxicidad , Acetilcolinesterasa/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Diafragma/efectos de los fármacos
11.
Biomolecules ; 14(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38927082

RESUMEN

New furan, thiophene, and triazole oximes were synthesized through several-step reaction paths to investigate their potential for the development of central nervous systems (CNS)-active and cholinesterase-targeted therapeutics in organophosphorus compound (OP) poisonings. Treating patients with acute OP poisoning is still a challenge despite the development of a large number of oxime compounds that should have the capacity to reactivate acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The activity of these two enzymes, crucial for neurotransmission, is blocked by OP, which has the consequence of disturbing normal cholinergic nerve signal transduction in the peripheral and CNS, leading to a cholinergic crisis. The oximes in use have one or two pyridinium rings and cross the brain-blood barrier poorly due to the quaternary nitrogen. Following our recent study on 2-thienostilbene oximes, in this paper, we described the synthesis of 63 heterostilbene derivatives, of which 26 oximes were tested as inhibitors and reactivators of AChE and BChE inhibited by OP nerve agents-sarin and cyclosarin. While the majority of oximes were potent inhibitors of both enzymes in the micromolar range, we identified several oximes as BChE or AChE selective inhibitors with the potential for drug development. Furthermore, the oximes were poor reactivators of AChE; four heterocyclic derivatives reactivated cyclosarin-inhibited BChE up to 70%, and cis,trans-5 [2-((Z)-2-(5-((E)-(hydroxyimino)methyl)thiophen-2-yl)vinyl)benzonitrile] had a reactivation efficacy comparable to the standard oxime HI-6. In silico analysis and molecular docking studies, including molecular dynamics simulation, connected kinetic data to the structural features of these oximes and confirmed their productive interactions with the active site of cyclosarin-inhibited BChE. Based on inhibition and reactivation and their ADMET properties regarding lipophilicity, CNS activity, and hepatotoxicity, these compounds could be considered for further development of CNS-active reactivators in OP poisoning as well as cholinesterase-targeted therapeutics in neurodegenerative diseases such as Alzheimer's and Parkinson's.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Simulación del Acoplamiento Molecular , Oximas , Triazoles , Oximas/química , Oximas/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Humanos , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Estilbenos/química , Estilbenos/farmacología , Estilbenos/uso terapéutico , Estilbenos/síntesis química , Reactivadores de la Colinesterasa/química , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/síntesis química , Reactivadores de la Colinesterasa/uso terapéutico , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo
12.
Heliyon ; 10(11): e32181, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38867968

RESUMEN

Nerve agents represent a serious threat to security worldwide. Chemical terrorism has become an alarming danger since the technological progresses have simplified the production of nerve agents. Therefore, there is an immediate demand for a fast and precise detection of these compounds on-site and real-time. In this perspective, Surface-Enhanced Raman Scattering (SERS) has emerged as a well-suited alternative for on-field detection. SERS performances of unfunctionalized SERS substrates were evaluated in realistic samples. Two nerve agents, Tabun and VX, were diluted in two matrix models: a contact lens solution, and a caffeine-based eye serum. The performance two research-grade instruments and two portable devices were compared. Despite the use of a small sampling volume of complex matrices without any sample pre-treatment, we achieved Tabun detection in both media, with a practical limit of detection (LOD) in the range of 7-9 ppm in contact lens liquid, and of 10.2 ppm in eye serum. VX detection turned out to be more challenging and was achieved only in contact lens solution, with a practical LOD in the range of 0.6-5 ppm. These results demonstrate the feasibility of on-field detection of nerve agents with SERS, that could be implemented when there is suspicion of chemical threat.

13.
Mol Neurobiol ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867111

RESUMEN

Acute nerve agent exposure can kill a person within minutes or produce multiple neurotoxic effects and subsequent brain damage with potential long-term adverse outcomes. Recent abuse of nerve-agents on Syrian civilians, during Japan terrorist attacks, and personal assassinations in the UK, and Malaysia indicate their potential threat to world population. Existing nerve agent antidotes offer only incomplete protection especially, if the treatment is delayed. To develop the effective drugs, it is advantageous to elucidate the underlying mechanisms of nerve agent-induced multiple neurological impairments. This study aimed to investigate the molecular basis of neuroinflammation during nerve agent toxicity with focus on inflammasome-associated proteins and neurodegeneration. In rats, NOD-like receptor family pyrin domain containing 3 (NLRP3), and glial fibrillary acidic protein (GFAP) immunoreactivity levels were considerably increased in the hippocampus, piriform cortex, and amygdala areas after single subcutaneous soman exposure (90 µg/kg-1). Western analysis indicated a notable increase in the neuroinflammatory indicator proteins, high mobility group box 1 (HMGB1) and inducible nitric oxide synthase (iNOS) levels. The presence of fluorojade-C-stained degenerating neurons in distinct rat brain areas is indicating the neurodegeneration during nerve agent toxicity. Pre-treatment with galantamine (3 mg/kg, - 30 min) followed by post-treatment of atropine (10 mg/kg, i.m.) and midazolam (5 mg/kg, i.m.), has completely protected animals from death induced by supra-lethal dose of soman (2XLD50) and reduced the neuroinflammatory and neurodegenerative changes. Results highlight that this new prophylactic and therapeutic drug combination might be an effective treatment option for soldiers deployed in conflict areas and first responders dealing with accidental/deliberate release of nerve agents.

14.
J Appl Toxicol ; 44(9): 1361-1371, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38730557

RESUMEN

In a chemical mass casualty incident requiring skin decontamination, dry removal using absorbent materials may be beneficial to enable immediate decontamination. The efficacy of absorbent materials has therefore been evaluated, alone or procedures including both dry and wet decontamination, following skin exposure to two low volatile toxic chemicals using an in vitro human skin penetration model. Additionally, removal using active carbon wipes was evaluated with or without the Dahlgren Decon solution. All dry decontamination procedures resulted in a significantly decreased skin penetration rate of the industrial chemical 2-butoxyethanol compared to the control without decontamination. Wet decontamination following dry absorption significantly improved the efficacy compared to dry removal alone. Dry decontamination post-exposure to the chemical warfare nerve agent VX showed no decontamination efficacy. However, dry and wet decontamination resulted in a decreased agent skin penetration rate during the last hour of the experiment. At -15°C, significantly reduced VX skin penetration rates were demonstrated for both dry decontamination alone and the dry and wet decontamination procedure. The Dahlgren Decon solution significantly reduced the amount of VX penetrating the skin, but the active carbon wipe alone did not impact the skin penetration rate. In conclusion, absorbent materials are beneficial for the removal of low-volatile chemicals from the skin, but the degree of efficacy varies between chemicals. Despite the variability, immediate dry decontamination using available absorbent materials prior to wet decontamination is recommended as a general procedure for skin decontamination. The procedure should also be prioritized in cold-weather conditions to prevent patient hypothermia.


Asunto(s)
Descontaminación , Absorción Cutánea , Piel , Descontaminación/métodos , Humanos , Piel/efectos de los fármacos , Compuestos Organotiofosforados/toxicidad , Sustancias para la Guerra Química/toxicidad , Glicoles de Etileno
15.
Artículo en Inglés | MEDLINE | ID: mdl-38735125

RESUMEN

Protein adducts are vital targets for exploring organophosphorus nerve agents (OPNAs) exposure and identification, that can be used to characterize the chemical burden and initiate chemical safety measures. However, the use of protein adducts as biomarkers of OPNA exposure has developed slowly. To further promote the development of biomarkers in chemical forensics, it is crucial to expand the range of modified peptides and active sites, and describe the characteristics of OPNA adducts at specific reaction sites. This study utilized multi-species and multi-source albumins as the protein targets. We identified 56 peptides in albumins from various species (including human, horse, rat and pig), that were modified by at least two OPNAs. Diverse modification characteristics were observed in response to certain agents: including (1) multiple sites on the same peptide modified by one or more agents, (2) different reactivities at the same site in homologous albumins, and (3) different preferences at the same active sites associated with differences in the biological matrix during exposure. Our studies provided an empirical reference with rationalized underpinnings supported by estimated conformation energetics through molecular modeling. We employed different peptide markers for detection of protein adducts, as (one would do) in forensic screening for identification and quantification of chemical damage. Three characteristic peptides were screened and analyzed in human albumin, including Y287ICENQDSISSK, K438VPQVS443TPTLVEVSR, and Y162LY164EIAR. Stable fragment ions with neutral loss were found from their tandem MS/MS spectra, which were used as characteristic ions for identification and extraction of modified peptides in enzymatic digestion mixtures. Coupling these observations with computer simulations, we found that the structural stability of albumin and albumin-adduct complexes (as well as the effective force that promotes stability of different adducts) changes in the interval before and after adduct formation. In pig albumin, five active peptides existed stably in vivo and in vitro. Most of them can be detected within 30 min after OPNA exposure, and the detection window can persist about half a month. These early findings provided the foundation and rationale for utilizing pig albumin as a sampling target for rapid analysis in future forensic work.


Asunto(s)
Agentes Nerviosos , Compuestos Organofosforados , Animales , Humanos , Ratas , Compuestos Organofosforados/química , Porcinos , Agentes Nerviosos/química , Agentes Nerviosos/análisis , Caballos , Espectrometría de Masas en Tándem/métodos , Péptidos/química , Péptidos/análisis , Albúminas/química , Albúminas/metabolismo , Biomarcadores/análisis , Biomarcadores/química
16.
Chem Biol Interact ; 396: 111061, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763347

RESUMEN

Nerve agents pose significant threats to civilian and military populations. The reactivation of acetylcholinesterase (AChE) is critical in treating acute poisoning, but there is still lacking broad-spectrum reactivators, which presents a big challenge. Therefore, insights gained from the reactivation kinetic analysis and molecular docking are essential for understanding the behavior of reactivators towards intoxicated AChE. In this research, we present a systematic determination of the reactivation kinetics of three V agents-inhibited four human ChEs [(AChE and butyrylcholinesterase (BChE)) from either native or recombinant resources, namely, red blood cell (RBC) AChE, rhAChE, hBChE, rhBChE) reactivated by five standard oximes. We unveiled the effect of native and recombinant ChEs on the reactivation kinetics of V agents ex vitro, where the reactivation kinetics characteristic of Vs-inhibited BChE was reported for the first time. In terms of the inhibition type, all of the five oxime reactivators exhibited noncompetitive inhibition. The inhibition potency of these reactivators would not lead to the difference in the reactivation kinetics between native and recombinant ChE. Despite the significant differences between the native and recombinant ChEs observed in the inhibition, aging, and spontaneous reactivation kinetics, the reactivation kinetics of V agent-inhibited ChEs by oximes were less differentiated, which were supported by the ligand docking results. We also found differences in the reactivation efficiency between five reactivators and the phosphorylated enzyme, and molecular dynamic simulations can further explain from the perspectives of conformational stability, hydrogen bonding, binding free energies, and amino acid contributions. By Poisson-Boltzmann surface area (MM-PBSA) calculations, the total binding free energy trends aligned well with the experimental kr2 values.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Simulación del Acoplamiento Molecular , Agentes Nerviosos , Oximas , Humanos , Oximas/farmacología , Oximas/química , Cinética , Agentes Nerviosos/química , Agentes Nerviosos/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Simulación de Dinámica Molecular , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
Anal Bioanal Chem ; 416(15): 3569-3584, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38698257

RESUMEN

Protein adducts are important biological targets for traceability of organophosphorus nerve agents (OPNAs). Currently, the recognized biomarkers that can be used in actual samples in the field of chemical forensics only include Y411 in albumin and the active nonapeptide in butyrylcholinesterase (BChE). To explore stable and reliable protein adducts and increase the accuracy of OPNAs traceability further, we gradually expanded OPNAs-albumin adducts based on single and group adduct collection. Several stable peptides were found via LC-MS/MS analysis in human serum albumin (HSA) exposed to OPNAs in a large exposure range. These adducts were present in HSA samples exposed to OPNAs of each concentration, which provided data support for the reliability and stability of using adducts to trace OPNAs. Meanwhile, the formation mechanism of OPNAs-cysteine adduct was clarified via computer simulations. Then, these active sites found and modified peptides were used as raw materials for progressive expansion of albumin adducts. We constructed an OPNAs-HSA adducts group, in which a specific agent is the exposure source, and three or more active peptides constitute data sets for OPNAs traceability. Compared with single or scattered protein adducts, the OPNAs-HSA adduct group improves OPNAs identification by mutual verification using active peptides or by narrowing the identity range of the exposure source. We also determined the minimum detectable concentration of OPNAs for the adduct group. Two or more peptides can be detected when there is an exposure of 50 times the molar excess of OPNAs in relation to HSA. This improved the accuracy of OPNAs exposure and identity confirmation. A collection of OPNAs-albumin adducts was also examined. The collection was established by collecting, classifying, and integrating the existing albumin adducts according to the species to which each albumin belongs, the types of agents, and protease. This method can serve as a reference for discovering new albumin adducts, characteristic phosphonylated peptides, and potential biomarkers. In addition, to avoid a false negative for OPNAs traceability using albumin adducts, we explored OPNAs-cholinesterase adducts because cholinesterase is more reactive with OPNAs than albumin. Seven active peptides in red blood cell acetylcholinesterase (RBC AChE) and serum BChE can assist in OPNAs exposure and identity confirmation.


Asunto(s)
Agentes Nerviosos , Compuestos Organofosforados , Albúmina Sérica Humana , Espectrometría de Masas en Tándem , Humanos , Agentes Nerviosos/química , Agentes Nerviosos/análisis , Compuestos Organofosforados/química , Espectrometría de Masas en Tándem/métodos , Albúmina Sérica Humana/química , Cromatografía Liquida/métodos , Biomarcadores/sangre , Péptidos/química
18.
J Fluoresc ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795209

RESUMEN

Owing to the extreme toxicity and easy synthesis protocol of G-series nerve agents, developing an efficient sensor for selective detection is necessary. Although various traditional methods are utilized to identify these nerve agents, chromo-fluorogenic probes have gained attractive attention from the scientific communities. In the present contribution, we have introduced a new symmetrical aza-substituted chromo-fluorogenic sensor, BPH, for specific detection of sarin gas, one of the fatal G-series nerve agents surrogate, diethylchlorophosphate (DCP). BPH shows a noticeable naked eye colorimetric change from pale yellow to light pink in the presence of DCP, displaying highly intense bright greenish cyan color photoluminosity under a 365 nm UV lamp,which is also manifested from the color chromaticity diagram. A BPH-staining paper stirps-based test kit experiment has been demonstrated for the on-site detection of nerve agent mimics. A more attractive and efficient application of BPH as a sarin gas vapor phase sensor mimics DCP in solid and solution phases. The BPH-based chromo-fluorogenic sensor shows excellent selectivity toward DCP with a detection and quantification limit in the µM range. This report invokes a new way for the researchers to detect DCP employing a simple chromo-fluorogenic sensor, which could be prepared by a time-saving, straightforward, handy protocol from the cost-effective starting materials.

19.
Sci Rep ; 14(1): 11605, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773127

RESUMEN

Organophosphorus nerve agents are toxic compounds that disrupt neuromuscular transmission by inhibiting the neurotransmitter enzyme, acetylcholinesterase, leading to rapid death. A hybrid composite was synthesized using a hydrothermal process for the early detection of dimethyl methyl phosphonate (DMMP), a simulant of the G-series nerve agent, sarin. Quartz crystal microbalance (QCM) and surface acoustic wave (SAW) sensors were used as detectors. Nitrogen-doped multiwalled carbon nanotubes (N-MWCNTs), cobalt oxide (Co3O4), and N-MWCNT@Co3O4 were compared to detect DMMP concentrations of 25-150 ppm. At 25 ppm, the differential frequencies (Δf) of the N-MWCNT, Co3O4, and N-MWCNT@Co3O4 sensors were 5.8, 2.3, and 99.5 Hz, respectively. The selectivity results revealed a preference for the DMMP rather than potential interference. The coefficients of determination (R2) of the N-MWCNT, Co3O4, and N-MWCNT@Co3O4 sensors for detecting 25-150 ppm DMMP were 0.983, 0.986, and 0.999, respectively. The response times of the N-MWCNT, Co3O4, and N-MWCNT@Co3O4 sensors for detecting 100 ppm DMMP were 25, 27, and 34 s, respectively, while the corresponding recovery times were 85, 105, and 181 s. The repeatability results revealed the reversible adsorption and desorption phenomena for the fixed DMMP concentration of 100 ppm. These unique findings show that synthesized materials can be used to detect organophosphorus nerve agents.

20.
J Hazard Mater ; 472: 134604, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38759283

RESUMEN

Of all chemical warfare agents (CWAs), only nerve and blood agents cause massive mortality at low concentrations. To better detect and discriminate nerve and blood agents, a reliable detection method is desirable. We report a series of fluorescent probes for nerve and blood agent detection. Among the tested probes, SR-Pip detected nerve and blood agents quickly (within 10 s for nerve agents and 1 min for blood agents). SR-Pip coupled with nerve agent produced a weak orange fluorescence with good sensitivity [limit of detection (LOD)= 5.5 µM]. Upon reaction with blood agent, the fluorescence of SR-Pip changed from orange fluorescence to blue fluorescence with detection limits as low as 9.6 nM. This probe effectively visualised different concentrations of nerve agents in living cells and mice. A portable test kit using SR-Pip instantly detected nerve and blood agents. To the best of our knowledge, SR-Pip is the first fluorescent probe for nerve and blood agent detection.


Asunto(s)
Sustancias para la Guerra Química , Colorantes Fluorescentes , Agentes Nerviosos , Animales , Colorantes Fluorescentes/química , Agentes Nerviosos/análisis , Agentes Nerviosos/toxicidad , Sustancias para la Guerra Química/análisis , Ratones , Humanos , Límite de Detección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA