Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chin Med ; 19(1): 75, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816815

RESUMEN

BACKGROUND: Myocardial infarction (MI) poses a global public health challenge, often associated with elevated mortality rates and a grim prognosis. A crucial aspect of the inflammatory injury and healing process post-MI involves the dynamic differentiation of macrophages. A promising strategy to alleviate myocardial damage after MI is by modulating the inflammatory response and orchestrating the shift from pro-inflammatory (M1) to anti-inflammatory (M2) macrophages, aiming to achieve a reduced M1/M2 ratio. Nuanxinkang (NXK), a simplified herbal decoction, has demonstrated noteworthy cardioprotective, inflammation-regulating, and myocardial energy metabolism-regulating properties. METHODS: In this study, we constructed an MI model by ligating coronary arteries to investigate the efficacy of NXK in improving ventricular remodeling and cardiac function. Mice were administered NXK (1.65 g/kg/d) or an equivalent volume of regular saline via gavage for 28 consecutive days, commencing the day after surgery. Then, we conducted echocardiography to assess the cardiac function, Masson staining to illustrate the extent of myocardial fibrosis, TUNEL staining to reveal myocardial apoptosis, and flow cytometry to analyze the polarization of M1 and M2 macrophages in the hearts. Besides, a lipopolysaccharide (LPS)-induced pro-inflammatory macrophage (M1) polarization model was implemented in RAW264.7 cells to elucidate the underlying mechanism of NXK in regulating macrophage polarization. RAW264.7 cells were pre-treated with or without NXK-containing serum. Oxidative stress was detected by MitoSox staining, followed by Seahorse energy metabolism assay to evaluate alterations in mitochondrial metabolic patterns and ATP production. Both In vivo and in vitro, HIF-1α and PDK1 were detected by fluorescent quantitative PCR and Western blotting. RESULTS: In vivo, MI mice exhibited a decline in cardiac function, adverse ventricular remodeling, and an increase in glycolysis, coupled with M1-dominant polarization mediated by the HIF-1α/PDK1 axis. Notably, robust responses were evident with high-dose NXK treatment (1.65 g/kg/day), leading to a significant enhancement in cardiac function, inhibition of cardiac remodeling, and partial suppression of macrophage glycolysis and the inflammatory phenotype in MI mice. This effect was achieved through the modulation of the HIF-1α/PDK1 axis. In vitro, elevated levels of mitochondrial ROS production and glycolysis were observed in LPS-induced macrophages. Conversely, treatment with NXK notably reduced the oxidative stress damage induced by LPS and enhanced oxidative phosphorylation (OXPHOS). Furthermore, NXK demonstrated the ability to modify the energy metabolism and inflammatory characteristics of macrophages by modulating the HIF-1α/PDK1 axis. The influence of NXK on this axis was partially counteracted by the HIF-1α agonist DMOG. And NXK downregulated PDK1 expression, curtailed glycolysis, and reversed LPS-induced M1 polarization in macrophages, similar to the PDK1 inhibitor DCA. CONCLUSION: In conclusion, NXK protects against MI-induced cardiac remodeling by inducing metabolic reprogramming and phenotypic differentiation of macrophages, achieved through the modulation of the HIF-1α/PDK1 axis. This provides a novel and promising strategy for the treatment of MI.

2.
Phytomedicine ; 108: 154494, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36279758

RESUMEN

BACKGROUND: Mitochondrial dysfunction is an important pathological feature of chronic heart failure (CHF). Regulation of mitophagy can effectively maintain mitochondrial homeostasis and energy metabolism, thereby inhibiting the development of CHF. Nuanxinkang (NXK), a Chinese herbal compound preparation, has significant cardioprotective effects on CHF; however, its underlying mechanism on mitophagy has not been completely clarified. This research intended to investigate the mechanism of NXK in treating myocardial infarction (MI)-induced CHF. METHODS: The left anterior descending coronary artery (LAD) ligation surgery was performed to establish an MI-induced CHF model in male C57BL/6 mice. From 1 day after surgery, mice were given NXK (0.41, 0.82 or 1.65 g/kg/d), Perindopril (PDPL, 0.607 mg/kg/d), or an equivalent amount of sterile water by gavage for 28 continuous days. Then, mice were examined for cardiac function, myocardial fibrosis, cardiomyocyte apoptosis, mitochondrial structure and mitophagy levels of cardiomyocytes, etc. In addition, a hypoxic injury model was created using HL-1 cardiomyocytes from wild-type (WT) mice. HL-1 cells were pretreated with or without NXK-containing serum. Mitochondrial function and mitophagy levels were examined in HL-1 cells. RESULTS: In MI-induced CHF mice, cardiac dysfunction, severe cardiac remodeling, elevated levels of oxidative stress, reduced ATP levels, and inhibition of PINK1/Parkin-mediated mitophagy were observed. High-dose NXK treatment (1.65 g/kg/d) significantly improved myocardial energy metabolism, inhibited cardiac remodeling, improved cardiac function, and restored cardiac PINK1/Parkin-mediated mitophagy levels to some extent in MI mice. In vitro, elevated levels of mitochondrial reactive oxygen species (ROS) with impaired mitochondrial membrane potential (ΔΨm) were observed in hypoxic HL-1 cells. While NXK treatment significantly protected cardiomyocytes from hypoxia-induced mitochondrial dysfunction, which is consistent with the in vivo results. Further studies showed that NXK could increase PINK1/Parkin-mediated mitophagy levels in cardiomyocytes, which could be blocked by the mitophagy inhibitor Mdivi-1. CONCLUSION: In conclusion, NXK could prevent cardiac mitochondrial dysfunction and improve cardiac function against MI-induced CHF by promoting Pink1/Parkin-mediated mitophagy, which represents a very prospective strategy for the treatment of CHF.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Infarto del Miocardio , Animales , Masculino , Ratones , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/etiología , Ratones Endogámicos C57BL , Mitofagia , Infarto del Miocardio/tratamiento farmacológico , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Remodelación Ventricular , Medicamentos Herbarios Chinos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA