Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 215: 10-24, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25458172

RESUMEN

In order to maintain regulatory processes, animals are expected to be adapted to the range of environmental stressors usually encountered in their environmental niche. The available capacity of their stress responses is termed their reactive scope, which is utilised to a greater or lesser extent to deal with different stressors. Typically, non-invasive hormone assessment is used to measure the physiological stress responses of wild animals, but, for methodological reasons, such measurements are not directly comparable across studies, limiting interpretation. To overcome this constraint, we propose a new measure of the relative strength of stress responses, 'demonstrated reactive scope', and illustrate its use in a study of ecological correlates (climate, food availability) of faecal glucocorticoid (fGC) levels in two forest-living troops of baboons. Results suggest the wild-feeding troop experiences both thermoregulatory and nutritional stress, while the crop-raiding troop experiences only thermoregulatory stress. This difference, together with the crop-raiding troop's lower overall physiological stress levels and lower demonstrated fGC reactive scope, may reflect nutritional stress-buffering in this troop. The relatively high demonstrated fGC reactive scope levels of both troops compared with other baboons and primate species, may reflect their extreme habitat, on the edge of the geographic range for baboons. Demonstrated reactive scope provides a means of gauging the relative strengths of stress responses of individuals, populations, or species under different conditions, enhancing the interpretive capacity of non-invasive studies of stress hormone levels in wild populations, e.g. in terms of animals' adaptive flexibility, the magnitude of their response to anthropogenic change, or the severity of impact of environmental conditions.


Asunto(s)
Adaptación Fisiológica , Ambiente , Papio/fisiología , Estrés Fisiológico , Animales , Clima , Ecosistema , Heces/química , Conducta Alimentaria/fisiología , Bosques , Glucocorticoides/metabolismo , Humanos
2.
Front Microbiol ; 6: 1507, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26779162

RESUMEN

Nitrogen (N) and phosphorus (P) availability both control microbial decomposers and litter decomposition. However, these two key nutrients show distinct release patterns from decomposing litter and are unlikely available at the same time in most ecosystems. Little is known about how temporal differences in N and P availability affect decomposers and litter decomposition, which may be particularly critical for tropical rainforests growing on old and nutrient-impoverished soils. Here we used three chemically contrasted leaf litter substrates and cellulose paper as a widely accessible substrate containing no nutrients to test the effects of temporal differences in N and P availability in a microcosm experiment under fully controlled conditions. We measured substrate mass loss, microbial activity (by substrate induced respiration, SIR) as well as microbial community structure (using phospholipid fatty acids, PLFAs) in the litter and the underlying soil throughout the initial stages of decomposition. We generally found a stronger stimulation of substrate mass loss and microbial respiration, especially for cellulose, with simultaneous NP addition compared to a temporally separated N and P addition. However, litter types with a relatively high N to P availability responded more to initial P than N addition and vice versa. A third litter species showed no response to fertilization regardless of the sequence of addition, likely due to strong C limitation. Microbial community structure in the litter was strongly influenced by the fertilization sequence. In particular, the fungi to bacteria ratio increased following N addition alone, a shift that was reversed with complementary P addition. Opposite to the litter layer microorganisms, the soil microbial community structure was more strongly influenced by the identity of the decomposing substrate than by fertilization treatments, reinforcing the idea that C availability can strongly constrain decomposer communities. Collectively, our data support the idea that temporal differences in N and P availability are critical for the activity and the structure of microbial decomposer communities. The interplay of N, P, and substrate-specific C availability will strongly determine how nutrient pulses in the environment will affect microbial heterotrophs and the processes they drive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA