Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.511
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 678(Pt A): 447-457, 2025 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-39213997

RESUMEN

Developing efficient and cost-effective platinum-group metal-free (PGMF) catalysts for the oxygen reduction reaction (ORR) is crucial for energy conversion and storage devices. Among these catalysts, metal-nitrogen-carbon (MNC) materials, particularly cobalt single-atom catalysts (CoSANC), show promise as ORR electrocatalysts. However, their ORR activity is often hindered by strong hydroxyl (OH) adsorption on the Co sites. While the impact of strain engineering on MNC electrocatalysts has been minimally explored, recent studies suggest its potential to enhance catalytic performance and optimize intrinsic activity in traditional bulk catalysts. In this context, we investigate the effect of surface strain on CoSANC for ORR activity and correlate substrate-strain-induced geometric distortions with catalytic activity using experimental and theoretical methods. The findings suggest that the d-band center gap of spin states (Δεd) may be a preferred descriptor for predicting strain-dependent ORR performance in MNC catalysts. Leveraging CoSANC moiety placed on a substrate with an average size of 1.0 µm, we achieve performance comparable to that of commercial Pt/C catalysts when used as a cathode catalyst in zinc-air batteries. This investigation unveils the structure-function relationship of MNC electrocatalysts regarding strain engineering and provides valuable insights for future ORR activity design and enhancement.

2.
J Colloid Interface Sci ; 678(Pt A): 806-817, 2025 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-39217696

RESUMEN

Transition metal-based nanoparticles (NPs) are emerging as potential alternatives to platinum for catalyzing the oxygen reduction reaction (ORR) in zinc-air batteries (ZAB). However, the simultaneous coexistence of single-atom moieties in the preparation of NPs is inevitable, and the structural complexity of catalysts poses a great challenge to identifying the true active site. Herein, by employing in situ and ex situ XAS analysis, we demonstrate the coexistence of single-atom moieties and iron phosphide NPs in the N, P co-doped porous carbon (in short, Fe-N4-Fe2P NPs/NPC), and identify that ORR predominantly proceeds via the atomic-dispersed Fe-N4 sites, while the presence of Fe2P NPs exerts an inhibitory effect by decreasing the site utilization and impeding mass transfer of reactants. The single-atom catalyst Fe-N4/NPC displays a half-wave potential of 0.873 V, surpassing both Fe-N4-Fe2P NPs/NPC (0.858 V) and commercial Pt/C (0.842 V) in alkaline condition. In addition, the ZAB based on Fe-N4/NPC achieves a peak power density of 140.3 mW cm-2, outperforming that of Pt/C-based ZAB (91.8 mW cm-2) and exhibits excellent long-term stability. This study provides insight into the identification of true active sites of supported ORR catalysts and offers an approach for developing highly efficient, nonprecious metal-based catalysts for high-energy-density metal-air batteries.

3.
J Colloid Interface Sci ; 678(Pt B): 1104-1111, 2025 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-39276518

RESUMEN

In the pursuit of optimizing Fe-N-C catalysts for the oxygen reduction reaction (ORR), the incorporation of alloy nanoparticles has emerged as a prominent strategy. In this work, we effectively synthesized the FeRu-NC catalyst by anchoring Fe-Ru alloy nanoparticles and FeN4 single atom sites onto carbon nanotubes. The FeRu-NC catalyst exhibits significantly enhanced ORR activity and long-term stability, with a high half-wave potential of 0.89 V (vs. RHE) in alkaline conditions, and the half-wave potential remains nearly unchanged after 5000 cycles. The zinc-air battery (ZAB) assembled with FeRu-NC demonstrates a power density of 169.1 mW cm-2, surpassing that of commercial Pt/C. Density functional theory (DFT) calculations reveal that the synergistic interaction between the Fe-Ru alloy and FeN4 single atoms alters the electronic structure and facilitates charge transfer at the FeN4 sites, thereby modulating the adsorption and desorption of ORR intermediates. This enhancement in catalytic activity for the ORR process underscores the potential of this approach for refining M-N-C catalysts, providing novel insights into their optimization strategies.

4.
J Colloid Interface Sci ; 677(Pt A): 677-686, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39116565

RESUMEN

Developing carbon-supported Pt-based electrocatalysts with high activity and long-durability for the oxygen reduction reaction (ORR) is an enormous challenge for their commercial applications due to the corrosion of carbon supports in acid/alkaline solution at high potential. In this work, a Janus structural TaON/graphene-like carbon (GLC) was synthesized via an in-situ molecular selfassembly strategy, which was used as a dual-carrier for platinum (Pt). The as-obtained Pt/TaON/GLC presents high half-wave potential (0.94 V vs. RHE), excellent mass (1.48 A mgPt-1) and specific (1.75 mA cmPt-2) activities at 0.9 V, and superior long-term durability with a minimal loss (8.0 %) of mass activity after 10,000 cycles in alkaline solution, outperforming those of Pt/C and other catalysts. The structural characterizations and density functional theory (DFT) calculations indicate that the Pt/TaON/GLC catalyst exhibits the maximum synergies, including enhanced interfacial electron density, improved charge transfer, enhanced O2 adsorption, andsuperimposed OO cleavage. This work shows a potential strategy for preparing the high-active and long-durable Pt-based electrocatalyst by synergism-promoted interface engineering.

5.
J Colloid Interface Sci ; 677(Pt A): 771-780, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39121661

RESUMEN

Oxygen reduction reaction (ORR) serves as the foundation for various electrochemical energy storage devices. Fe/NC catalysts are expected to replace commercial Pt/C as oxygen electrode catalysts based on the structural tunability at the atomic level, abundant iron ore reserves and excellent activity. Nevertheless, the lack of durability and low active site density impede its advancement. In this work, a durable catalyst, CuFe/NC, for ORR was prepared by modulating the interfacial composition and electronic structure. The introduction of Cu nanoclusters partially eliminates the Fenton effect from Fe and optimizes the electron structure of FeNx, thereby effectively enhancing the long-term durability and activity. The prepared CuFe/NC exhibits a half-wave potential (E1/2) of 0.90 V and superior stability with a decrease in E1/2 of only 20 mV after 10,000 cycles. The assembled alkaline Zinc-Air batteries (ZABs) with CuFe/NC exhibit an open-circuit potential of 1.458 V. At a current density of 5 mA cm-2, the batteries are capable of operation for 600 h with a stable polarization. This CuFe/NC may promote the practical application of novel and renewable electrochemical energy storage devices.

6.
J Colloid Interface Sci ; 677(Pt A): 800-811, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39121664

RESUMEN

Zinc-air batteries, as one of the emerging areas of interest in the quest for sustainable energy solutions, are hampered by the intrinsically sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), and still suffer from the issues of low energy density. Herein, we report a MOF-on-MOF-derived electrocatalyst, FeCo@NC-II, designed to efficiently catalyze both ORR (Ehalf = 0.907 V) and OER (Ej=10 = 1.551 V) within alkaline environments, surpassing esteemed noble metal benchmarks (Pt/C and RuO2). Systematically characterizations and density functional theory (DFT) calculations reveal that the synergistic effect of iron and cobalt bimetallic and the optimized distribution of nitrogen configuration improved the charge distribution of the catalysts, which in turn optimized the adsorption / desorption of oxygenated intermediates accelerating the reaction kinetics. While the unique leaf-like core-shell morphology and excellent pore structure of the FeCo@NC-II catalyst caused the improvement of mass transfer efficiency, electrical conductivity and stability. The core and shell of the precursor constructed through the MOF-on-MOF strategy achieved the effect of 1 + 1 > 2 in mutual cooperation. Further application to zinc-air batteries (ZABs) yielded remarkable power density (212.4 mW/cm2), long cycle (more than 150 h) stability and superior energy density (∼1060 Wh/kg Zn). This work provides a methodology and an idea for the design, synthesis and optimization of advanced bifunctional electrocatalysts.

7.
J Colloid Interface Sci ; 677(Pt A): 983-993, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39128292

RESUMEN

Direct lignin fuel cells (DLFC) are one of the important forms of high value-added utilization of lignin. In this study, lignin was studied not only as a fuel but also as a catalyst. Specifically, Kraft lignin was modified with ZnCl2, KOH and THF (Tetrahydrofuran) respectively, and added to the catalyst after activation. The results of scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectrometer (EDS), Brunauer - Emmett - Teller (BET), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectra shown that AL/FePc-NrGO (activated lignin/iron phthalocyanine/nitrogen-doped reduction of graphene oxide) three-dimensional composite catalyst has been synthesized. The results showed that KOH-activated Kraft lignin had the best performance as an oxygen reduction reaction (ORR) catalyst, with a half-wave potential (E1/2) of 0.73 V and a limiting diffusion current density of 4.3 mA cm-1. The THF-modified catalyst showed similar stability and methanol resistance to 20 % Pt/C at ORR. The ORR catalyst applied to the DLFC has the best electrical performance with an open circuit voltage (OCV) was 0.53 V and the maximum power density it could reach 95.29 mW m-2 when the catalyst was modified with THF. It is encouraging that the AL/FePc-NrGO catalyst has better-generated electricity performance than 20 % Pt/C. This work has provided a new idea for developing non-noble metal catalysts and studying direct biomass liquid fuel cells.

8.
Chemistry ; : e202403279, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39501718

RESUMEN

The efficient production of hydrogen peroxide (H2O2) solution was achieved by combining cathodic two-electron oxygen reduction (2e- ORR) and anodic two-electron water oxidation (2e- WOR) in two half-reaction cells. h-BN loaded on carbon fibers (h-BN@C) is prepared and employed as an anode material to catalyze 2e- WOR, while sulfonated commercial BP-2000 carbons (BP-2000-SO3H) were prepared as the cathode materials for 2e- ORR. In a 2 M KHCO3 solution, an overall Faradaic efficiency of 97% and a total H2O2 production rate of 1872 mmol g-1 h-1 over metal-free electrodes were accomplished in a membrane-free flow cell. The dilute H2O2 solution could be directly used to degrade cationic Rhodamine B or methyl orange and anionic methylene blue dyes in water. This work proved low-cost production of dilute H2O2 solution in simple membrane-free flow cells with single electrolyte and on-site utilization for efficient dye degradation.

9.
ChemSusChem ; : e202401952, 2024 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-39503346

RESUMEN

Hydrogen peroxide (H2O2) is a widely used strong oxidant, and its traditional preparation methods, anthraquinone method, and direct synthesis method, have many drawbacks. The method of producing H2O2 by two-electron oxygen reduction reaction (2e- ORR) is considered an alternative strategy for the traditional anthraquinone method due to its high efficiency, energy saving, and environmental friendliness, but it remains a big challenge. In this review, we have described the mechanism of ORR and the principle of electrocatalytic performance testing, and have summarized the standard performance evaluation techniques for electrocatalysts to produce H2O2. Secondly, according to the theoretical calculation and experimental results, several kinds of efficient electrocatalysts are introduced. It is concluded that noble metal-based materials, carbon-based materials, non-noble metal composites, and single-atom catalysts are the preferred catalyst materials for the preparation of H2O2 by 2e- ORR. Finally, the advantages and novelty of 2e- ORR compared with traditional methods for H2O2 production, as well as the advantages and disadvantages of the above-mentioned high-efficiency catalysts, are summarized. The application prospect and development direction of high-efficiency catalysts for H2O2 production by 2e- ORR has been prospected, which is of great significance for promoting the electrochemical yield of H2O2 and developing green chemical production.

10.
Nanomaterials (Basel) ; 14(20)2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39453008

RESUMEN

Bimetallic platinum-containing catalysts are deemed promising for electrolyzers and proton-exchange membrane fuel cells (PEMFCs). A significant number of laboratory studies and commercial offers are related to PtNi/C and PtCo/C electrocatalysts. The behavior of PtPd/C catalysts has been studied much less, although palladium itself is the metal closest to platinum in its properties. Using a series of characterization methods, this paper presents a comparative study of structural characteristics of the commercial PtPd/C catalysts containing 38% wt. of precious metals and the well-known HiSpec4000 Pt/C catalyst. The electrochemical behavior of the catalysts was studied both in a three-electrode electrochemical cell and in the membrane electrode assemblies (MEAs) of hydrogen-air PEMFCs. Both PtPd/C samples demonstrated higher values of the electrochemically active surface area, as well as greater specific and mass activity in the oxygen reduction reaction in comparison with conventional Pt/C, while not being inferior to the latter in durability. The MEA based on the best of the PtPd/C catalysts also exhibited higher performance in single tests and long-term durability testing. The results of this study conducted indicate the prospects of using bimetallic PtPd/C materials for cathode catalysts in PEMFCs.

11.
Adv Mater ; : e2412004, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39444073

RESUMEN

Alloying has significantly upgraded the oxygen reduction reaction (ORR) of Pd-based catalysts through regulating the thermodynamics of oxygenated intermediates. However, the unsatisfactory activation ability of Pd-based alloys toward O2 molecules limits further improvement of ORR kinetics. Herein, the precise synthesis of nanosheet assemblies of spin-polarized PdCu-Fe3O4 in-plane heterostructures for drastically activating O2 molecules and boosting ORR kinetics is reported. It is demonstrated that the deliberate-engineered in-plane heterostructures not only tailor the d-band center of Pd sites with weakened adsorption of oxygenated intermediates but also endow electrophilic Fe sites with strong ability to activate O2 molecules, which make PdCu-Fe3O4 in-plane heterostructures exhibit the highest ORR specific activity among the state-of-art Pd-based catalysts so far. In situ electrochemical spectroscopy and theoretical investigations reveal a tandem catalytic mechanism on PdCu-Fe3O4─Fe sites that initially activate molecular O2 and generate oxygenated intermediates being transferred to Pd sites to finish the subsequent proton-coupled electron transfer steps.

12.
ChemSusChem ; : e202401385, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39446697

RESUMEN

Aluminum-air battery has the advantages of high energy density, low cost and environmental protection, and is considered as an ideal next-generation energy storage conversion system. However, the slow oxygen reduction reaction (ORR) in air cathode leads to its unsatisfactory performance. Here, we report an electrode made of N and Ni co-doped MnO2 nanotubes. In alkaline solution, Ni/N-MnO2 has higher oxygen reduction activity than undoped MnO2, with an initial potential of 1.00 V and a half-wave potential of 0.75 V. This is because it has abundant defects, high specific surface area and sufficient Mn3+ active sites, which promote the transfer of electrons and oxygen-containing intermediates. Density functional theory (DFT) calculations show that MnO2 doped with N and Ni atoms reduces the reaction overpotential and improves the ORR kinetics. The peak power density and energy density of the  Ni/N-MnO2 air electrode increased by 34.03 mW·cm-2 and 316.41 mWh·g-1, respectively. The results show that N and Ni co-doped MnO2 nanotubes are a promising air electrode, which can provide some ideas for the research of aluminum-air batteries.

13.
Materials (Basel) ; 17(19)2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39410345

RESUMEN

Pt-based intermetallic compound (IMC) nanoparticles have been considered the most promising catalysts for oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFC). Herein, we propose a strategy for producing ordered Pt3(CoNi) ternary IMC nanoparticles supported on N-doped carbon materials. Particularly, the Co and Ni are originally embedded into ZIF-derived carbon, which diffuse into Pt nanocrystals to form Pt3(CoNi) nanoparticles. Moreover, a thin layer of carbon develops outside of Pt3(CoNi) nanoparticles during the cooling process, which contributes to stabilizing the Pt3(CoNi) on carbon supports. The optimal Pt3(CoNi) nanoparticle catalyst has achieved significantly enhanced activity and stability, exhibiting a half-wave potential of 0.885 V vs reversible hydrogen electrode (RHE) and losing only 16 mV after 10,000 potential cycles between 0.6 and 1.0 V. Unlike the direct-use commercial carbon (VXC-72) for depositing Pt, we utilized ZIF-derived carbon containing dispersed Co and Ni nanocluster or nanoparticles to prepare ordered Pt3(CoNi) intermetallic catalysts.

14.
ACS Nano ; 18(42): 29233-29247, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39387278

RESUMEN

Artificial photosynthesis of hydrogen peroxide (H2O2) presents a promising environmentally friendly alternative to the industrial anthraquinone process. This work designed ultrathin metal-organic framework (MOF) nanosheets on which porphyrin ligand as an electron donor (D) and anthraquinone (AQ) as an electron acceptor (A) are integrated as the D-A complexes. The porphyrin component allows the MOF nanosheets to absorb full-spectrum solar light while the acceptor AQ motif promotes central aluminum ion coordination, hindering layer stacking to achieve a thickness of 1.0 nm. The ultrathin D-A design facilitates the separation of electrons from the MOF skeleton to the AQ motif, which induces the direct two-electron oxygen reduction reaction (ORR) mediated by the reversible redox couple of AQ-AQH2 and multielectron water oxidation reaction (WOR) driven by holes remaining on the porphyrin part. In O2-saturated water, the ultrathin MOF nanosheets outperformed the AQ-free bulk and multilayered counterparts by 2.9 and 2.6 times in H2O2 production, respectively, achieving the apparent quantum yield of 4.8% at 420 nm. It also surpasses other benchmark photocatalysts, including the typical MOF photocatalyst, MIL-125-NH2, and organic polymeric photocatalysts. The ultrathin D-A MOF photocatalyst generated H2O2 via both two-electron ORR as a major path and two-electron WOR as a minor path. This approach presents a promising strategy for the rational design of efficient nanostructured photocatalysts for solar fuels and chemicals.

15.
Angew Chem Int Ed Engl ; : e202411123, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370396

RESUMEN

Advancing the design of cathode catalysts to significantly maximize platinum utilization and augment the longevity has emerged as a formidable challenge in the field of fuel cells. Herein, we rationally design a high entropy intermetallic compound (HEIC, Pt(FeCoNiCu)3) for catalyzing oxygen reduction reaction (ORR) by an efficient machine learning stategy, where crystal graph convolutional neural networks are employed to expedite the multicomponent design. Based on a dataset generated from first-principles calculations, the model can achieve a high prediction accuracy with mean absolute errors of 0.003 for surface strain and 0.011 eV atom-1 for formation energy. In addition, we identify two chemical features (atomic size difference and mixing enthalpy) as new descriptors to explore advanced ORR catalysts. The carbon supported Pt(FeCoNiCu)3 catalyst with small particle size is successfully synthesized by a freeze-drying-annealing technology, and exhibits ultrahigh mass activity (4.09 A mgPt-1) and specific activity (7.92 mA cm-2). Meanwhile, The catalyst also shows significantly enhanced electrochemical stability which can be ascribed to the sluggish difussion effect in the HEIC structure. Beyond offering a promising low-Pt electrocatalysts for fuel cell cathode, this work offers a new paradigm to rationally design advanced catalysts for energy storage and conversion devices.

16.
J Colloid Interface Sci ; 679(Pt A): 253-261, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362150

RESUMEN

Developing a highly active and stable non-precious metal catalyst for oxygen reduction reaction (ORR) is of great practical significance for advancing fuel cell technology. In this work, a continuous two-step hydrothermal reaction followed by high temperature pyrolysis were employed to achieve in situ N-doping preferentially into Ketjenblack carbon (KB-N) and composite of KB-N and Co/CoxOy nanofilms (Co/CoxOy-NFs) as Co/CoxOy-NFs@KB-N. The N-doped state strongly affects the ORR activity of catalyst. All prepared Co/CoxOy-NFs@KB-N catalysts exhibit observably improved ORR activity compared with the basal KB-N and N-doped Co/CoxOy-NFs, in which the optimal Co/CoxOy-NFs@KB-N catalyst demonstrate the positive Eonset (0.864 V) and E1/2 (0.788 V) vs. RHE, the low Tafel slope (69.27 mV dec-1), implying quick ORR kinetics. And, the Co/CoxOy-NFs@KB-N catalyst exhibits highly electrochemical durability. The KB-N substrate can purify Co valence in CoO component, promote amorphization of CoO crystalline structure and enhance the interaction between Co/CoxOy-NFs and KB-N in Co/CoxOy-NFs@KB-N catalyst. Thus electronic effect, structural effect and synergistic effect can strengthen O2 adsorption, provide enough adsorbed sites and accelerate electron transfer, resulting in prominent ORR performance of Co/CoxOy-NFs@KB-N catalyst.

17.
Small ; : e2407869, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363644

RESUMEN

Low-coordination platinum-based nanocrystals emanate great potential for catalyzing the oxygen reduction reactions (ORR) in fuel cells, but are not widely applied owing to poor structural stability. Here, several PtCu nanocrystals (PtCu NCs) with low coordination numbers were prepared via a facile one-step method, while the desirable catalyst structures were easily obtained by adjusting the reaction parameters. Wherein, the Pt1Cu1 NCs catalyst with abundant twin boundaries and high-index facets displays 15.25 times mass activity (1.647 A mgPt -1 at 0.9 VRHE) of Pt/C owing to the abundant effective active sites, low-coordination numbers and appropriate compressive strain. More importantly, the core-shell and highly developed dendritic structures in Pt1Cu1 NCs catalyst give it an extremely high stability with only 17.2% attenuation of mass activity while 61.1% for Pt/C after the durability tests (30 000 cycles). In H2-O2 fuel cells, Pt1Cu1 NCs cathode also exhibits a higher peak power density and a longer-term lifetime than Pt/C cathode. Moreover, theoretical calculations imply that the weaker adsorption of intermediate products and the lower formation energy barrier of OOH* in Pt1Cu1 NCs collaboratively boost the ORR process. This work offers a morphology tuning approach to prepare and stabilize the low-coordination platinum-based nanocrystals for efficient and stable ORR.

18.
Small ; : e2406776, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363812

RESUMEN

Rechargeable Zn-air batteries (ZABs) hold promise as the next-generation energy-storage devices owing to their affordability, environmental friendliness, and safety. However, cathodic catalysts are easily inactivated in prolonged redox potential environments, resulting in inadequate energy efficiency and poor cycle stability. To address these challenges, anodic active sites require multiple-atom combinations, that is, ensembles of metals. Heterogeneous bimetallic atomically dispersed catalysts (HBADCs), consisting of heterogeneous isolated single atoms and atomic pairs, are expected to synergistically boost the cyclic oxygen reduction and evolution reactions of ZABs owing to their tuneable microenvironments. This minireview revisits recent achievements in HBADCs for ZABs. Coordination environment engineering and catalytic substrate structure optimization strategies are summarized to predict the innovation direction for HBADCs in ZAB performance enhancement. These HBADCs are divided into ferrous and nonferrous dual sites with unique microenvironments, including synergistic effects, ion modulation, electronic coupling, and catalytic activity. Finally, conclusions and perspectives relating to future challenges and potential opportunities are provided to optimise the performance of ZABs.

19.
Small ; : e2406627, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39363828

RESUMEN

Solid oxide fuel cells (SOFCs) are considered as advanced energy conversion technologies due to the high efficiency, fuel flexibility, and all-solid structure. Nevertheless, their widespread applications are strongly hindered by the high operational temperatures, limited material selection choices, inferior long-term stability, and relatively high costs. Therefore, reducing operational temperatures of SOFCs to intermediate-temperature (IT, 500-800 °C) range can remarkably promote the practical applications by enabling the use of low-cost materials and enhancing the cell stability. Nevertheless, the conventional cathodes for high-temperature SOFCs display inferior electrocatalytic activity for oxygen reduction reaction (ORR) at reduced temperatures. Barium cobaltite (BaCoO3-δ)-based perovskite oxides are regarded as promising cathodes for IT-SOFCs because of the high free lattice volume and large oxygen vacancy content. However, BaCoO3-δ-based perovskite oxides suffer from poor structural stability, inferior thermal compatibility, and insufficient ionic conductivity. Herein, an in-time review about the recent advances in BaCoO3-δ-based cathodes for IT-SOFCs is presented by emphasizing the material design strategies including functional/selectively doping, deficiency control, and (nano)composite construction to enhance the ORR activity/durability and thermal compatibility. Finally, the currently existed challenges and future research trends are presented. This review will provide valuable insights for the development of BaCoO3-δ-based electrocatalysts for various energy conversion/storage technologies.

20.
Small ; : e2405234, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358963

RESUMEN

Designing efficient and durable electrocatalysts for oxygen reduction reaction (ORR) is essential for proton exchange membrane fuel cells (PEMFCs). Platinum-based catalysts are considered efficient ORR catalysts due to their high activity. However, the degradation of Pt species leads to poor durability of catalysts, limiting their applications in PEMFCs. Herein, a Janus heterostructure is designed for high durability ORR in acidic media. The Janus heterostructure composes of crystalline platinum and cassiterite tin oxide nanoparticles with carbon support (J-Pt@SnO2/C). Based on the synchrotron fine structure analysis and electrochemical investigation, the crystalline reconstruction and charge redistribution at the interface of Janus structure are revealed. The tightly coupled interface could optimize the valance states of Pt and the adsorption/desorption of oxygenated intermediates. As a result, the J-Pt@SnO2/C catalyst possesses distinguishing long-term stability during the accelerated durability test without obvious degradation after 40 000 cycles and keeps the majority of activity after 70 000 cycles. Meanwhile, the catalyst exhibits outstanding activity with half-wave potential at 0.905 V and a mass activity of 0.355 A mgPt -1 (2.7 times higher than Pt/C). The approach of the Janus catalyst paves an avenue for designing highly efficient and stable Pt-based ORR catalyst in the future implementation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA