Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.757
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Food Chem ; 462: 140972, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208720

RESUMEN

Field pea seeds have long been recognized as valuable feed ingredients for animal diets, due to their high-quality protein and starch digestibility. However, the chemical composition of pea cultivars can vary across different growing locations, consequently impacting their nutrient profiles. This study employs untargeted metabolomics in conjunction with the quantification of fatty acids and amino acids to explore the influence of three different growing locations in Spain (namely Andalusia, Aragon and Asturias), on the nutritional characteristics of seeds of various pea cultivars. Significant interactions between cultivar and environment were observed, with 121 metabolites distinguishing pea profiles. Lipids, lipid-like molecules, phenylpropanoids, polyketides, carbohydrates, and amino acids were the most affected metabolites. Fatty acid profiles varied across locations, with higher C16:0, C18:0, and 18:1 n-9 concentration in Aragón, while C18:2 n-6 predominated in Asturias and C18:3 n-3 in Andalusia. Amino acid content was also location-dependent, with higher levels in Asturias. These findings underscore the impact of environmental factors on pea metabolite profiles and emphasize the importance of selecting pea cultivars based on specific locations and animal requirements. Enhanced collaboration between research and industry is crucial for optimizing pea cultivation for animal feed production.


Asunto(s)
Aminoácidos , Alimentación Animal , Ácidos Grasos , Valor Nutritivo , Pisum sativum , Semillas , Pisum sativum/metabolismo , Pisum sativum/química , Pisum sativum/crecimiento & desarrollo , Alimentación Animal/análisis , Aminoácidos/metabolismo , Aminoácidos/análisis , Semillas/química , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Ácidos Grasos/análisis , Animales , España , Metabolómica
2.
World J Gastrointest Oncol ; 16(9): 4014-4027, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39350976

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) is a lethal malignancy with limited treatment options and poor prognosis. The PEA3 subfamily of E26 transformation specific genes: ETV1, ETV4, and ETV5 are known to play significant roles in various cancers by influencing cell proliferation, invasion, and metastasis. AIM: To analyze PEA3 subfamily gene expression levels in CCA and their correlation with clinical parameters to determine their prognostic value for CCA. METHODS: The expression levels of PEA3 subfamily genes in pan-cancer and CCA data in the cancer genome atlas and genotype-tissue expression project databases were analyzed with R language software. Survival curve and receiver operating characteristic analyses were performed using the SurvMiner, Survival, and Procr language packages. The gene expression profiling interactive analysis 2.0 database was used to analyze the expression levels of PEA3 subfamily genes in different subtypes and stages of CCA. Web Gestalt was used to perform the gene ontology/ Kyoto encyclopedia of genes and genomes (GO/KEGG) analysis, and STRING database analysis was used to determine the genes and proteins related to PEA3 subfamily genes. RESULTS: ETV1, ETV4, and ETV5 expression levels were significantly increased in CCA. There were significant differences in ETV1, ETV4, and ETV5 expression levels among the different subtypes of CCA, and predictive analysis revealed that only high ETV1 and ETV4 expression levels were significantly associated with shorter overall survival in patients with CCA. GO/KEGG analysis revealed that PEA3 subfamily genes were closely related to transcriptional misregulation in cancer. In vitro and in vivo experiments revealed that PEA3 silencing inhibited the invasion and metastasis of CCA cells. CONCLUSION: The expression level of ETV4 may be a predictive biomarker of survival in patients with CCA.

3.
Int J Biol Macromol ; : 136396, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39383921

RESUMEN

Promising novel α-glucanotransferases with starch-converting activity have recently emerged from the CAZy GH70 GtfB subfamily. In this study, we thoroughly investigated and elucidated the impact of the newly characterized 4,6-α-glucanotransferase II Limosilactobacillus reuteri N1 GtfB (LrN1 GtfB), which was capable of synthesizing linear (α1 → 6) and branched (α1 → 4,6) linkages, on the fine structure, rheology, and retrogradation properties of pea starch (PS). The results revealed that as the reaction time increased, the total (α1 → 6) linkages in linear chains and branching points of PS increased from 5.6 % to 18.7 %, the molecular weight decreased from 7.3 × 106 g/mol to 7.4 × 104 g/mol, and the percentage of short chains (DP ≤ 12) increased from 47.4 % to 92.7 %, thereby producing low-molecular-weight, short-clustered novel reuterans with new (α1 → 6) linkages in both linear chains and branches. Additionally, LrN1 GtfB-modified PS exhibited lower storage/loss modulus and weaker creep property, indicating a significant attenuation of the strength and rigidity of the modified gel structure. Moreover, products derived from pea starch and LrN1 GtfB exhibited notably low retrogradation properties. These findings provide insights into the potential application of GtfB-type α-glucanotransferases in starch-based products, thereby producing unique-structured α-glucans with versatile properties from starch.

4.
J Sci Food Agric ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373186

RESUMEN

BACKGROUND: The design of plant-based microgels provides a platform for food ingredients to enhance palatability and functionality. This work aimed to explore the modifying effect of salt addition (KCl) on the structure of pea protein microgel particles (PPI MPs), on the interfacial adsorption and characteristics of formed emulsions as fat analogues. RESULTS: Salt addition (0-200 mmol L-1) promoted a structural transformation from α-helix to ß-sheet, increased the surface hydrophobicity (from 1160.8 to 2280.7), and increased the contact angle (from 56.73° to 96.47°) of PPI MPs. The electrostatic shielding effect led to the tighter packing of MPs with irregular structures and lowered the adsorption energy barrier. Notably, salt-treated PPI MPs could adjust their adsorption state at the interface. The discernible adsorption of PPI MPs with 200 mmol L-1 salt addition that possessed enhanced anti-deformation ability dominated the interfacial stabilization, whereas a relatively rougher stretched continuous interfacial film formed after spreading and deformation of 0 mmol L-1 MPs. A tribological test suggested that emulsion stabilized by MPs at 0 (0.0053) and 80 mmol L-1 (0.0068) had similar friction coefficients to commercial mayonnaise (0.0058), whereas a higher salt concentration (200 mmol L-1) lowered its oral sensation due to the adsorption layer and enhanced the resistance to droplet coalescence during oral processing. CONCLUSION: Salt could be a modifier to tune the structure of microgels, and further promote the formation and attributes of emulsions. This study would improve application attributes of PPI MPs in the design of realistic fat analogues. © 2024 Society of Chemical Industry.

5.
Int J Biol Macromol ; : 135960, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357732

RESUMEN

High moisture extrusion allows the production of plant protein-based products, including meat analogues. Building upon our previous findings showing that zein mixed with rice starch provides the necessary textural properties to formulations, different pea protein-based formulations with varying amounts of zein and rice starch or wheat gluten (as control) were produced using high moisture extrusion and the rheological, textural, and microstructural characteristics were evaluated and associated with the secondary structure of proteins. Samples containing wheat gluten presented desirable rheological and mechanical properties in terms of texturization, which was evidenced by the generation of a layered and three-dimensional viscoelastic network. The addition of rice starch to zein significantly increased the viscoelasticity of the samples due to enhanced development of non-covalent interactions that led to higher and more stable ß-sheets content and to the formation of a fibrous and layered microstructure and a 3D network nearly like those obtained with gluten. The sole replacement of pea protein by zein was not enough to develop these desired characteristics, demonstrating the importance of the non-covalent interactions between rice starch and zein for the generation of these properties. Overall, zein and rice starch improved texturization of pea protein-based gluten-free analogues made by high moisture extrusion.

6.
Plants (Basel) ; 13(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273939

RESUMEN

Aphanomyces root rot (ARR), caused by Aphanomyces euteiches, is one of the most devastating diseases that affect the production of peas. Several control strategies such as crop rotation, biocontrol, and fungicides have been proposed, but none provides a complete solution. Therefore, the deployment of resistant cultivars is fundamental. ARR resistance breeding is hampered by the moderate levels of resistance identified so far. The available screening protocols require post-inoculation root assessment, which is destructive, time-consuming, and tedious. In an attempt to address these limitations, we developed a non-destructive screening protocol based on foliar symptoms and used it to identify new sources of resistance in a Pisum spp. germplasm collection. Accessions were root inoculated separately with two A. euteiches isolates, and leaf symptoms were assessed at 5, 10, 14, 17, and 20 days after inoculation (DAI). Although the majority of accessions exhibited high levels of susceptibility, thirty of them exhibited moderate resistance. These thirty accessions were selected for a second experiment, in which they were inoculated with both A. euteiches isolates at two inoculum doses. The objective of this second trial was to confirm the resistance of these accessions by evaluating root and biomass loss, as well as foliar symptoms, and to compare root and foliar evaluations. As a result, a high correlation (R2 = 0.75) between foliar and root evaluations was observed, validating the foliar evaluation method. Notably, accessions from P.s. subsp. humile exhibited the lowest symptomatology across all evaluation methods, representing valuable genetic resources for breeding programs aimed at developing pea varieties resistant to ARR.

7.
Nutrients ; 16(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39275186

RESUMEN

As older adults tend to reduce their intake of animal-source proteins, plant-source proteins may offer valuable resources for better protein intake. The aim of this study was to assess whether the pea proteins can be used to achieve blood amino acid levels that stimulate muscle protein synthesis. We measured variations in plasma amino acid concentrations in young and older adults given pea (NUTRALYS® S85 Plus) or whey proteins either alone or in a standardized meal. The effect of amino acid concentrations on protein synthesis in C2C12 myotubes was determined. In terms of results, plasma amino acid concentrations reflected the difference between the amino acid contents of whey and pea proteins. Blood leucine showed a greater increase of 91 to 130% with whey protein compared to pea protein, while the opposite was observed for arginine (A greater increase of 147 to 210% with pea compared to whey). Culture media prepared with plasmas from the human study induced age-dependent but not protein-type-dependent changes in myotube protein synthesis. In conclusion, pea and whey proteins have the same qualities in terms of their properties to maintain muscle protein synthesis. Pea proteins can be recommended for older people who do not consume enough animal-source proteins.


Asunto(s)
Aminoácidos , Fibras Musculares Esqueléticas , Proteínas de Guisantes , Proteína de Suero de Leche , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Humanos , Masculino , Animales , Anciano , Aminoácidos/sangre , Ratones , Femenino , Adulto , Adulto Joven , Biosíntesis de Proteínas/efectos de los fármacos , Línea Celular , Proteínas Musculares/biosíntesis , Proteínas Musculares/metabolismo , Pisum sativum/química
8.
Food Res Int ; 195: 114988, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277259

RESUMEN

This study investigated the effect of gellan gum (GG) and glucono-δ-lactone (GDL) on the acid-induced gel properties of pea protein isolate (PPI) pretreated with media milling. The inclusion of GG substantially enhanced the gel hardness of PPI gel from 18.69 g to 792.47 g though slightly reduced its water holding capacity (WHC). Rheological analysis showed that GG increased storage modulus (G') and decreased damping factor of gels in the small amplitude oscillatory shear region and transformed its strain thinning behavior into weak strain overshoot behavior in the large amplitude oscillatory shear region. SEM revealed that GG transformed the microstructure of gel from a uniform particle aggregate structure to a chain-like architecture composed of filaments with small protein particles attached. Turbidity and zeta potential analysis showed that GG promoted the transformation of PPI from a soluble polymer system to an insoluble coagulant during acidification. When GG content was relatively high (0.2 %-0.3 %), high GDL content increased the electrostatic interaction between PPI and GG molecules, causing their rapid aggregation into a dense irregular aggregate structure, further enhancing gel strength and WHC. Overall, GG and GDL can offer the opportunity to modulate the microstructure and gel properties of acid-induced PPI gels, presenting potential for diversifying food gel design strategies through PPI-GG hybrid systems.


Asunto(s)
Geles , Gluconatos , Lactonas , Proteínas de Guisantes , Polisacáridos Bacterianos , Reología , Polisacáridos Bacterianos/química , Lactonas/química , Geles/química , Gluconatos/química , Proteínas de Guisantes/química , Concentración de Iones de Hidrógeno
9.
Curr Issues Mol Biol ; 46(9): 10570-10589, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39329978

RESUMEN

Grass pea (Lathyrus sativus L.) is a protein-rich crop that is resilient to various abiotic stresses, including drought. However, it is not cultivated widely for human consumption due to the neurotoxin ß-N-oxalyl-L-α, ß-diaminopropionic acid (ß-ODAP) and its association with neurolathyrism. Though some varieties with low ß-ODAP have been developed through classical breeding, the ß-ODAP content is increasing due to genotype x environment interactions. This review covers grass pea nutritional quality, ß-ODAP biosynthesis, mechanism of paralysis, traditional ways to reduce ß-ODAP, candidate genes for boosting sulfur-containing amino acids, and the potential and targets of gene editing to reduce ß-ODAP content. Recently, two key enzymes (ß-ODAP synthase and ß-cyanoalanine synthase) have been identified in the biosynthetic pathway of ß-ODAP. We proposed four strategies through which the genes encoding these enzymes can be targeted and suppressed using CRISPR/Cas9 gene editing. Compared to its homology in Medicago truncatula, the grass pea ß-ODAP synthase gene sequence and ß-cyanoalanine synthase showed 62.9% and 95% similarity, respectively. The ß-ODAP synthase converts the final intermediate L-DAPA into toxic ß-ODAP, whist ß-cyanoalanine synthase converts O-Acetylserine into ß-isoxazolin-5-on-2-yl-alanine. Since grass pea is low in methionine and cysteine amino acids, improvement of these amino acids is also needed to boost its protein content. This review contains useful resources for grass pea improvement while also offering potential gene editing strategies to lower ß-ODAP levels.

10.
Heliyon ; 10(18): e37746, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39315242

RESUMEN

Grass pea (Lathyrus sativus L.), a protein-rich pulse crop, is often overlooked due to its association with neurolathyrism and its neurotoxin, ß-ODAP. The study aims to compare the ß-ODAP content, chemical, and functional properties of four BARI varieties and two local varieties of grass pea seed flour. The findings presented that the ß-ODAP content of BARI varieties grass pea flour was significantly (p < 0.05) lower than local varieties, and the least amount of ß-ODAP was found in BARI-3 varieties (0.086 %), which is below the safe level (0.15 %) for consumption. The safe level of neurotoxin was also found in the BARI-1 variety (0.13 %), but local varieties grass pea flour of Pabna and Tangail showed a significantly higher (p < 0.05) value of 0.39 and 0.49 % ß-ODAP content, respectively. There were no significant differences in protein content among BARI and local varieties, with the highest value of 26.58 % protein content found in the BARI-2 variety. In terms of functional properties, the BARI-5 variety had the highest water absorption capacity (2.92 ml/g) and oil absorption capacity (1.48 ml/g). The grass pea BARI variety, with its high oil absorption capacity and low ß-ODAP content, can be utilized in food formulations for bakery products, sausages, and functional ingredients.

12.
Food Chem ; 463(Pt 4): 141423, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39348766

RESUMEN

To improve the stability of pea isolate protein (PPI) Pickering emulsions, this study compared the stability effects of tannic acid (TA), epigallocatechin gallate, and gallic acid on PPI, and found PPI-TA the strongest binding and the best stability. When TA concentration increased from 0 to 0.5 mmol/L, the average particle size, zeta potential, and surface hydrophobicity of PPI-TA particles decreased by 23.1 %, 17.1 %, and 63.3 % respectively. The highest viscosity and elastic storage modulus G' which was also higher than and parallel to the loss modulus G", and the lowest Turbiscan stability index were observed in the emulsion with 0.5 mmol/L TA, indicating an elastic-based gel-like texture. The concentrations of conjugated diene and thiobarbituric acid reactive substances (TBARS) were also reduced by more than 58 %, showing improved oxidative stability. The study provides new insights into the interfacial behavior of PPI-polyphenols and technical support for their applications in food industry.

13.
J Food Sci ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349982

RESUMEN

Comprehensive comprehension of the interaction between proteins and polyphenols is crucial for advancing their utilization in food processing. This study investigated no-covalent interaction between pea protein isolate (PPI) and quercetin (Que) through spectroscopic analysis and molecular simulation. Fourier transform infrared spectroscopy and circular dichroism spectrum showed that the interaction between PPI and Que changed the secondary structure of the protein due to a decrease in α-helix content and an increase in the random coil. Thermodynamic parameters indicated that the Quebound PPI via hydrogen bonds and hydrophobic interactions (ΔH > 0, ΔS > 0, and ΔG < 0), which was also confirmed by molecular docking. Particle size and ζ-potential showed that PPI and Que demonstrated effective interaction and binding capabilities, enhancing the stability. In addition, the antioxidant and bioaccessibility of complexes have also been enhanced. This study shed a light on the application of protein-polyphenol complexes for developing functional foods. PRACTICAL APPLICATION: Interaction between pea protein isolate and quercetin can change the protein conformation to maintain the stability of quercetin and is helpful to expand the market value and application value of plant protein. The research has important implications for using leguminous protein as embedded support to improve the stability of polyphenols compounds.

14.
Heliyon ; 10(18): e37994, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39323829

RESUMEN

To address the fungal wilt of pigeon pea caused by Fusarium oxysporium f. sp. udum, farmers currently rely on chemical fungicides, despite their harmful effects. However, there is a growing need for safer alternatives like green pesticides. Bacterial biocontrol agents and their derivatives serve as potential green pesticides in the management of plant pathogens. In the present study, we aimed to identify indigenous Bacillus subtilis strains effective against F. oxysporium f. sp. udum. We used PCR and MALDI-TOF analysis to identify the active components responsible for the efficiency of efficient strain. Biochemical studies of cell-free extracts extracted from B. subtilis strains demonstrated the highest biosurfactant activity in NBAIR BSWG1, with an oil displacement of 2 cm and an emulsification index of 60 %. Molecular characterization confirmed the presence of surfactin, fengycin, and iturin coding genes in the B. subtilis strains, among them, NBAIR BSWG1 showed the highest number of lipopeptide-producing genes. Meanwhile, NBAIR BSWG1 showed inhibition of 79.84 % against F. oxysporium f. sp. udum using cell-free extract. Further metabolite profiling of NBAIR BSWG1 using MALDI-TOF analysis further confirmed surfactin, fengycin, and iturin in the purified cell-free extract of NBAIR BSWG1. Two peaks with m/z of 923.77 and 1149.92 were identified as novel lipopeptide compounds which need further characterization. The present study identified NBAIR BSWG1 as an efficient bacterial strain for the inhibition of F. oxysporium f. sp. udum and its antifungal properties are mainly due to the production of cyclic lipopeptides.

15.
Oncol Rep ; 52(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39219276

RESUMEN

Subsequently to the publication of the above paper, an interested reader drew to the authors' attention that the control western blots shown for Fig. 1A and B on p. 908 and Fig. 8A and C on p. 911 were apparently the same, where different experiments were intended to have been portrayed. After having re­examined their original data files, the authors realized that these figures had been published with the control western blots shown incorrectly for Fig. 1A and 8C. The  corrected versions of this pair of figures are shown on the next page. Note that the corrections made to these figures do not affect the overall conclusions reported in the paper. The authors are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this Corrigendum, and apologize to the readership for any inconvenience caused. [Oncology Reports 33: 905­912, 2015; DOI: 10.3892/or.2014.3656].

16.
World J Microbiol Biotechnol ; 40(10): 317, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39261398

RESUMEN

In this study, nine endophytic fungi capable of producing multiple phenolic compounds were screened and identified from 152 fungi isolated from pigeon pea in a natural habitat (Honghe, Yunnan Province, China). Talaromyces neorugulosus R-209 exhibited the highest potential for phenolic compound production. L-phenylalanine feeding was used to enhance phenolic compound production in T. neorugulosus R-209 cultures. Under the optimal feeding conditions (l-phenylalanine dose of 0.16 g/L and feeding phase of 6 days), the yields of genistein, apigenin, biochanin A, and cajaninstilbene acid increased by 15.59-fold, 7.20-fold, 25.93-fold, and 10.30-fold over control, respectively. T. neorugulosus R-209 fed with l-phenylalanine was found to be stable in the production of phenolic compounds during ten successive subcultures. Moreover, bioactivities of extracts of T. neorugulosus R-209 cultures were significantly increased by l-phenylalanine feeding. Overall, l-phenylalanine feeding strategy made T. neorugulosus R-209 more attractive as a promising alternative source for the production of health-beneficial phenolic compounds in the nutraceutical/medicinal industries.


Asunto(s)
Cajanus , Endófitos , Fenoles , Fenilalanina , Talaromyces , Talaromyces/metabolismo , Fenilalanina/metabolismo , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Fenoles/metabolismo , Cajanus/microbiología , China , Ecosistema
17.
J Plant Res ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39305403

RESUMEN

The widespread use of antibiotics in intensive animal husbandry, and the agricultural utilization of manure from such farms, imposes a significant burden on the environment. Consequently, the effects of antibiotics should be studied not only in animals and humans but also in all components of biocenoses and agrocenoses. In our study, we analyze the impact of four different concentrations of tetracycline present in soil (0, 5, 50, and 500 mg/kg of soil) on the growth and key photosynthesis parameters of pea seedlings: chlorophyll concentration, aminolevulinic acid concentration, aminolevulinic acid dehydrogenase activity, and ribulose bisphosphate carboxylase-oxygenase (RuBisCO) activity. At the lowest tetracycline concentration, chlorophyll content decreased by 13% compared to the control (0 tetracycline), while at the highest antibiotic concentration, it decreased by as much as 27%. Similarly, the decrease in aminolevulinic acid (a chlorophyll precursor) concentration was significant, amounting to 34%. However, the activity of the dehydrogenase enzyme, which consumes this precursor, decreased even more drastically by 51%, indicating significant disturbances in the light phase of photosynthesis. However, the activity of RuBisCO in pea plants subjected to tetracycline was even more severely affected, dropping by 58%, 69%, and 70% in soils with increasing concentrations of tetracycline. The reduction in enzyme activity could only partially be explained by a less pronounced decrease in the quantity of RuBisCO (large subunit) protein, which amounted to 6.5%, 11%, and 35% for tetracycline concentrations of 5, 50, and 500 mg/kg of soil, respectively.

18.
Mol Neurobiol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269548

RESUMEN

ETS domain transcription factor superfamily is highly conserved throughout metazoa and is involved in many aspects of development and tissue morphogenesis, and as such, the deregulation of ETS proteins is quite common in many diseases, including cancer. The PEA3 subfamily in particular has been extensively studied with respect to tumorigenesis and metastasis; however, they are also involved in the development of many tissues with branching morphogenesis, such as lung or kidney development. In this review, we aim to summarize findings from various studies on the role of Pea3 subfamily members in nervous system development in the embryo, as well as their functions in the adult neurons. We further discuss the different signals that were shown to regulate the function of the Pea3 family and indicate how this signal-dependent regulation of Pea3 proteins can generate neuronal circuit specificity through unique gene regulation. Finally, we discuss how these developmental roles of Pea3 proteins relate to their role in tumorigenesis.

19.
Ann Thorac Surg ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39265713

RESUMEN

Chronic thromboembolic pulmonary hypertension (CTEPH) is a consequence of unresolved organized thromboembolic obstruction of the pulmonary arteries, which can cause pulmonary hypertension (PH) and right heart failure (RVF). Due to its subtle signs, it is challenging to determine its exact incidence and prevalence. Furthermore, CTEPH may also present without any prior venous thromboembolic (VTE) history, contributing to underdiagnosis and undertreatment. Diagnosis requires a high degree of suspicion and is ruled out by a normal V/Q scintigraphy. Additional imaging by CT and/or conventional angiography, as well as right heart catheterization are required to confirm CTEPH and formulate treatment plans. Pulmonary thromboendarterectomy (PTE) is the treatment of choice for eligible patients and can be potentially curative. PTE has a low mortality rate of 1-2% at expert centers and offers excellent long-term survival. Furthermore, recent advances in the techniques allow distal endarterectomy with comparable outcomes. There are alternative treatment options available for those who may not be operable or have prohibitive risks, providing some benefit. However, CTEPH is a progressive disease with low long-term survival rates if left untreated. Given excellent short and long-term outcomes of surgery, as well as the benefits seen with other treatment modalities in non-candidate patients, it is crucial that precapillary PH and CTEPH are ruled out in any patient with dyspnea of unexplained etiology. These patients should be referred to expert centers where accurate operability assessment, and appropriate treatment strategies can be offered by a multidisciplinary team.

20.
Foods ; 13(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39272420

RESUMEN

Addressing the challenge of blood glucose fluctuations triggered by the ingestion of pea starch, we have adopted an eco-friendly strategy utilizing microwave irradiation to synthesize the novel pea starch-tea polyphenol complexes. These complexes exhibit high swelling capacity and low solubility, and their thermal profile with low gelatinization temperature and enthalpy indicates adaptability to various processing conditions. In vitro digestion studies showed that these complexes have a small amount of rapidly digestible starch and a large amount of resistant starch, leading to a slower digestion rate. These features are particularly advantageous for diabetics, mitigating glycemic excursions. Structurally, the pea starch-tea polyphenol complexes exhibited a B + V-shaped dense network with low crystallinity, high orderliness, and a prominent double helix content, enhancing its stability and functionality in food applications. In summary, these innovative complexes served as a robust platform for developing low glycemic index foods, catering to the nutritional needs of diabetics. It offers an environmentally sustainable approach to food processing, fostering human well-being and propelling innovation in the food industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA