Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 305
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202412146, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001682

RESUMEN

Conventional approaches to creating high-resolution electric circuits face challenges such as the requirement for skilled personnel and expensive equipment. In response, we propose an innovative strategy that leverages a photochemically modified porous polymer skeleton for in-situ circuit fabrication. By developing maskless surface energy manipulation that guides PEDOT:PSS-based conductive ink deposition, electric circuits with high precision, density, stability and adaptability are effortlessly engineered within or atop the porous skeleton, enabling transitions between 2D and 3D circuit configurations. This process simplifies prototyping while significantly reducing costs and maintaining efficiency, promising advancements across various technological sectors.

2.
ACS Appl Mater Interfaces ; 16(30): 39580-39591, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037029

RESUMEN

Extreme-ultraviolet (EUV) photolithography, which enables the high-throughput production of well-defined patterns with critical dimensions on the scale of several nanometers, is essential for the fabrication of a highly integrated semiconductor. The full exploitation of EUV lithographic techniques necessitates the development of photoresist (PR) materials with both high EUV sensitivity and a long shelf-life. However, despite notable advances, the available library of EUV PR materials remains limited. Here we report EUV PRs capable of forming preorganized layers consisting of ladder-structured tetranuclear stannoxanes. Single-crystal X-ray structure analyses reveal a close interlayer distance of 8.5 Å through interdigitation of the pseudoaxial butyl chains. The developed EUV PR materials exhibit high solubility in organic solvents commonly used in semiconductor processing, enabling the preparation of PR solutions with superior wettability and uniform film-forming ability on Si wafer substrates. These PR solutions also demonstrate notable resistance to hydrolytic decomposition for as long as 1 month, indicating a long shelf-life. Our PR materials enabled negative-tone patterning processes that involved a solubility decrease upon irradiation. The presence of chromophoric ligands makes our PR materials compatible with conventional UV photolithography, through photochemical reactions involving carbonyl units. In addition, e-beam and EUV lithography could produce fine line patterns of our PRs, with critical dimensions of 20 and 15 nm, respectively. Our research showcases the potential of layer-ordered organooxotin clusters for EUV PR applications.

3.
Small ; : e2400346, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958090

RESUMEN

All-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals have drawn great interest because of their excellent photophysical properties and potential applications. However, their poor stability in water greatly limited their use in applications that require stable structures. In this work, a facile approach to stabilize CsPbBr3 nanowires is developed by using SU-8 as a protection medium; thereby creating stable CsPbBr3/SU-8 microstructures. Through photolithography and layer-by-layer deposition, CsPbBr3/SU-8 is used to fabricate bilayer achiral microswimmers (BAMs), which consist of a top CsPbBr3/SU-8 layer and a bottom Fe3O4 magnetic layer. Compared to pure CsPbBr3 nanowires, the CsPbBr3/SU-8 shows long-term structural and fluorescence stability in water against ultrasonication treatment. Due to the magnetic layer, the motion of the microswimmers can be controlled precisely under a rotating magnetic field, allowing them to swim at low Reynolds number and tumble or roll on surfaces. Furthermore, CsPbBr3/SU-8 can be used to fabricate various types of planar microstructures with high throughput, high consistency, and fluorescence properties. This work provides a method for the stabilization of CsPbBr3 and demonstrates the potential to mass fabricate planar microstructures with various shapes, which can be used in different applications such as microrobotics.

4.
ACS Appl Mater Interfaces ; 16(26): 33571-33577, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38900964

RESUMEN

Because of the high dielectric strength of water, it is extremely difficult to discharge plasma in a controllable way in the aqueous phase. By using lithographically defined electrodes and metal/dielectric nanoparticles, we create electric field enhancement that enables plasma discharge in liquid electrolytes at significantly reduced applied voltages. Here, we use high voltage (10-30 kV) nanosecond pulse (20 ns) discharges to generate a transient plasma in the aqueous phase. An electrode geometry with a radius of curvature of approximately 10 µm, a gap distance of 300 µm, and an estimated field strength of 5 × 106 V/cm resulted in a reduction in the plasma discharge threshold from 28 to 23 kV. A second structure had a radius of curvature of around 5 µm and a gap distance of 100 µm had an estimated field strength of 9 × 106 V/cm but did not perform as well as the larger gap electrodes. Adding gold nanoparticles (20 nm diameter) in solution further reduced the threshold for plasma discharge to 17 kV due to the electric field enhancement at the water/gold interface, with an estimated E-field enhancement of 4×. Adding alumina nanoparticles decorated with Pt reduced the plasma discharge threshold to 14 kV. In this scenario, the emergence of a triple point at the juncture of alumina, Pt, and water results in the coexistence of three distinct dielectric constants at a singular location. This leads to a notable concentration of electric field, effectively aiding in the initiation of plasma discharge at a reduced voltage. To gain a more comprehensive and detailed understanding of the electric field enhancement mechanism, we performed rigorous numerical simulations. These simulations provide valuable insights into the intricate interplay between the lithographically defined electrodes, the nanoparticles, and the resulting electric field distribution, enabling us to extract crucial information and optimize the design parameters for enhanced performance.

5.
ACS Appl Mater Interfaces ; 16(23): 30344-30354, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38819945

RESUMEN

The primary focus of photopolymerization research is to advance highly efficient visible photoinitiating systems (PISs) as alternatives to conventional ultraviolet (UV) photoinitiators. We developed four multiresonance emitters (BIC-pCz, BNO1, BO-DICz, and TPABO-DICz) to sensitize iodonium salt (Iod) and initiate free-radical and cationic photopolymerization under visible light for the first time. The TPABO-DICz/Iod system achieved a double-bond conversion of over 70% within just 4 s of exposure to green light (520 nm), while the BNO1/Iod system achieved a double-bond conversion exceeding 50% with 10 s of exposure to red light (630 nm). The photochemical properties were studied through thermodynamic research, steady-state photolysis, and electron spin resonance. Photolithography techniques were employed to fabricate photoluminescent films and micrometer-scale patterns utilizing the blue-emitting BIC-pCz dye, showcasing the potential of photolithography in the production of photoluminescent pixels. Additionally, the BIC-pCz/Iod and TPABO-DICz/Iod systems have been employed to rapidly fabricate photoluminescent polymer patterns using a digital-light-processing 3D printer with a low-intensity light (3.2 mW cm-2). These multiresonance emitters show exceptional photosensitizing effects and can act as fluorescent dyes in photoluminescent patterns, highlighting the potential of utilizing photopolymerization for OLED applications.

6.
Adv Mater ; 36(30): e2402903, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710094

RESUMEN

The rapid growth of sensor data in the artificial intelligence often causes significant reductions in processing speed and power efficiency. Addressing this challenge, in-sensor computing is introduced as an advanced sensor architecture that simultaneously senses, memorizes, and processes images at the sensor level. However, this is rarely reported for organic semiconductors that possess inherent flexibility and tunable bandgap. Herein, an organic heterostructure that exhibits a robust photoresponse to near-infrared (NIR) light is introduced, making it ideal for in-sensor computing applications. This heterostructure, consisting of partially overlapping p-type and n-type organic thin films, is compatible with conventional photolithography techniques, allowing for high integration density of up to 520 devices cm-2 with a 5 µm channel length. Importantly, by modulating gate voltage, both positive and negative photoresponses to NIR light (1050 nm) are attained, which establishes a linear correlation between responsivity and gate voltage and consequently enables real-time matrix multiplication within the sensor. As a result, this organic heterostructure facilitates efficient and precise NIR in-sensor computing, including image processing and nondestructive reading and classification, achieving a recognition accuracy of 97.06%. This work serves as a foundation for the development of reconfigurable and multifunctional NIR neuromorphic vision systems.

7.
Angew Chem Int Ed Engl ; 63(30): e202405634, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-38742923

RESUMEN

In vivo electrochemistry in small brain regions or synapses requires nanoelectrodes with long straight tips for submicron scale measurements. Nanoelectrodes can be fabricated using a Nanoscribe two-photon printer, but annealed tips curl if they are long and thin. We propose a new pulling-force strategy to fabricate a straight carbon nanoneedle structure. A micron-width bridge is printed between two blocks. The annealed structure shrinks during pyrolysis, and the blocks create a pulling force to form a long, thin, and straight carbon bridge. Parameterization study and COMSOL modeling indicate changes in the block size, bridge size and length affect the pulling force and bridge shrinkage. Electrodes were printed on niobium wires, insulated with aluminum oxide, and the bridge cut with focused ion beam (FIB) to expose the nanoneedle tip. Annealed needle diameters ranged from 400 nm to 5.25 µm and length varied from 50.5 µm to 146 µm. The electrochemical properties are similar to glassy carbon, with good performance for dopamine detection with fast-scan cyclic voltammetry. Nanoelectrodes enable biological applications, such as dopamine detection in a specific Drosophila brain region. Long and thin nanoneedles are generally useful for other applications such as cellular sensing, drug delivery, or gas sensing.


Asunto(s)
Carbono , Dopamina , Electrodos , Impresión Tridimensional , Animales , Dopamina/análisis , Carbono/química , Técnicas Electroquímicas/instrumentación , Drosophila , Drosophila melanogaster
8.
Chemistry ; : e202401836, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818932

RESUMEN

We report azopyrazole photoswitches decorated with variable N-alkyl and alkoxy chains (for hydrophobic interactions) and phenyl substituents on the pyrazoles (enabling π-π stacking), showing efficient bidirectional photoswitching and reversible light-induced phase transition (LIPT). Extensive spectroscopic, microscopic, and diffraction studies and computations confirmed the manifestation of molecular-level interactions and photoisomerization into macroscopic changes leading to the LIPT phenomena. Using differential scanning calorimetric (DSC) studies, the energetics associated with those accompanying processes were estimated. The long half-lives of Z isomers, high energy contents for isomerization and phase transitions, and the stability of phases over an extended temperature range (-60 to 80 °C) make them excellent candidates for energy storage and release applications. Remarkably, the difference in the solubility of the distinct phases in one of the derivatives allowed us to utilize it as a photoresist in photolithography applications on diverse substrates.

9.
Micromachines (Basel) ; 15(4)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675348

RESUMEN

Axial resolution is one of the most important characteristics of a microscope. In all microscopes, a high axial resolution is desired in order to discriminate information efficiently along the longitudinal direction. However, when studying thick samples that do not contain laterally overlapping information, a low axial resolution is desirable, as information from multiple planes can be recorded simultaneously from a single camera shot instead of plane-by-plane mechanical refocusing. In this study, we increased the focal depth of an infrared microscope non-invasively by introducing a binary axicon fabricated on a barium fluoride substrate close to the sample. Preliminary results of imaging the thick and sparse silk fibers showed an improved focal depth with a slight decrease in lateral resolution and an increase in background noise.

10.
Chempluschem ; : e202400113, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38471131

RESUMEN

Ferroelectric polymers have emerged as crucial materials for the development of advanced organic electronic devices. Their recent high-end commercial applications as fingerprint sensors have only increased the amount of scientific interest around them. Despite an ever-larger body of studies focusing on optimizing the properties of ferroelectric polymers by physical means (e. g., annealing, stretching, blending or nano-structuring), post-polymerization chemical modification of such polymers has only recently become a field of active study with great promise in expanding the scope of those polymers. In this work, a solution-based post-polymerization modification method was developed for the safe and facile grafting of a plethora of functional groups to the backbone of commercially available Poly(vinylidene fluoride-co-trifluoroethylene P(VDF-co-TrFE) ferroelectric polymers. To showcase the versatility of this approach, photosensitive groups were grafted onto the polymeric backbone, enabling them to undergo photo-cross-linking. Finally, these modified polymers were used as functional negative photoresists in a photolithographic process, highlighting the potential of this method to integrate ferroelectric fluorinated electroactive polymers into standard electronic microfabrication production lines.

11.
Adv Mater ; 36(21): e2312473, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38385598

RESUMEN

Organic ion-gated transistors (OIGTs) demonstrate commendable performance for versatile neuromorphic systems. However, due to the fragility of organic materials to organic solvents, efficient and reliable all-photolithography methods for scalable manufacturing of high-density OIGT arrays with multimode neuromorphic functions are still missing, especially when all active layers are patterned in high-density. Here, a flexible high-density (9662 devices per cm2) OIGT array with high yield and minimal device-to-device variation is fabricated by a modified all-photolithography method. The unencapsulated flexible array can withstand 1000 times' bending at a radius of 1 mm, and 3 months' storage test in air, without obvious performance degradation. More interesting, the OIGTs can be configured between volatile and nonvolatile modes, suitable for constructing reservoir computing systems to achieve high accuracy in classifying handwritten digits with low training costs. This work proposes a promising design of organic and flexible electronics for affordable neuromorphic systems, encompassing both array and algorithm aspects.

12.
Micromachines (Basel) ; 15(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38398983

RESUMEN

In this study, a micropowder blasting system with varying processing temperatures was proposed to control the cross-sectional shape of a channel processed on a glass substrate. Based on an analysis of the processing temperature-dependence of the dynamic viscoelastic properties of a commercial mask material for micropowder blasting, a processing temperature control system that can be installed in a micropowder blasting machine was designed. The erosion of the mask during micropowder blasting depended on the loss tangent in dynamic viscoelasticity, and showed a maximum value at a processing temperature of 100 °C. Moreover, we confirmed that the maximum decrease in the width of the processed microchannel was 30 µm (12%) by mask erosion, and this change was large compared with the maximum change in the thickness of the eroded mask. These results clarified that varying the processing temperature using a mask could control the cross-section of the processed line pattern profile on glass, and a small-width channel was realized at a processing temperature of 109 °C.

13.
Nano Lett ; 24(4): 1254-1260, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230959

RESUMEN

The photolithographic patterning of fine quantum dot (QD) films is of great significance for the construction of QD optoelectronic device arrays. However, the photolithography methods reported so far either introduce insulating photoresist or manipulate the surface ligands of QDs, each of which has negative effects on device performance. Here, we report a direct photolithography strategy without photoresist and without engineering the QD surface ligands. Through cross-linking of the surrounding semiconductor polymer, QDs are spatially confined to the network frame of the polymer to form high-quality patterns. More importantly, the wrapped polymer incidentally regulates the energy levels of the emitting layer, which is conducive to improving the hole injection capacity while weakening the electron injection level, to achieve balanced injection of carriers. The patterned QD light-emitting diodes (with a pixel size of 1.5 µm) achieve a high external quantum efficiency of 16.25% and a brightness of >1.4 × 105 cd/m2. This work paves the way for efficient high-resolution QD light-emitting devices.

14.
Adv Mater ; 36(15): e2310667, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38232386

RESUMEN

Zn batteries show promise for microscale applications due to their compatibility with air fabrication but face challenges like dendrite growth and chemical corrosion, especially at the microscale. Despite previous attempts in electrolyte engineering, achieving successful patterning of electrolyte microscale devices has remained challenging. Here, successful patterning using photolithography is enabled by incorporating caffeine into a UV-crosslinked polyacrylamide hydrogel electrolyte. Caffeine passivates the Zn anode, preventing chemical corrosion, while its coordination with Zn2+ ions forms a Zn2+-conducting complex that transforms into ZnCO3 and 2ZnCO3·3Zn(OH)2 over cycling. The resulting Zn-rich interphase product significantly enhances Zn reversibility. In on-chip microbatteries, the resulting solid-electrolyte interphase allows the Zn||MnO2 full cell to cycle for over 700 cycles with an 80% depth of discharge. Integrating the photolithographable electrolyte into multilayer microfabrication creates a microbattery with a 3D Swiss-roll structure that occupies a footprint of 0.136 mm2. This tiny microbattery retains 75% of its capacity (350 µAh cm-2) for 200 cycles at a remarkable 90% depth of discharge. The findings offer a promising solution for enhancing the performance of Zn microbatteries, particularly for on-chip microscale devices, and have significant implications for the advancement of autonomous microscale devices.

15.
Small Methods ; 8(1): e2300743, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37800991

RESUMEN

The realization of high-performance photolithographic coplanar organic thin film transistors (OTFTs) is fundamental to boost cosmically commercial applications of organic electronics. However, photolithographic coplanar OTFTs generally suffer from poor charge injection and therefore poor filed-effect performance. Here, a simple and effective strategy is developed to fabricate photolithographic rugged electrodes, and successfully achieve high-density low-contact-resistance photolithographic coplanar OTFTs. Based on this versatile electrode, the wafer-scale photolithographic rugged electrode can be easily achieved, and the device density of the coplanar OTFTs is as high as 28000 cm-2 . The device shows excellent electrical properties with mobility up to 2.01 cm2  V-1  s-1 and Rc as low as 7.8 kΩ cm, which is superior to all the reported Ag-electrode coplanar OTFTs. This work shows a reliable strategy to reduce the contact resistance of photolithographic coplanar OTFTs and elucidates the effect of injection resistance (Rinj ) and access resistance (Racc ) on coplanar OTFTs.

16.
Adv Sci (Weinh) ; 11(3): e2305430, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018350

RESUMEN

The artificial synapse array with an electrolyte-gated transistor (EGT) as an array unit presents considerable potential for neuromorphic computation. However, the integration of EGTs faces the drawback of the conflict between the polymer electrolytes and photo-lithography. This study presents a scheme based on a lateral-gate structure to realize high-density integration of EGTs and proposes the integration of 100 × 100 EGTs into a 2.5 × 2.5 cm2 glass, with a unit density of up to 1600 devices cm-2 . Furthermore, an electrolyte framework is developed to enhance the array performance, with ionic conductivity of up to 2.87 × 10-3  S cm-1 owing to the porosity of zeolitic imidazolate frameworks-67. The artificial synapse array realizes image processing functions, and exhibits high performance and homogeneity. The handwriting recognition accuracy of a representative device reaches 92.80%, with the standard deviation of all the devices being limited to 9.69%. The integrated array and its high performance demonstrate the feasibility of the scheme and provide a solid reference for the integration of EGTs.

17.
Angew Chem Int Ed Engl ; 63(4): e202312534, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37968890

RESUMEN

Currently, purely organic compounds showing ambient phosphorescence with high efficiency (ΦP ) and ultra-long lifetime (τP ) are quite rare and often need to be achieved in hydrophilic poly(vinyl alcohol)-based hosts. This severely limits their applications. Here, we provide a solution to this issue by constructing an ortho-linked donor-acceptor (D-A) dyad whose D moiety has not only a long-lived T1 state to achieve a long τP , but also a Tn state that is close to the S1 state of the dyad to trigger effective spin-orbit charge transfer intersystem crossing (SOCT-ISC). The rationality of this strategy was validated by a new phosphor OF-BCz that is able to show a τP of 1.92 s and a ΦP of 30 % even in a less rigid matrix of poly(methyl methacrylate) (PMMA). Excitingly, OF-BCz exhibited its potential as both a photocuring initiator and an in situ quality indicator, allowing for the visual detection of defects in photolithographic patterning.

18.
Small ; 20(14): e2306756, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38126960

RESUMEN

For an uninterrupted self-powered network, the requirement of miniaturized energy storage device is of utmost importance. This study explores the potential utilization of phosphorus-doped nickel oxide (P-NiO) to design highly efficient durable micro-supercapacitors. The introduction of P as a dopant serves to enhance the electrical conductivity of bare NiO, leading to 11-fold augmentation in volumetric capacitance to 841.92 Fcm-3 followed by significant enhancement of energy and power density from 6.71 to 42.096 mWhcm-3 and 0.47 to 1.046 Wcm-3, respectively. Theoretical calculations used to determine the adsorption energy of OH- ions, revealing higher in case of bare NiO (1.52 eV) as compared to phosphorus-doped NiO (0.64 eV) leading to high electrochemical energy storage performance. The as-designed micro-supercapacitor (MSC) device demonstrates a facile integration with the photovoltaic system for renewable energy storage and smooth transfer to external loads for enlightening the blue LED for ≈1 min. The choice of P-NiO/Ni not only contributes to cost reduction but also ensures minimal lattice mismatch at the interface facilitating high durability up to 15 K cycles along with capacitive retention of ≈100% and coulombic efficiency of 93%. Thus, the heterostructure unveils the possibilities of exploring miniaturized energy storage devices for portable electronics.

19.
Nanomaterials (Basel) ; 13(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38063731

RESUMEN

This study introduces an innovative photolithography-based method for patterning ionic and inorganic particle materials such as silver iodide (AgI). Conventional methods lack precision when patterning powdered materials, which limits their applicability. The proposed method stacks layers of a particle material (AgI) and negative-tone photoresist for simultaneous ultraviolet exposure and development, resulting in well-defined AgI patterns. The sintering process successfully removed binders from the material layer and photoresist, yielding standalone AgI patterns on the Si substrate with good adhesion. The pitch remained consistent with the design values of the photomask when the pattern size was changed. In-situ observation of condensation frosting on the patterns was conducted, which confirmed the practicality of the developed patterning process. This versatile method is applicable to large areas with a high throughput and presents new opportunities for modifying functional surfaces.

20.
Micromachines (Basel) ; 14(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38138339

RESUMEN

The fabrication of microlens arrays (MLAs) using diffuser-assisted photolithography (DPL) has garnered substantial recent interest owing to the exceptional capabilities of DPL in adjusting the size and shape, achieving high fill factors, enhancing productivity, and ensuring excellent reproducibility. The inherent unpredictability of light interactions within the diffuser poses challenges in accurately forecasting the final shape and dimensions of microlenses in the DPL process. Herein, we introduce a comprehensive theoretical model to forecast microlens shapes in response to varying exposure doses within a DPL framework. We establish a robust MLA fabrication method aligned with conventional DPL techniques to enable precise shape modulation. By calibrating the exposure doses meticulously, we generate diverse MLA configurations, each with a distinct shape and size. Subsequently, by utilizing the experimentally acquired data encompassing parameters such as height, radius of curvature, and angles, we develop highly precise theoretical prediction models, achieving R-squared values exceeding 95%. The subsequent validation of our model encompasses the accurate prediction of microlens shapes under specific exposure doses. The verification results exhibit average error rates of approximately 2.328%, 7.45%, and 3.16% for the height, radius of curvature, and contact angle models, respectively, all of which were well below the 10% threshold.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA