Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.977
Filtrar
Más filtros

Intervalo de año de publicación
1.
Food Chem ; 462: 140913, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39197241

RESUMEN

Grape processing generates large amounts of by-products, including seeds rich in hydrophilic and lipophilic antioxidants. This study demonstrates, for the first time, that subjecting grape seeds to a single ultrasound-assisted extraction (UAE) with aqueous ethanolic solutions yields both flavan-3-ols and tocochromanols in the final extract. Notably, the water content in ethanol significantly influences the extractability of tocochromanols more than flavan-3-ols. Solid-to-solvent ratios of 1:50 to 1:2 were tested for both analytical and industrial applications. A sustainable analytical approach for recovering flavan-3-ols and tocochromanols using 60% and 96.4% ethanol extractions was validated and employed to profile nineteen genotypes of lesser-studied interspecific grape crosses (Vitis spp.). Different genotypes showed a wide range of concentrations of tocopherols (1.6-6.3 mg/100 g), tocotrienols (1.0-17.4 mg/100 g), and flavan-3-ols (861-9994 mg/100 g). This indicated that the genetic background and maturity of the plant material are crucial factors from an industrial perspective due to the initial concentration of bioactive compounds. Finally, the study also discussed the fundamental aspects of hydrophobic antioxidant extractability from the lipid matrix with aqueous ethanol solutions and the limitations of the workflow, such as the non-extractable tocochromanols and their esters and the losses of these lipophilic antioxidants during extraction.


Asunto(s)
Flavonoides , Semillas , Vitis , Vitis/química , Semillas/química , Flavonoides/aislamiento & purificación , Flavonoides/química , Flavonoides/análisis , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Tocoferoles/aislamiento & purificación , Tocoferoles/química , Tocoferoles/análisis , Tocotrienoles/análisis , Tocotrienoles/aislamiento & purificación , Tocotrienoles/química
2.
Int J Environ Health Res ; : 1-27, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360362

RESUMEN

Infertility affects 8-12% of couples globally, with male factors contributing to around 40% of cases. Common male infertility issues include erectile dysfunction (ED) and low sperm count or quality, which account for over 90% of cases. These problems often result from anatomical, hormonal, or genetic abnormalities. This review focuses on natural aphrodisiac herbs commonly used to address ED, providing detailed information on their botanical characteristics, metabolic pathways, recommended dosages, phytochemical properties, side effects, origins, and traditional uses. It also reviews recent studies on medicinal herbs that boost sexual desire and treat urological conditions. By compiling reliable findings from the past decade, the study aims to serve as a comprehensive resource for individuals dealing with sexual health issues. Through careful evaluation of each herb, it offers insights into their effectiveness and limitations, emphasizing the potential of natural treatments as complementary alternatives to conventional therapies for male infertility and related conditions.


Anatomy, hormone abnormalities and genetic flaws may contribute to male infertility.The most popular natural aphrodisiac herbs used in the treatment of infertility were revised.Unique and reliable references to sexual desire and urological problems were provided.Safe aphrodisiac herbs including phytochemical products were emphasized.Plants were investigated for their potential as aphrodisiacs and fertility enhancers.

3.
Nat Prod Res ; : 1-20, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360474

RESUMEN

Zanthoxylum armatum, a versatile plant known for its extensive pharmacological and phytochemical properties, has been traditionally utilised in various cultures for medicinal purposes. It is a widely recognised medicinal plant of the Rutaceae family, indigenous to Korea, China, Japan, and Pakistan, and thrives particularly in subtropical and temperate regions globally. Various parts of the plant hold medicinal significance: the seeds serve as a spice, condiment, and tonic; the wood finds application in dental care, crafting walking sticks, and timber; the fruit is utilised for oil extraction, water purification, and as an odontalgic, stomachic, and stimulant; the bark is valued as a tonic; while branches and thorns are utilised for their stimulant, stomachic, and odontalgic properties. The plant contains various bioactive compounds, including lignans, alkaloids, sterols, coumarins, phenolics, terpenoids, flavonoids, benzenoids, glycosides, alkenic acids, amino acids, fatty acids, armamide, L-sesamin, L-asarin, L-planinin, limonene, methyl cinnamate, linalool, linayl acetate, geraniol methyl cinnamate, citral, linalool and sabines. This review aims to comprehensively cover the pharmacological and phytochemical properties of Z. armatum, serving as a foundation for future research and potential applications.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39350412

RESUMEN

The gut microbiota is a varied population of microorganisms that live in the human gastrointestinal system. Emerging research emphasizes the importance of this microbial ecology in general health and its influence on a variety of disorders. The review explores the synergy between herbal treatment and traditional medicine, emphasizing their cultural significance and therapeutic benefits. It delves into the intricate relationship between herbal remedies, traditional healing practices, and their sustained usage over centuries. The review highlights the pivotal role of the gut microbiota in herbal medicine, elucidating how treatments influence the gastrointestinal microorganisms, impacting overall health. Dietary phytochemicals are underscored for their significance in herbal medicine and nutritional well-being, along with the interdependence of plant extracts and botanicals. The investigation explores the molecular connections between phytoconstituents and gut microbiota, aiming to deepen the understanding of herbal medicine's tailored approach to specific health challenges. The summary concludes by emphasizing herbal treatments' unique ability to regulate gut flora, contributing to overall gastrointestinal wellbeing. In closing, the review provides a concise overview, serving as a valuable resource for integrative medicine research, with recommendations for future exploration of herbal medicine's potential in healthcare.

5.
Curr Top Med Chem ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39350414

RESUMEN

Cancer continues to be a major global health challenge, driving the need for the discovery of novel therapeutic agents. Among these, heterocyclic phytochemicals have gained significant attention for their potential as anticancer agents. This review offers a detailed analysis of various classes of heterocyclic compounds with proven anticancer properties, shedding light on their mechanisms of action. The study draws from a diverse array of natural product sources, detailing the chemical structures and bioactivities of these compounds. Key heterocyclic classes such as alkaloids, flavonoids, coumarins, and terpenoids are emphasized due to their potent anticancer effects. Heterocyclic phytochemicals exhibit diverse anticancer mechanisms, including the modulation of cellular pathways like apoptosis, angiogenesis, and cell cycle progression. The combination of heterocyclic phytochemicals with conventional cancer therapies has shown promising synergistic effects, enhanced treatment efficacy and reducing side effects. The review systematically evaluates both preclinical and clinical studies, revealing the efficacy, safety profiles, and pharmacokinetics of selected heterocyclic compounds. The promising outcomes highlighted in this review underscore the critical need for ongoing research to fully realize the therapeutic potential of heterocyclic phytochemicals in cancer treatment.

6.
Biol Trace Elem Res ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39354182

RESUMEN

Coccidiosis is a protozoan disease caused by Eimeria species and is a major threat to the poultry industry. Different anti-coccidial drugs (diclazuril, amprolium, halofuginone, ionophores, sulphaquinoxaline, clopidol, and ethopabate) and vaccines have been used for their control. Still, due to the development of resistance, their efficacy has been limited. It is continuously damaging the economy of the poultry industry because under its control, almost $14 billion is spent, globally. Recent research has been introducing better and more effective control of coccidiosis by using metallic and metallic oxide nanoparticles. Zinc, zinc oxide, copper, copper oxide, silver, iron, and iron oxide are commonly used because of their drug delivery mechanism. These nanoparticles combined with other drugs enhance the effect of these drugs and give their better results. Moreover, by using nanotechnology, the resistance issue is also solved because by using several mechanisms at a time, protozoa cannot evolve and thus resistance cannot develop. Green nanotechnology has been giving better results due to its less toxic effects. Utilization of metallic and metallic oxide nanoparticles may present a new, profitable, and economical method of controlling chicken coccidiosis, thus by changing established treatment approaches and improving the health and production of chickens. Thus, the objective of this review is to discuss about economic burden of avian coccidiosis, zinc, zinc oxide, iron, iron oxide, copper, copper oxide, silver nanoparticles use in the treatment of coccidiosis, their benefits, and toxicity.

7.
Curr Nutr Rep ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354208

RESUMEN

PURPOSE OF REVIEW: This review evaluates the therapeutic potential of Ziziphus jujuba and its main components in managing complications of metabolic syndrome, including diabetes, dyslipidemia, obesity, and hypertension. RECENT FINDINGS: The reviewed studies provide evidence supporting the use of Z. jujuba and its main components (lupeol and betulinic acid) as natural treatments for complications of metabolic syndrome. These substances enhance glucose uptake through the activation of signaling pathways such as phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), reduce hepatic glucose synthesis, and increase glucose uptake by adipocytes and skeletal muscle cells. They also improve insulin sensitivity by modulating AMP-activated protein kinase (AMPK) activity and regulating insulin signaling proteins and glucose transporters. In the field of dyslipidemia, they inhibit triglyceride synthesis, lipid accumulation, and adipogenic enzymes, while influencing key signaling pathways involved in adipogenesis. Z. jujuba and its constituents demonstrate anti-adipogenic effects, inhibiting lipid accumulation and modulating adipogenic enzymes and transcription factors. They also exhibit positive effects on endothelial function and vascular health by enhancing endothelial nitric oxide synthase (eNOS) expression, NO production, and antioxidant enzyme activity. Z. jujuba, lupeol, and betulinic acid hold promise as natural treatments for complications of metabolic syndrome. They improve glucose metabolism, insulin sensitivity, and lipid profiles while exerting anti-adipogenic effects and enhancing endothelial function. However, further research is needed to elucidate the mechanisms and confirm their efficacy in clinical trials. These natural compounds offer potential as alternative therapies for metabolic disorders and contribute to the growing body of evidence supporting the use of natural medicines in their management.

8.
Ann Med Surg (Lond) ; 86(10): 5877-5913, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39359831

RESUMEN

Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.

9.
Cell Biochem Biophys ; 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39369159

RESUMEN

Adaptogens, comprising plants and mushrooms, modulate the immune system, energy balance, and various physiological processes, including reproduction. Despite their potential benefits, the impact of adaptogens on reproductive function remains understudied. This review examines the effects of common adaptogens on male and female reproductive functions, highlighting their regulation of neuro-endocrine-immune interactions crucial for reproduction. While existing literature reveals varying impacts on reproductive function, most adaptogens exhibit beneficial effects, modulating neuroimmunology and promoting gonadal steroidogenesis, spermatogenesis, and folliculogenesis through direct mechanisms or suppression of oxidative stress and inflammation. Further experimental research is necessary to elucidate the mechanisms of action of adaptogens, which would significantly advance the management of reproductive disorders and other diseases. Validating these findings in clinical trials is also essential.

10.
Chin Med ; 19(1): 140, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380087

RESUMEN

Plants such as herbs, vegetables, fruits, and cereals are closely related to human life. Developing effective testing methods to ensure their safety and quantify their active components are of significant importance. Recently, nanomaterials with enzyme-like activity (known as nanozymes) have been widely developed in various assays, including colorimetric, fluorescence, chemiluminescence, and electrochemical analysis. This review presents the latest advances in analyzing phytochemicals and hazardous substances in plant samples based on nanozymes, including some active ingredients, organophosphorus pesticides, heavy metal ions, and mycotoxins. Additionally, the current shortcomings and challenges of the actual sample analysis were discussed.

11.
Iran J Basic Med Sci ; 27(11): 1357-1369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39386232

RESUMEN

Medicinal plants and phytochemicals are some of the major sources in the treatment of various neurodegenerative disorders including Alzheimer's disease (AD). There is no FDA-approved drug to target AD pathology directly. Full cognitive restoration and management of psychosis-like symptoms are still to be achieved. Being comparatively safer with fewer side effects, medicinal plants have been among the major areas of interest to be researched. Several mechanistic pathways are involved in AD including anticholinesterase activity, glutamate toxicity, free radicals generation, Amyloid ß (Aß) toxicity, inflammation, and mitochondrial dysfunction. Various phytochemicals such as paenol, andrographolide, isoquercitrin, flavonoids, and saponins obtained from different plant sources, various medicinal plants like Spirulina maxima, Salicornia europaea, Curcuma longa, Citrus Junos Tanaka, Cassiae semen, Centella asiatica as well as various traditional medicinal plants of China, Asia, Europe, Turkey, and Iran have been found effective against one or more of these targets. Large numbers of clinical trials are under process to evaluate the role of different phytoconstituents in AD management. Out of 143 agents under clinical trials, 119 have been categorized as disease-modifying agents. The present review extensively covers the recent advancements in the usage of phytochemicals and medicinal plants in various experimental AD models. It involves clinical trials and other research works divided into three sections, including those performed in vitro, in vivo, and in humans mainly from the last five years along with disease markers and mechanistic pathways involved. However, phytochemicals should be explored further in order to achieve neurorestoration in AD.

12.
Sci Rep ; 14(1): 23870, 2024 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-39396068

RESUMEN

Nanotechnology is becoming a promise for scientific advancement nowadays in areas like medicine, consumer products, energy, materials, and manufacturing. Copper oxide nanoparticles (CuO NPs) were synthesized using Ocimum lamiifolium Hochst. ex Benth and Withana somnifera (L) Dunal leaf extract via green synthetic pathway. The leaf of O. lamiifolium and W. somnifera were known to have strong antibiotic and antioxidant properties arising due to the presence of various secondary metabolites, including, flavonoids, alkaloids, saponins, tannins, cardiac glycosides, and phenolic compounds which serve as reducing, stabilizing, and capping agents for the CuO-Nanoparticles (NPs) synthesized. The biosynthesized CuO NPs were characterized based on Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, and scanning electron microscopy. O. lamiifolium and W. somnifera leaf extract mediated synthesis could produce CuO NPs with average crystallite size of 15 nm and 19 nm, respectively. The biosynthesized CuO-NPs were further examined for antibacterial activity with Gram-positive (S. aureus) and Gram-negative bacteria (E. coli and P. aeruginosa). The GZDK-CuO NPs synthesized using W. somnifera leaf extract inhibited the growth of E. coli. and P. aeruginosa largely in comparison to S. aureus. Whereas the DMAZ-CuO NPs synthesized with the help of O. lamiifolium leaf extract showed higher bacterial inhibition on E. coli compared to S. aureus and P. aeruginosa. The minimum inhibitory concentration (MIC) values of both types of NPs are also assessed on all three pathogens. The newly biosynthesized nanoparticles, thus, were found to be optional materials for inhibiting the growth of drug- resistant bacterial pathogens.


Asunto(s)
Antibacterianos , Cobre , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Ocimum , Extractos Vegetales , Hojas de la Planta , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Cobre/química , Nanopartículas del Metal/química , Ocimum/química , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Difracción de Rayos X
13.
Adipocyte ; 13(1): 2411453, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39385585

RESUMEN

Obesity is a globally prevalent metabolic disorder characterized by an increased number of adipose cells and excessive fat in adipocytes. Herbal medicines, such as ginger, have shown potential in treating obesity by inhibiting adipogenesis and reducing adipocyte hypertrophy. Ginger contains bioactive compounds, particularly gingerols, which have demonstrated anti-adipogenic and/or lipolytic effects. However, research on the effects of 10-gingerol on adipose tissue remains limited. This study aimed to evaluate the effect of 10-gingerol on lipid content, lipolysis markers, and the expression of genes related to lipid metabolism in 3T3-L1 adipocytes. Three groups were analyzed: a negative control (preadipocytes), a positive control (mature adipocytes), and a group treated with 10-gingerol (10-G). Results showed that 10-G reduced lipid accumulation by 42.16% in mature adipocytes compared to the control, without affecting cell viability. Additionally, 10-G increased glycerol release and downregulated lipogenic genes such as Pparγ, Acaca, Fabp4, and Mtor, while upregulating genes related to fatty acid oxidation, including Cebpα, Cpt1a, Lipe, and Prkaa1. In conclusion, 10-gingerol reduces lipid content in mature adipocytes by downregulating lipogenesis, increasing lipolysis, and enhancing fatty acid oxidation.


Asunto(s)
Células 3T3-L1 , Adipocitos , Catecoles , Alcoholes Grasos , Gotas Lipídicas , Metabolismo de los Lípidos , Lipólisis , Animales , Alcoholes Grasos/farmacología , Lipólisis/efectos de los fármacos , Catecoles/farmacología , Ratones , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
14.
Curr Drug Targets ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39385414

RESUMEN

The second largest cause of cancer-related death worldwide, Hepatocellular Carcinoma (HCC) is also the most common primary liver cancer. HCC typically arises in patients with liver cirrhosis. Existing synthetic medicines for treating chronic liver disease are ineffective and come with undesirable side effects. Although herbal remedies have widespread popularity, there is still a long road ahead before they are fully accepted by the scientific community. Secondary metabolites and phytochemicals found in plants are abundant in both the human diet and the non-human environment. Natural plant chemicals have been shown to be beneficial as therapeutic and chemopreventive treatments for a wide variety of chronic disorders. Many diseases, including HCC, can be effectively treated with the help of phytochemicals found in food. Resveratrol, curcumin, urolithin A, silibinin, quercetin, N-trans-feruloyl octopamine, emodin, lycopene, caffeine, and phloretin are all examples. Approximately, 60% of all anticancer medications are determined to be derived from natural substances, according to recent studies. Plant derivatives have played an important role in cancer due to their capacity to scavenge free radicals, limit cell proliferation, and set off apoptosis. The progression of HCC is linked to inflammatory signaling pathways, and this study sought to look at how novel approaches, such as phytomedicines, are being used to fight cancer. Recent advancements in molecular mechanisms and drug targeting for HCC have been discussed in this review.

15.
J Cancer Prev ; 29(3): 58-68, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39398111

RESUMEN

Cancer remains to be a pervasive disease as traditional treatments have plateaued in efficacy. Anticancer research continues to grow in an effort to find novel preventive and treatment measures for cancers. The papaya plant produces several biologically active phytochemicals, which exhibit anti-inflammatory, antibacterial, and anti-oxidative properties. This review explores studies examining these phytochemicals derived from the papaya plant as a potential chemopreventive agent and a cancer therapeutic. Further studies must be done to establish the papaya plant and its phytochemicals as an alternative to traditional cancer treatments.

16.
Front Pharmacol ; 15: 1447097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39403140

RESUMEN

Background: Allergic rhinitis is an inflammatory disease dependent on immunoglobulin E and causes inflammation of the nasal mucosa, leading to decreased quality of life for affected patients. Since common treatments, including corticosteroids and antihistamines, have temporary therapeutic effects and numerous side effects, investigating natural compounds effective in improving allergic rhinitis with low complications and high efficacy can be significant and necessary. Purpose: This study aims to present a comprehensive and critical evaluation of the effect of natural compounds in improving allergic rhinitis. Methods: Studies were identified through systematic searches of ScienceDirect, PubMed, Scopus, and Web of Sciences databases. Eligibility checks were conducted based on predefined selection criteria. Forty-six articles were included in this study. Results and discussion: Phytochemicals, including flavonoids, alkaloids, terpenoids, and other compounds showed significant anti-inflammatory and antihistaminic effects. These compounds alleviate allergic rhinitis symptoms by inhibiting inflammatory mediators, oxidative stress, apoptosis, and key signaling pathways such as MAPK/NFκB and TLR4/MyD88/NF-κB. Conclusion: Phytochemicals exhibit anti-inflammatory and antioxidant properties, making them.

17.
Artículo en Inglés | MEDLINE | ID: mdl-39404108

RESUMEN

A complicated biological reaction of vascular tissues to damaging stimuli like infections, harmed cells, or irritants is called inflammation. Symptoms include redness, inflamed joints, stiffness, discomfort in the joints, and loss of joint function. NSAIDs are frequently used to treat inflammation. Sadly, these drugs raise the possibility of blood clots, which can result in heart attacks and strokes. Consequently, there is ongoing research focusing on developing potent anti-inflammatory drugs using natural ingredients. Natural products, due to their diverse chemical composition, offer a rich source for the development of novel medications. The treatment of various inflammation- related disorders heavily relies on a natural substance derived from medicinal plants. The objective of the present study is to assemble information on potential parts of the plants or phytochemicals derived from medicinal plants used on inflammatory models, employing state-ofthe- art scientific methodologies. In this study, state-of-the-art scientific methodologies are utilized to investigate the effects of phytochemicals derived from medicinal plants. Relevant data is collected, focusing on the examination of these phytochemicals in experimental models of inflammation. The study aims to collect thorough data on potential plant parts or promising phytochemicals derived from medicinal plants that have been evaluated using advanced scientific techniques in the realm of inflammation models. This compilation will offer valuable insights into their potential as anti-inflammatory agents. The findings have the potential to contribute to the development of new and improved anti-inflammatory medications with fewer or no adverse effects compared to current treatments. While many of these studies hold academic interest only a few are accepted into clinical trials. Numerous phytoconstituents have been identified for exhibiting diverse pharmacological actions.


Asunto(s)
Antiinflamatorios , Inflamación , Fitoquímicos , Plantas Medicinales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Humanos , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Fitoquímicos/química , Plantas Medicinales/química , Animales , Inflamación/tratamiento farmacológico , Fitoterapia/métodos
18.
OMICS ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39388097

RESUMEN

Protein kinases are key targets for cancer therapies, with the c-Met receptor tyrosine kinase (MET) and its ligand, hepatocyte growth factor, playing a role in various cancers, including non-small cell lung cancer, gastric cancer, and hepatocellular carcinoma. Although small-molecule inhibitors have been designed to target MET, the development of drug resistance remains a significant challenge to advancing therapeutic strategies. In this study, we employed virtual screening of plant-based compounds sourced from the IMPPAT 2.0 databank to identify potent inhibitors of MET. Preliminary filtering based on the physicochemical parameters following Lipinski's rule of five and pan-assay interference compounds criteria were applied to prioritize hits. Subsequent molecular docking, pharmacokinetic evaluation, prediction of activity spectra for biologically active substances, and specificity assessments facilitated the identification of two promising phytochemicals, neogitogenin and samogenin. Both phytochemicals exhibited considerable drug-like properties with notable binding affinity and selectivity toward MET. Molecular dynamics simulation studies showed the conformational stability of MET with neogitogenin and samogenin. Taken together, these findings suggest that neogitogenin and samogenin hold potential as lead molecules for the development of MET-targeted therapeutics. We call for further evaluations of these phytochemicals in preclinical and experimental studies for anticancer drug discovery and development.

19.
Cell Biochem Biophys ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312155

RESUMEN

The current work is the first ever report on the functionalization of CoO nanoparticles (NPs) using the bio active constituents of Abies pindrow Royle (A.pindrow) leaves. An efficient phytochemical extraction method was determined by comparing different extraction strategies for extracting the biologically active compounds of A.pindrow leaves. The phytocompounds were noticed via chromatographic techniques; High-performance liquid chromatography (HPLC) as well as the Gas chromatography-mass spectroscopy (GC-MS) followed by spectroscopic analysis that is the Fourier transform infrared spectroscopy (FTIR) along with Ultraviolet-visible spectroscopy (UV-Vis). The reducing properties of the phytochemicals were investigated by efficiently synthesizing metal oxides nanoparticles (CoO NPs) by treating aqueous plant extract with Co(NO3). 6H2O aqueous complex. The newly synthesized NPs were characterized via X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and field emission-scanning electron microscopy (FE-SEM). Finally, the GCMS, FTIR and UV-Vis identified the A.pindrow leaves biocomponents as capping and reducing mediator of the synthesized CoO nanoparticles. FTIR confirmed the prepartion of CoO NPs as well as the capping and stabilizing agents of A.Pindrow at 2378.31 cm-1, 1370.11 cm-1, 1260.57 cm-1, 937.4 cm-1 and 607.24 cm-1 having carboxylic acid, alcohols, aromatics, alkenes, aromatic amines, esters as well as ethers functional groups, flavonols and flavonoids phytochemicals. Moreover GCMS analysis revealed the dominating constituents of A.pindrow leaf extracts are carbohydrates, terpenoids, alkanoids, flavonoids as well as phenols. Furthermore, the antibacterial and bioactive agent, tannis was also observed in aqueous extract. These phytochemicals noticed in this current work, has antioxidant potential, that is why they have shown biomedical applications. The present manipulation, further articulated that, maximum phytochemicals extraction of A. pindrow leaves was illustrated in the aqueous extract as compared to ethyl acetate and ethanol.

20.
Heliyon ; 10(18): e37429, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309869

RESUMEN

Retama dasycarpa is an endemic shrubby leguminous plant of Morocco used in traditional folk medicine. The plant has never been studied for either its phytochemical or pharmacological properties. This study represents the first investigation of the phytochemical profile as well as the antioxidant, the antibacterial, the analgesic effects and the oral acute toxicity of Retama dasycarpa. Watery and hydromethanolic stems plant macerates have been investigated. Secondary metabolites quantitative analysis was achieved through spectrophotometric techniques. Antioxidant effect was explored through DPPH, ABTS and FRAP trials. Antibacterial activity was investigated using a micro-plates dilution assay. Analgesic activity was explored through acetic acid-induced writhing and tail-flick methods. Acute oral toxicity was investigated on mice. Phytochemical analysis was achieved through UHPLC connected to diode array and mass spectrometry detectors. The obtained results showed significant contents in total phenolics, flavonoids and tannins in both extracts especially the hydromethanolic extract whose contents were slighlty higher than the aqueous one resulting in a remarkable antioxidant activity. Compared to the aqueous extract, the H2O:MeOH (1:1) one showed notable antibacterial activity against the tested strains. The acute toxicity in mice revealed the non-toxicity of the extracts along with a promised starting material of central and peripheral analgesics. The UHPLC analysis revealed the presence of several bioactive phytochemicals pertaining to phenolic acids, flavonols, flavones and isoflavones. The obtained results demonstrate the richness of this endemic and unexplored plant in terms of bioactive compounds and their associated activities, making it a promising source of pharmacological ingredients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA