Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mol Biol ; : 168808, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357815

RESUMEN

Several machineries concurrently work on the DNA, but among them RNA Polymerases (RNAPs) are the most widespread and active users. The homeostasis of such a busy genomic environment relies on the existence of mechanisms that allow to limit transcription to a functional level, both in terms of extent and rate. Sen1 is a central player in this sense: using its translocase activity this protein has evolved the specific function of dislodging RNAPs from the DNA template, thus ending the transcription cycle. Over the years, studies have shown that Sen1 uses this same mechanism in a multitude of situations, allowing termination of all three eukaryotic RNAPs in different contexts. In virtue of its helicase activity, Sen1 has also been proposed to have a prominent function in the resolution of co-transcriptional genotoxic R-loops, which can cause the stalling of replication forks. In this review, we provide a synopsis of past and recent findings on the functions of Sen1 in yeast and of its human homologue Senataxin (SETX).

2.
Mol Cell ; 84(19): 3610-3626, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366350

RESUMEN

Complex pathways involving the DNA damage response (DDR) contend with cell-intrinsic and -extrinsic sources of DNA damage. DDR mis-regulation results in genome instability that can contribute to aging and diseases including cancer and neurodegeneration. Recent studies have highlighted key roles for several RNA species in the DDR, including short RNAs and RNA/DNA hybrids (R-loops) at DNA break sites, all contributing to efficient DNA repair. RNAs can undergo more than 170 distinct chemical modifications. These RNA modifications have emerged as key orchestrators of the DDR. Here, we highlight the function of enzyme- and non-enzyme-induced RNA modifications in the DDR, with particular emphasis on m6A, m5C, and RNA editing. We also discuss stress-induced RNA damage, including RNA alkylation/oxidation, RNA-protein crosslinks, and UV-induced RNA damage. Uncovering molecular mechanisms that underpin the contribution of RNA modifications to DDR and genome stability will have direct application to disease and approaches for therapeutic intervention.


Asunto(s)
Daño del ADN , Reparación del ADN , Epigénesis Genética , ARN , Humanos , Animales , ARN/metabolismo , ARN/genética , Transcriptoma , Procesamiento Postranscripcional del ARN , Inestabilidad Genómica , Edición de ARN , Adenosina/metabolismo , Adenosina/análogos & derivados , Adenosina/genética
3.
Cell Rep ; 43(10): 114820, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39368091

RESUMEN

Oncogenic mutations (such as in KRAS) can dysregulate transcription and replication, leading to transcription-replication conflicts (TRCs). Here, we demonstrate that TRCs are enriched in human pancreatic ductal adenocarcinoma (PDAC) compared to other common solid tumors or normal cells. Several orthogonal approaches demonstrated that TRCs are oncogene dependent. A small interfering RNA (siRNA) screen identified several factors in the base-excision repair (BER) pathway as main regulators of TRCs in PDAC cells. Inhibitors of BER pathway (methoxyamine and CRT) enhanced TRCs. Mechanistically, BER pathway inhibition severely altered RNA polymerase II (RNAPII) and R-loop dynamics at nascent DNA, causing RNAPII trapping and contributing to enhanced TRCs. The ensuing DNA damage activated the ATR-Chk1 pathway. Co-treatment with ATR inhibitor (VX970) and BER inhibitor (methoxyamine) at clinically relevant doses synergistically enhanced DNA damage and reduced cell proliferation in PDAC cells. The study provides mechanistic insights into the regulation of TRCs in PDAC by the BER pathway, which has biologic and therapeutic implications.

4.
Cell Rep Med ; : 101758, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39368479

RESUMEN

Biallelic loss of cyclin-dependent kinase 12 (CDK12) defines a metastatic castration-resistant prostate cancer (mCRPC) subtype. It remains unclear, however, whether CDK12 loss drives prostate cancer (PCa) development or uncovers pharmacologic vulnerabilities. Here, we show Cdk12 ablation in murine prostate epithelium is sufficient to induce preneoplastic lesions with lymphocytic infiltration. In allograft-based CRISPR screening, Cdk12 loss associates positively with Trp53 inactivation but negatively with Pten inactivation. Moreover, concurrent Cdk12/Trp53 ablation promotes proliferation of prostate-derived organoids, while Cdk12 knockout in Pten-null mice abrogates prostate tumor growth. In syngeneic systems, Cdk12/Trp53-null allografts exhibit luminal morphology and immune checkpoint blockade sensitivity. Mechanistically, Cdk12 inactivation mediates genomic instability by inducing transcription-replication conflicts. Strikingly, CDK12-mutant organoids and patient-derived xenografts are sensitive to inhibition or degradation of the paralog kinase, CDK13. We therein establish CDK12 as a bona fide tumor suppressor, mechanistically define how CDK12 inactivation causes genomic instability, and advance a therapeutic strategy for CDK12-mutant mCRPC.

5.
Genes (Basel) ; 15(9)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39336752

RESUMEN

R-loops, structures that play a crucial role in various biological processes, are integral to gene expression, the maintenance of genome stability, and the formation of epigenomic signatures. When these R-loops are deregulated, they can contribute to the development of serious health conditions, including cancer and neurodegenerative diseases. The detection of R-loops is a complex process that involves several approaches. These include S9.6 antibody- or RNAse H-based immunoprecipitation, non-denaturing bisulfite footprinting, gel electrophoresis, and electron microscopy. Each of these methods offers unique insights into the nature and behavior of R-loops. In our study, we introduce a novel protocol that has been developed based on a single-molecule DNA combing assay. This innovative approach allows for the direct and simultaneous visualization of RNA:DNA hybrids and replication forks, providing a more comprehensive understanding of these structures. Our findings confirm the transcriptional origin of the hybrids, adding to the body of knowledge about their formation. Furthermore, we demonstrate that these hybrids have an inhibitory effect on the progression of replication forks, highlighting their potential impact on DNA replication and cellular function.


Asunto(s)
Replicación del ADN , ADN , Estructuras R-Loop , ARN , Estructuras R-Loop/genética , Replicación del ADN/genética , Humanos , ADN/genética , ARN/genética , Ribonucleasa H/metabolismo , Ribonucleasa H/genética
6.
Protein Sci ; 33(9): e5093, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39180489

RESUMEN

RTEL1 is an essential DNA helicase which plays an important role in various aspects of genome stability, from telomere metabolism to DNA replication, repair and recombination. RTEL1 has been implicated in a number of genetic diseases and cancer development, including glioma, breast, lung and gastrointestinal tumors. RTEL1 is a FeS helicase but, in addition to the helicase core, it comprises a long C-terminal region which includes a number of folded domains connected by intrinsically disordered loops and mediates RTEL1 interaction with factors involved in pivotal cellular pathways. However, information on the architecture and the function of this region is still limited. We expressed and purified a variety of fragments encompassing the folded domains and the unstructured regions. We determined the crystal structure of the second repeat, confirming that it has a fold similar to the harmonin homology domains. SAXS data provide low-resolution information on all the fragments and suggest that the presence of the RING domain affects the overall architecture of the C-terminal region, making the structure significantly more compact. NMR data provide experimental information on the interaction between PCNA and the RTEL1 C-terminal region, revealing a putative low-affinity additional site of interaction. A biochemical analysis shows that the C-terminal region, in addition to a preference for telomeric RNA and DNA G-quadruplexes, has a high affinity for R-loops and D-loops, consistent with the role played by the RTEL1 helicase in homologous recombination, telomere maintenance and preventing replication-transcription conflicts. We further dissected the contribution of each domain in binding different substrates.


Asunto(s)
ADN Helicasas , Humanos , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Helicasas/genética , Cristalografía por Rayos X , Modelos Moleculares , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Dominios Proteicos , Dispersión del Ángulo Pequeño
7.
DNA Repair (Amst) ; 141: 103726, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096697

RESUMEN

Trypanosoma cruzi is the etiological agent of Chagas disease and a peculiar eukaryote with unique biological characteristics. DNA damage can block RNA polymerase, activating transcription-coupled nucleotide excision repair (TC-NER), a DNA repair pathway specialized in lesions that compromise transcription. If transcriptional stress is unresolved, arrested RNA polymerase can activate programmed cell death. Nonetheless, how this parasite modulates these processes is unknown. Here, we demonstrate that T. cruzi cell death after UV irradiation, a genotoxic agent that generates lesions resolved by TC-NER, depends on active transcription and is signaled mainly by an apoptotic-like pathway. Pre-treated parasites with α-amanitin, a selective RNA polymerase II inhibitor, become resistant to such cell death. Similarly, the gamma pre-irradiated cells are more resistant to UV when the transcription processes are absent. The Cockayne Syndrome B protein (CSB) recognizes blocked RNA polymerase and can initiate TC-NER. Curiously, CSB overexpression increases parasites' cell death shortly after UV exposure. On the other hand, at the same time after irradiation, the single-knockout CSB cells show resistance to the same treatment. UV-induced fast death is signalized by the exposition of phosphatidylserine to the outer layer of the membrane, indicating a cell death mainly by an apoptotic-like pathway. Furthermore, such death is suppressed in WT parasites pre-treated with inhibitors of ataxia telangiectasia and Rad3-related (ATR), a key DDR kinase. Signaling for UV radiation death may be related to R-loops since the overexpression of genes associated with the resolution of these structures suppress it. Together, results suggest that transcription blockage triggered by UV radiation activates an ATR-dependent apoptosis-like mechanism in T. cruzi, with the participation of CSB protein in this process.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Daño del ADN , Reparación del ADN , Estructuras R-Loop , Transcripción Genética , Trypanosoma cruzi , Rayos Ultravioleta , Trypanosoma cruzi/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Proteínas Protozoarias/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Muerte Celular , Apoptosis , Humanos
8.
Proc Natl Acad Sci U S A ; 121(33): e2403600121, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39116124

RESUMEN

Deleterious accumulation of R-loops, a DNA-RNA hybrid structure, contributes to genome instability. They are associated with BRCA1 mutation-related breast cancer, an estrogen receptor α negative (ERα-) tumor type originating from luminal progenitor cells. However, a presumed causality of R-loops in tumorigenesis has not been established in vivo. Here, we overexpress mouse Rnaseh1 (Rh1-OE) in vivo to remove accumulated R-loops in Brca1-deficient mouse mammary epithelium (BKO). R-loop removal exacerbates DNA replication stress in proliferating BKO mammary epithelial cells, with little effect on homology-directed repair of double-strand breaks following ionizing radiation. Compared to their BKO counterparts, BKO-Rh1-OE mammary glands contain fewer luminal progenitor cells but more mature luminal cells. Despite a similar incidence of spontaneous mammary tumors in BKO and BKO-Rh1-OE mice, a significant percentage of BKO-Rh1-OE tumors express ERα and progesterone receptor. Our results suggest that rather than directly elevating the overall tumor incidence, R-loops influence the mammary tumor subtype by shaping the cell of origin for Brca1 tumors.


Asunto(s)
Proteína BRCA1 , Carcinogénesis , Estructuras R-Loop , Animales , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Ratones , Femenino , Carcinogénesis/genética , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Inestabilidad Genómica , Replicación del ADN , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo
9.
Cell Mol Life Sci ; 81(1): 339, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120648

RESUMEN

Senataxin is an evolutionarily conserved DNA/RNA helicase, whose dysfunctions are linked to neurodegeneration and cancer. A main activity of this protein is the removal of R-loops, which are nucleic acid structures capable to promote DNA damage and replication stress. Here we found that Senataxin deficiency causes the release of damaged DNA into extranuclear bodies, called micronuclei, triggering the massive recruitment of cGAS, the apical sensor of the innate immunity pathway, and the downstream stimulation of interferon genes. Such cGAS-positive micronuclei are characterized by defective membrane envelope and are particularly abundant in cycling cells lacking Senataxin, but not after exposure to a DNA breaking agent or in absence of the tumor suppressor BRCA1 protein, a partner of Senataxin in R-loop removal. Micronuclei with a discontinuous membrane are normally cleared by autophagy, a process that we show is impaired in Senataxin-deficient cells. The formation of Senataxin-dependent inflamed micronuclei is promoted by the persistence of nuclear R-loops stimulated by the DSIF transcription elongation complex and the engagement of EXO1 nuclease activity on nuclear DNA. Coherently, high levels of EXO1 result in poor prognosis in a subset of tumors lacking Senataxin expression. Hence, R-loop homeostasis impairment, together with autophagy failure and unscheduled EXO1 activity, elicits innate immune response through micronuclei formation in cells lacking Senataxin.


Asunto(s)
Autofagia , Daño del ADN , ADN Helicasas , Inflamación , Enzimas Multifuncionales , Nucleotidiltransferasas , Estructuras R-Loop , ARN Helicasas , Humanos , Autofagia/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/deficiencia , ADN Helicasas/metabolismo , ADN Helicasas/genética , ADN Helicasas/deficiencia , Enzimas Reparadoras del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/deficiencia , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Inmunidad Innata , Inflamación/patología , Inflamación/metabolismo , Inflamación/genética , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Fosfoproteínas , ARN Helicasas/metabolismo , ARN Helicasas/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-38976968

RESUMEN

Eukaryotic cells without telomerase experience progressively shorter telomeres with each round of cell division until cell cycle arrest is initiated, leading to replicative senescence. When yeast TLC1, which encodes the RNA template of telomerase, is deleted, senescence is accompanied by increased expression of TERRA (non-coding telomere repeat-containing RNA). Deletion of Npl3, an RNA-processing protein with telomere maintenance functions, accelerates senescence in tlc1Δ cells and significantly increases TERRA levels. Using genetic approaches, we set out to determine how Npl3 is involved in regulating TERRA expression and maintaining telomere homeostasis. Even though Npl3 regulates hyperrecombination, we found that Npl3 does not help resolve RNA:DNA hybrids formed during TERRA synthesis in the same way as RNase H1 and H2. Furthermore, Rad52 is still required for cells to escape senescence by telomere recombination in the absence of Npl3. Npl3 also works separately from the THO/TREX pathway for processing nascent RNA for nuclear export. However, deleting Dot1, a histone methyltransferase involved in tethering telomeres to the nuclear periphery, rescued the accelerated senescence phenotype of npl3Δ cells. Thus, our study suggests that Npl3 plays an additional role in regulating cellular senescence outside of RNA:DNA hybrid resolution and co-transcriptional processing.

11.
Brain Commun ; 6(4): fcae239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070547

RESUMEN

Senataxin is an RNA:DNA helicase that plays an important role in the resolution of RNA:DNA hybrids (R-loops) formed during transcription. R-loops are involved in the regulation of biological processes such as immunoglobulin class switching, gene expression and DNA repair. Excessive accumulation of R-loops results in DNA damage and loss of genomic integrity. Senataxin is critical for maintaining optimal levels of R-loops to prevent DNA damage and acts as a genome guardian. Within the nucleus, senataxin interacts with various RNA processing factors and DNA damage response and repair proteins. Senataxin interactors include survival motor neuron and zinc finger protein 1, with whom it co-localizes in sub-nuclear bodies. Despite its ubiquitous expression, mutations in senataxin specifically affect neurons and result in distinct neurodegenerative diseases such as amyotrophic lateral sclerosis type 4 and ataxia with oculomotor apraxia type 2, which are attributed to the gain-of-function and the loss-of-function mutations in senataxin, respectively. In addition, low levels of senataxin (loss-of-function) in spinal muscular atrophy result in the accumulation of R-loops causing DNA damage and motor neuron degeneration. Senataxin may play multiple functions in diverse cellular processes; however, its emerging role in R-loop resolution and maintenance of genomic integrity is gaining attention in the field of neurodegenerative diseases. In this review, we highlight the role of senataxin in R-loop resolution and its potential as a therapeutic target to treat neurodegenerative diseases.

12.
Genes Dev ; 38(11-12): 504-527, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38986581

RESUMEN

Genome integrity relies on the accuracy of DNA metabolism, but as appreciated for more than four decades, transcription enhances mutation and recombination frequencies. More recent research provided evidence for a previously unforeseen link between RNA and DNA metabolism, which is often related to the accumulation of DNA-RNA hybrids and R-loops. In addition to physiological roles, R-loops interfere with DNA replication and repair, providing a molecular scenario for the origin of genome instability. Here, we review current knowledge on the multiple RNA factors that prevent or resolve R-loops and consequent transcription-replication conflicts and thus act as modulators of genome dynamics.


Asunto(s)
Inestabilidad Genómica , Estructuras R-Loop , ARN , Inestabilidad Genómica/genética , ARN/metabolismo , ARN/genética , Replicación del ADN/genética , Animales , Humanos , Transcripción Genética/genética
13.
FEBS Lett ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844597

RESUMEN

Recently, there has been increasing interest in the complex relationship between transcription and genome stability, with specific attention directed toward the physiological significance of molecular structures known as R-loops. These structures arise when an RNA strand invades into the DNA duplex, and their formation is involved in a wide range of regulatory functions affecting gene expression, DNA repair processes or cell homeostasis. The persistent presence of R-loops, if not effectively removed, contributes to genome instability, underscoring the significance of the factors responsible for their resolution and modification. In this review, we provide a comprehensive overview of how R-loop processing can drive either a beneficial or a harmful outcome. Additionally, we explore the potential for manipulating such structures to devise rationalized therapeutic strategies targeting the aberrant accumulation of R-loops.

14.
Cell Mol Biol Lett ; 29(1): 89, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877420

RESUMEN

CircR-loop, a recently unearthed regulatory mechanism situated at the crossroads of circular RNA and DNA interactions, constitute a subset of R-loop. This circR-loop have emerged as a crucial player in pivotal regulatory functions within both animal and plant systems. The journey into the realm of circR-loop commenced with their discovery within the human mitochondrial genome, where they serve as critical directors of mitochondrial DNA replication. In the plant kingdom, circR-loop wield influence over processes such as alternative splicing and centromere organization, impacting the intricacies of floral development and genome stability, respectively. Their significance extends to the animal domain, where circR-loop has captured attention for their roles in cancer-related phenomena, exerting control over transcription, chromatin architecture, and orchestrating responses to DNA damage. Moreover, their involvement in nuclear export anomalies further underscores their prominence in cellular regulation. This article summarizes the important regulatory mechanisms and physiological roles of circR-loop in plants and animals, and offers a comprehensive exploration of the methodologies employed for the identification, characterization, and functional analysis of circR-loop, underscoring the pressing need for innovative approaches that can effectively distinguish them from their linear RNA counterparts while elucidating their precise functions. Lastly, the article sheds light on the challenges and opportunities that lie ahead in the field of circR-loop research, emphasizing the vital importance of continued investigations to uncover their regulatory roles and potential applications in the realm of biology. In summary, circR-loop represents a captivating and novel regulatory mechanism with broad-reaching implications spanning the realms of genetics, epigenetics, and disease biology. Their exploration opens new avenues for comprehending gene regulation and holds significant promise for future therapeutic interventions.


Asunto(s)
Inestabilidad Genómica , ARN Circular , Inestabilidad Genómica/genética , Humanos , Animales , ARN Circular/genética , ARN Circular/metabolismo , ADN/metabolismo , ADN/genética , Estructuras R-Loop/genética , ARN/metabolismo , ARN/genética , Replicación del ADN/genética
15.
FEBS Lett ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813713

RESUMEN

Elevated oxidative stress, which threatens genome stability, has been detected in almost all types of cancers. Cells employ various DNA repair pathways to cope with DNA damage induced by oxidative stress. Recently, a lot of studies have provided insights into DNA damage response upon oxidative stress, specifically in the context of transcriptionally active genomes. Here, we summarize recent studies to help understand how the transcription is regulated upon DNA double strand breaks (DSB) and how DNA repair pathways are selectively activated at the damage sites coupling with transcription. The role of RNA molecules, especially R-loops and RNA modifications during the DNA repair process, is critical for protecting genome stability. This review provides an update on how cells protect transcribed genome loci via transcription-coupled repair pathways.

16.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38712171

RESUMEN

Interferon-stimulated genes (ISGs) comprise a program of immune effectors important for host immune defense. When uncontrolled, ISGs play a central role in interferonopathies and other inflammatory diseases. The mechanisms responsible for turning on ISGs are not completely known. By investigating MATRIN3 (MATR3), a nuclear RNA-binding protein mutated in familial ALS, we found that perturbing MATR3 results in elevated expression of ISGs. Using an integrative approach, we elucidate a pathway that leads to activation of cGAS-STING. This outlines a plausible mechanism for pathogenesis in a subset of ALS, and suggests new diagnostic and therapeutic approaches for this fatal disease.

17.
FEBS Lett ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803008

RESUMEN

The intricate mechanisms underlying transcription-dependent genome instability involve G-quadruplexes (G4) and R-loops. This perspective elucidates the potential link between these structures and genome instability in aging. The co-occurrence of G4 DNA and RNA-DNA hybrid structures (G-loop) underscores a complex interplay in genome regulation and instability. Here, we hypothesize that the age-related decline of sirtuin function leads to an increase in acetylated helicases that bind to G4 DNA and RNA-DNA hybrid structures, but are less efficient in resolving them. We propose that acetylated, less active, helicases induce persistent G-loop structures, promoting transcription-dependent genome instability in aging.

18.
Adv Immunol ; 161: 109-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763699

RESUMEN

Besides the canonical B-form, DNA also adopts alternative non-B form conformations which are highly conserved in all domains of life. While extensive research over decades has centered on the genomic functions of B-form DNA, understanding how non-B-form conformations influence functional genomic states remains a fundamental and open question. Recent studies have ascribed alternative DNA conformations such as G-quadruplexes and R-loops as important functional features in eukaryotic genomes. This review delves into the biological importance of alternative DNA structures, with a specific focus on hematopoiesis and adaptive immunity. We discuss the emerging roles of G-quadruplex and R-loop structures, the two most well-studied alternative DNA conformations, in the hematopoietic compartment and present evidence for their functional roles in normal cellular physiology and associated pathologies.


Asunto(s)
Inmunidad Adaptativa , G-Cuádruplex , Hematopoyesis , Humanos , Hematopoyesis/genética , Animales , ADN/inmunología , Conformación de Ácido Nucleico
19.
Cell Rep ; 43(5): 114214, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38761375

RESUMEN

TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Mutación , Enfermedades Neurodegenerativas , Hidrolasas Diéster Fosfóricas , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Mutación/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo I/genética , Transcripción Genética , Estructuras R-Loop , Sistemas CRISPR-Cas/genética
20.
FEBS J ; 291(15): 3417-3431, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38708718

RESUMEN

Although, superkiller complex protein 8 (SKI8), previously known as WDR61 has been identified and mapped in breast tumor, little is currently known about its function. This study aims to elucidate the role of WDR61 in breast tumor development and its potential as a therapeutic target. Here, we show that tamoxifen-induced knockout of Wdr61 reduces the risk of breast tumors, resulting in smaller tumor size and weight, and improved overall survival. Furthermore, we show that knockdown of WDR61 compromises the proliferation of breast tumor cells with reduced colony-forming capacity. Further investigations demonstrate that the protective effect of WDR61 loss on breast tumor development is due to genomic instability. Mechanistic studies reveal that WDR61 interacts with the R-loop, and loss of WDR61 leads to R-loops accumulation in breast tumor cells, causing DNA damage and subsequent inhibition of cell proliferation. In summary, this study highlights the critical dependence of breast tumors on WDR61, which suppresses R-loop and counteracts endogenous DNA damage in tumor cells.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Daño del ADN , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Animales , Ratones , Inestabilidad Genómica , Progresión de la Enfermedad , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA