Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 896
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39219547

RESUMEN

Genotoxic stress activates the DNA-damage response (DDR) signalling cascades responsible for maintaining genome integrity. Downstream DNA repair pathways include the tyrosyl-DNA phosphodiesterase 1 (TDP1) enzyme that hydrolyses the phosphodiester bond between the tyrosine of topoisomerase I (TopI) and 3'-phosphate of DNA. The plant TDP1 subfamily contains the canonical TDP1α gene and the TDP1ß gene whose functions are not fully elucidated. The current study proposes to investigate the involvement of TDP1 genes in DDR-related processes by using Arabidopsis thaliana mutants treated with genotoxic agents. The phenotypic and molecular characterization of tdp1α, tdp1ß and tdp1α/ß mutants treated with cisplatin (CIS), curcumin (CUR), NSC120686 (NSC), zeocin (ZEO), and camptothecin (CPT), evidenced that while tdp1ß was highly sensitive to CIS and CPT, tdp1α was more sensitive to NSC. Gene expression analyses showing upregulation of the TDP2 gene in the double mutant indicate the presence of compensatory mechanisms. The downregulation of POL2A gene in the tdp1ß mutant along with the upregulation of the TDP1ß gene in pol2a mutants, together with its sensitivity to replication inhibitors (CIS, CTP), point towards a function of this gene in the response to replication stress. Therefore, this study brings novel information relative to the activity of TDP1 genes in plants.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39240414

RESUMEN

MCM10 plays a vital role in genome duplication and is crucial for DNA replication initiation, elongation, and termination. It coordinates several proteins to assemble at the fork, form a functional replisome, trigger origin unwinding, and stabilize the replication bubble. MCM10 overexpression is associated with increased aggressiveness in breast, cervical, and several other cancers. Disruption of MCM10 leads to altered replication timing associated with initiation site gains and losses accompanied by genome instability. Knockdown of MCM10 affects the proliferation and migration of cancer cells, manifested by DNA damage and replication fork arrest, and has recently been shown to be associated with clinical conditions like CNKD and RCM. Loss of MCM10 function is associated with impaired telomerase activity, leading to the accumulation of abnormal replication forks and compromised telomere length. MCM10 interacts with histones, aids in nucleosome assembly, binds BRCA2 to maintain genome integrity during DNA damage, prevents lesion skipping, and inhibits PRIMPOL-mediated repriming. It also interacts with the fork reversal enzyme SMARCAL1 and inhibits fork regression. Additionally, MCM10 undergoes several post-translational modifications and contributes to transcriptional silencing by interacting with the SIR proteins. This review explores the mechanism associated with MCM10's multifaceted role in DNA replication initiation, chromatin organization, transcriptional silencing, replication stress, fork stability, telomere length maintenance, and DNA damage response. Finally, we discuss the role of MCM10 in the early detection of cancer, its prognostic significance, and its potential use in therapeutics for cancer treatment.

3.
DNA Repair (Amst) ; 142: 103758, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39236419

RESUMEN

Timely and accurate DNA replication is critical for safeguarding genome integrity and ensuring cell viability. Yet, this process is challenged by DNA damage blocking the progression of the replication machinery. To counteract replication fork stalling, evolutionary conserved DNA damage tolerance (DDT) mechanisms promote DNA damage bypass and fork movement. One of these mechanisms involves "skipping" DNA damage through repriming downstream of the lesion, leaving single-stranded DNA (ssDNA) gaps behind the advancing forks (also known as post-replicative gaps). In vertebrates, repriming in damaged leading templates is proposed to be mainly promoted by the primase and polymerase PRIMPOL. In this review, we discuss recent advances towards our understanding of the physiological and pathological conditions leading to repriming activation in human models, revealing a regulatory network of PRIMPOL activity. Upon repriming by PRIMPOL, post-replicative gaps formed can be filled-in by the DDT mechanisms translesion synthesis and template switching. We discuss novel findings on how these mechanisms are regulated and coordinated in time to promote gap filling. Finally, we discuss how defective gap filling and aberrant gap expansion by nucleases underlie the cytotoxicity associated with post-replicative gap accumulation. Our increasing knowledge of this repriming mechanism - from gap formation to gap filling - is revealing that targeting the last step of this pathway is a promising approach to exploit post-replicative gaps in anti-cancer therapeutic strategies.

4.
Mol Cell ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39236719

RESUMEN

Topoisomerase 1 cleavage complexes (Top1-ccs) comprise a DNA-protein crosslink and a single-stranded DNA break that can significantly impact the DNA replication machinery (replisome). Consequently, inhibitors that trap Top1-ccs are used extensively in research and clinical settings to generate DNA replication stress, yet how the replisome responds upon collision with a Top1-cc remains obscure. By reconstituting collisions between budding yeast replisomes, assembled from purified proteins, and site-specific Top1-ccs, we have uncovered mechanisms underlying replication fork stalling and collapse. We find that stalled replication forks are surprisingly stable and that their stability is influenced by the template strand that Top1 is crosslinked to, the fork protection complex proteins Tof1-Csm3 (human TIMELESS-TIPIN), and the convergence of replication forks. Moreover, nascent-strand mapping and cryoelectron microscopy (cryo-EM) of stalled forks establishes replisome remodeling as a key factor in the initial response to Top1-ccs. These findings have important implications for the use of Top1 inhibitors in research and in the clinic.

5.
DNA Repair (Amst) ; 142: 103759, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39241677

RESUMEN

Break-induced replication (BIR) is a homologous recombination (HR) pathway that repairs one-ended DNA double-strand breaks (DSBs), which can result from replication fork collapse, telomere erosion, and other events. Eukaryotic BIR has been mainly investigated in yeast, where it is initiated by invasion of the broken DNA end into a homologous sequence, followed by extensive replication synthesis proceeding to the chromosome end. Multiple recent studies have described BIR in mammalian cells, the properties of which show many similarities to yeast BIR. While HR is considered as "error-free" mechanism, BIR is highly mutagenic and frequently leads to chromosomal rearrangements-genetic instabilities known to promote human disease. In addition, it is now recognized that BIR is highly stimulated by replication stress (RS), including RS constantly present in cancer cells, implicating BIR as a contributor to cancer genesis and progression. Here, we discuss the past and current findings related to the mechanism of BIR, the association of BIR with replication stress, and the destabilizing effects of BIR on the eukaryotic genome. Finally, we consider the potential for exploiting the BIR machinery to develop anti-cancer therapeutics.

6.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125869

RESUMEN

Werner syndrome (WS) is an autosomal recessive disease caused by loss of function of WRN. WS is a segmental progeroid disease and shows early onset or increased frequency of many characteristics of normal aging. WRN possesses helicase, annealing, strand exchange, and exonuclease activities and acts on a variety of DNA substrates, even complex replication and recombination intermediates. Here, we review the genetics, biochemistry, and probably physiological functions of the WRN protein. Although its precise role is unclear, evidence suggests WRN plays a role in pathways that respond to replication stress and maintain genome stability particularly in telomeric regions.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Helicasa del Síndrome de Werner , Síndrome de Werner , Helicasa del Síndrome de Werner/metabolismo , Helicasa del Síndrome de Werner/genética , Humanos , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Animales , Telómero/metabolismo , Telómero/genética
7.
DNA Repair (Amst) ; 141: 103733, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096698

RESUMEN

Fanconi anemia (FA) is a hereditary disorder characterized by a deficiency in the repair of DNA interstrand crosslinks and the response to replication stress. Endogenous DNA damage, most likely caused by aldehydes, severely affects hematopoietic stem cells in FA, resulting in progressive bone marrow failure and the development of leukemia. Recent studies revealed that expression levels of SLFN11 affect the replication stress response and are a strong determinant in cell killing by DNA-damaging cancer chemotherapy. Because SLFN11 is highly expressed in the hematopoietic system, we speculated that SLFN11 may have a significant role in FA pathophysiology. Indeed, we found that DNA damage sensitivity in FA cells is significantly mitigated by the loss of SLFN11 expression. Mechanistically, we demonstrated that SLFN11 destabilizes the nascent DNA strands upon replication fork stalling. In this review, we summarize our work regarding an interplay between SLFN11 and the FA pathway, and the role of SLFN11 in the response to replication stress.


Asunto(s)
Daño del ADN , Replicación del ADN , Anemia de Fanconi , Proteínas Nucleares , Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Animales , Reparación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética
8.
DNA Repair (Amst) ; 141: 103731, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089193

RESUMEN

DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.


Asunto(s)
Tolerancia al Daño del ADN , Animales , Humanos , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Reparación del ADN , Inestabilidad Genómica
9.
Mol Cell ; 84(16): 3044-3060.e11, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39142279

RESUMEN

G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.


Asunto(s)
ADN Primasa , Replicación del ADN , Proteínas de Unión al ADN , G-Cuádruplex , Inestabilidad Genómica , Proteína 2 Homóloga a MutS , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteína 2 Homóloga a MutS/metabolismo , Proteína 2 Homóloga a MutS/genética , ADN Primasa/metabolismo , ADN Primasa/genética , Homeostasis del Telómero , Daño del ADN , Células HEK293 , Enzimas Multifuncionales/metabolismo , Enzimas Multifuncionales/genética , ADN Polimerasa Dirigida por ADN
10.
DNA Repair (Amst) ; 142: 103753, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39190984

RESUMEN

DNA replication stress is one of the primary causes of genome instability. In response to replication stress, cells can employ replication restart mechanisms that rely on homologous recombination to resume replication fork progression and preserve genome integrity. In this review, we provide an overview of various methods that have been developed to induce site-specific replication fork stalling or collapse in eukaryotic cells. In particular, we highlight recent studies of mechanisms of replication-associated recombination resulting from site-specific protein-DNA barriers and single-strand breaks, and we discuss the contributions of these findings to our understanding of the consequences of these forms of stress on genome stability.

11.
Cell Rep ; 43(8): 114594, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39116203

RESUMEN

Homologous recombination (HR) plays an essential role in the repair of DNA double-strand breaks (DSBs), replication stress responses, and genome maintenance. However, unregulated HR during replication can impair genome duplication and compromise genome stability. The mechanisms underlying HR regulation during DNA replication are obscure. Here, we find that RTEL1 helicase, RAD51, and RAD51 paralogs are enriched at stalled replication sites. The absence of RTEL1 leads to an increase in the RAD51-mediated HR and fork reversal during replication and affects genome-wide replication, which can be rescued by co-depleting RAD51 and RAD51 paralogs. Interestingly, co-depletion of fork remodelers such as SMARCAL1/ZRANB3/HLTF/FBH1 and expression of HR-defective RAD51 mutants also rescues replication defects in RTEL1-deficient cells. The anti-recombinase function of RTEL1 during replication depends on its interaction with PCNA and helicase activity. Together, our data identify the role of RTEL1 helicase in restricting RAD51-mediated fork reversal and HR activity to facilitate error-free genome duplication.


Asunto(s)
ADN Helicasas , Replicación del ADN , Recombinación Homóloga , Recombinasa Rad51 , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Humanos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Roturas del ADN de Doble Cadena , Inestabilidad Genómica
12.
Aging Cell ; : e14281, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044358

RESUMEN

Over a lifetime, hematopoietic stem and progenitor cells (HSPCs) are forced to repeatedly proliferate to maintain hematopoiesis, increasing their susceptibility to DNA damaging replication stress. However, the proteins that mitigate this stress, protect HSPC replication, and prevent aging-driven dysregulation are unknown. We report two evolutionarily conserved, ubiquitously expressed chromatin remodeling enzymes with similar DNA replication fork reversal biochemical functions, Zranb3 and Smarcal1, have surprisingly specialized roles in distinct HSPC populations. While both proteins actively mitigate replication stress and prevent DNA damage and breaks during lifelong hematopoiesis, the loss of either resulted in distinct biochemical and biological consequences. Notably, defective long-term HSC function, revealed with bone marrow transplantation, caused hematopoiesis abnormalities in young mice lacking Zranb3. Aging significantly worsened these hematopoiesis defects in Zranb3-deficient mice, including accelerating the onset of myeloid-biased hematopoietic dysregulation to early in life. Such Zranb3-deficient HSPC abnormalities with age were driven by accumulated DNA damage and replication stress. Conversely, Smarcal1 loss primarily negatively affected progenitor cell functions that were exacerbated with aging, resulting in a lymphoid bias. Simultaneous loss of both Zranb3 and Smarcal1 compounded HSPC defects. Additionally, HSPC DNA replication fork dynamics had unanticipated HSPC type and age plasticity that depended on the stress and Zranb3 and/or Smarcal1. Our data reveal both Zranb3 and Smarcal1 have essential HSPC cell intrinsic functions in lifelong hematopoiesis that protect HSPCs from replication stress and DNA damage in unexpected, unique ways.

13.
PNAS Nexus ; 3(7): pgae242, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957451

RESUMEN

The Fanconi anemia (FA) repair pathway governs repair of highly genotoxic DNA interstrand crosslinks (ICLs) and relies on translesion synthesis (TLS). TLS is facilitated by REV1 or site-specific monoubiquitination of proliferating cell nuclear antigen (PCNA) (PCNA-Ub) at lysine 164 (K164). A PcnaK164R/K164R but not Rev1-/- mutation renders mammals hypersensitive to ICLs. Besides the FA pathway, alternative pathways have been associated with ICL repair (1, 2), though the decision making between those remains elusive. To study the dependence and relevance of PCNA-Ub in FA repair, we intercrossed PcnaK164R/+; Fancg-/+ mice. A combined mutation (PcnaK164R/K164R; Fancg-/- ) was found embryonically lethal. RNA-seq of primary double-mutant (DM) mouse embryonic fibroblasts (MEFs) revealed elevated levels of replication stress-induced checkpoints. To exclude stress-induced confounders, we utilized a Trp53 knock-down to obtain a model to study ICL repair in depth. Regarding ICL-induced cell toxicity, cell cycle arrest, and replication fork progression, single-mutant and DM MEFs were found equally sensitive, establishing PCNA-Ub to be critical for FA-ICL repair. Immunoprecipitation and spectrometry-based analysis revealed an unknown role of PCNA-Ub in excluding mismatch recognition complex MSH2/MSH6 from being recruited to ICLs. In conclusion, our results uncovered a dual function of PCNA-Ub in ICL repair, i.e. exclude MSH2/MSH6 recruitment to channel the ICL toward canonical FA repair, in addition to its established role in coordinating TLS opposite the unhooked ICL.

14.
Biomed Pharmacother ; 177: 117076, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971011

RESUMEN

Hyperactive FMS-like receptor tyrosine kinase-3 mutants with internal tandem duplications (FLT3-ITD) are frequent driver mutations of aggressive acute myeloid leukemia (AML). Inhibitors of FLT3 produce promising results in rationally designed cotreatment schemes. Since FLT3-ITD modulates DNA replication and DNA repair, valid anti-leukemia strategies could rely on a combined inhibition of FLT3-ITD and regulators of cell cycle progression and DNA integrity. These include the WEE1 kinase which controls cell cycle progression, nucleotide synthesis, and DNA replication origin firing. We investigated how pharmacological inhibition of FLT3 and WEE1 affected the survival and genomic integrity of AML cell lines and primary AML cells. We reveal that promising clinical grade and preclinical inhibitors of FLT3 and WEE1 synergistically trigger apoptosis in leukemic cells that express FLT3-ITD. An accumulation of single and double strand DNA damage precedes this process. Mass spectrometry-based proteomic analyses show that FLT3-ITD and WEE1 sustain the expression of the ribonucleotide reductase subunit RRM2, which provides dNTPs for DNA replication. Unlike their strong pro-apoptotic effects on leukemia cells with FLT3-ITD, inhibitors of FLT3 and WEE1 do not damage healthy human blood cells and murine hematopoietic stem cells. Thus, pharmacological inhibition of FLT3-ITD and WEE1 might become an improved, rationally designed therapeutic option.


Asunto(s)
Apoptosis , Proteínas de Ciclo Celular , Daño del ADN , Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Proteínas Tirosina Quinasas , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Sinergismo Farmacológico , Animales , Pirazoles , Pirimidinonas
15.
DNA Repair (Amst) ; 141: 103735, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079395

RESUMEN

DNA replication ensures the complete and accurate duplication of the genome. The traditional approach to analysing perturbation of DNA replication is to use chemical inhibitors, such as hydroxyurea or aphidicolin, that slow or stall replication fork progression throughout the genome. An alternative approach is to perturb replication at a single site in the genome that permits a more forensic investigation of the cellular response to the stalling or disruption of a replication fork. This has been achieved in several organisms using different systems that share the common feature of utilizing the high affinity binding of a protein to a defined DNA sequence that is integrated into a specific locus in the host genome. Protein-mediated replication fork blocking systems of this sort have proven very valuable in defining how cells cope with encountering a barrier to fork progression. In this review, we compare protein-based replication fork barrier systems from different organisms that have been developed to generate site-specific replication fork perturbation.


Asunto(s)
Replicación del ADN , Humanos , Animales , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
16.
DNA Repair (Amst) ; 141: 103734, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39047499

RESUMEN

Enzymes of the apolipoprotein B mRNA editing catalytic polypeptide like (APOBEC) family are cytosine deaminases that convert cytosine to uracil in DNA and RNA. Among these proteins, APOBEC3 sub-family members, APOBEC3A (A3A) and APOBEC3B (A3B), are prominent sources of mutagenesis in cancer cells. The aberrant expression of A3A and A3B in cancer cells leads to accumulation of mutations with specific single-base substitution (SBS) signatures, characterized by C→T and C→G changes, in a number of tumor types. In addition to fueling mutagenesis, A3A and A3B, particularly A3A, induce DNA replication stress, DNA damage, and chromosomal instability through their catalytic activities, triggering a range of cellular responses. Thus, A3A/B have emerged as key drivers of genome evolution during cancer development, contributing to tumorigenesis, tumor heterogeneity, and therapeutic resistance. Yet, the expression of A3A/B in cancer cells presents a cancer vulnerability that can be exploited therapeutically. In this review, we discuss the recent studies that shed light on the mechanisms regulating A3A expression and the impact of A3A in cancer. We also review recent advances in the development of A3A inhibitors and provide perspectives on the future directions of A3A research.


Asunto(s)
Citidina Desaminasa , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Citidina Desaminasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Animales , Proteínas/metabolismo , Proteínas/genética , Daño del ADN , Mutagénesis
17.
J Pathol ; 264(1): 90-100, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39022850

RESUMEN

Replication stress (RS) is a key trait of cancer cells, and a potential actionable target in cancer treatment. Accurate methods to measure RS in tumour samples are currently lacking. DNA fibre analysis has been used as a common technique to measure RS in cell lines. Here, we investigated DNA fibre analysis on fresh breast cancer specimens and correlated DNA replication kinetics to known RS markers and genomic alterations. Fresh, treatment-naïve primary breast cancer samples (n = 74) were subjected to ex vivo DNA fibre analysis to measure DNA replication kinetics. Tumour cell proliferation was confirmed by EdU incorporation and cytokeratin AE1/AE3 (CK) staining. The RS markers phospho-S33-RPA and γH2AX and the RS-inducing proto-oncogenes Cyclin E1 and c-Myc were analysed by immunohistochemistry. Copy number variations (CNVs) were assessed from genome-wide single nucleotide polymorphism (SNP) arrays. We found that the majority of proliferating (EdU-positive) cells in each sample were CK-positive and therefore considered to be tumour cells. DNA fibre lengths varied largely in most tumour samples. The median DNA fibre length showed a significant inverse correlation with pRPA expression (r = -0.29, p = 0.033) but was not correlated with Cyclin E1 or c-Myc expression and global CNVs in this study. Nuclear Cyclin E1 expression showed a positive correlation with pRPA levels (r = 0.481, p < 0.0001), while cytoplasmic Cyclin E1 expression exhibited an inverse association with pRPA expression (r = -0.353, p = 0.002) and a positive association with global CNVs (r = 0.318, p = 0.016). In conclusion, DNA fibre analysis performed with fresh primary breast cancer samples is feasible. Fibre lengths were associated with pRPA expression. Cyclin E1 expression was associated with pRPA and the percentage of CNVs. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Mama , Ciclina E , Replicación del ADN , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Ciclina E/genética , Ciclina E/metabolismo , Replicación del ADN/genética , Polimorfismo de Nucleótido Simple , Proliferación Celular , Variaciones en el Número de Copia de ADN , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Anciano , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Adulto
18.
Genetics ; 227(4)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38946641

RESUMEN

APOBEC proteins are cytidine deaminases that restrict the replication of viruses and transposable elements. Several members of the APOBEC3 family, APOBEC3A, APOBEC3B, and APOBEC3H-I, can access the nucleus and cause what is thought to be indiscriminate deamination of the genome, resulting in mutagenesis and genome instability. Although APOBEC3C is also present in the nucleus, the full scope of its deamination target preferences is unknown. By expressing human APOBEC3C in a yeast model system, I have defined the APOBEC3C mutation signature, as well as the preferred genome features of APOBEC3C targets. The APOBEC3C mutation signature is distinct from those of the known cancer genome mutators APOBEC3A and APOBEC3B. APOBEC3C produces DNA strand-coordinated mutation clusters, and APOBEC3C mutations are enriched near the transcription start sites of active genes. Surprisingly, APOBEC3C lacks the bias for the lagging strand of DNA replication that is seen for APOBEC3A and APOBEC3B. The unique preferences of APOBEC3C constitute a mutation profile that will be useful in defining sites of APOBEC3C mutagenesis in human genomes.


Asunto(s)
Citidina Desaminasa , Mutación , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Humanos , Genoma Humano , Replicación del ADN , Proteínas/genética , Proteínas/metabolismo , Mutagénesis , Saccharomyces cerevisiae/genética , Antígenos de Histocompatibilidad Menor
19.
Redox Biol ; 75: 103247, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39047636

RESUMEN

Heme oxygenase-1 (HO-1, HMOX1) degrades heme protecting cells from heme-induced oxidative damage. Beyond its well-established cellular functions, heme has emerged as a stabilizer of G-quadruplexes. These secondary DNA structures interfere with DNA replication. We recently revealed that nuclear HO-1 colocalizes with DNA G-quadruplexes and promotes their removal. Here, we investigate whether HO-1 safeguards cells against replication stress. Experiments were conducted in control and HMOX1-deficient HEK293T cell lines. Immunostaining unveiled that DNA G-quadruplexes accumulated in the absence of HO-1, the effect that was further enhanced in response to δ-aminolevulinic acid (ALA), a substrate in heme synthesis. This was associated with replication stress, as evidenced by an elevated proportion of stalled forks analyzed by fiber assay. We observed the same effects in hematopoietic stem cells isolated from Hmox1 knockout mice and in a lymphoblastoid cell line from an HMOX1-deficient patient. Interestingly, in the absence of HO-1, the speed of fork progression was higher, and the response to DNA conformational hindrance less stringent, indicating dysfunction of the PARP1-p53-p21 axis. PARP1 activity was not decreased in the absence of HO-1. Instead, we observed that HO-1 deficiency impairs the nuclear import and accumulation of p53, an effect dependent on the removal of excess heme. We also demonstrated that administering ALA is a more specific method for increasing intracellular free heme compared to treatment with hemin, which in turn induces strong lipid peroxidation. Our results indicate that protection against replication stress is a universal feature of HO-1, presumably contributing to its widely recognized cytoprotective activity.


Asunto(s)
Replicación del ADN , Hemo-Oxigenasa 1 , Humanos , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Animales , Ratones , Células HEK293 , Estrés Oxidativo , Hemo/metabolismo , Ratones Noqueados , G-Cuádruplex , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/metabolismo , Daño del ADN
20.
Eur Thyroid J ; 13(4)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047147

RESUMEN

Objective: Ionizing radiation generates genomic instability by promoting the accumulation of chromosomal rearrangements. The oncogenic translocation RET/PTC1 is present in more than 70% of radiation-induced thyroid cancers. Both RET and CCDC6, the genes implicated in RET/PTC1, are found within common fragile sites - chromosomal regions prone to DNA breakage during slight replication stress. Given that irradiated cells become more susceptible to genomic destabilization due to the accumulation of replication-stress-related double-strand breaks (DSBs), we explored whether RET and CCDC6 exhibit DNA breakage under replicative stress several days post-irradiation of thyroid cells. Methods: We analyzed the dynamic of DNA replication in human thyroid epithelial cells (HThy-ori-3.1) 4 days post a 5-Gy exposure using molecular DNA combing. The DNA replication schedule was evaluated through replication-timing experiments. We implemented a ChIP-qPCR assay to determine whether the RET and CCDC6 genes break following irradiation. Results: Our study indicates that replicative stress, occurring several days post-irradiation in thyroid cells, primarily causes DSBs in the RET gene. We discovered that both the RET and CCDC6 genes undergo late replication in thyroid cells. However, only RET's replication rate is notably delayed after irradiation. Conclusion: The findings suggest that post-irradiation in the RET gene causes a breakage in the replication fork, which could potentially invade another genomic area, including CCDC6. As a result, this could greatly contribute to the high prevalence of chromosomal RET/PTC rearrangements seen in patients exposed to external radiation.


Asunto(s)
Replicación del ADN , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-ret , Glándula Tiroides , Humanos , Replicación del ADN/efectos de la radiación , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Glándula Tiroides/efectos de la radiación , Inestabilidad Genómica/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Línea Celular , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/radioterapia , Células Epiteliales/efectos de la radiación , Células Epiteliales/metabolismo , Proteínas del Citoesqueleto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA