Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Enzyme Microb Technol ; 164: 110190, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36603321

RESUMEN

Carotenoids are a series of natural pigments with unique structure and physiological functions. In this study, a novel Rhodococcus aetherivorans strain N1 was discovered, which can produce 6.4 mg/g carotenoids including ß-carotene, zeaxanthin and isorenieratene from glucose. Moreover, strain N1 can directly produce 3.0 mg/g carotenoids from the undetoxified straw hydrolysate, representing the highest carotenoids production from the undetoxified lignocellulosic hydrolysate. The crude carotenoid extracts of strain N1 showed efficient free radical scavenging activity and stability. Strain N1 has complete methylerythritol 4-phosphate (MEP) pathway and related genes for carotenoid synthesis, especially the rare aromatic carotenoid of isorenieratene. Genomic comparison between strain N1 and other carotenoid producing Rhodococcus sp. strains showed the conservatism and universality of carotenoids synthesis gene. These results proved that R. aetherivorans strain N1 can serve as a promising producer for the industrialization of carotenoid production.


Asunto(s)
Carotenoides , Rhodococcus , Carotenoides/metabolismo , Fenoles , Rhodococcus/genética , Rhodococcus/metabolismo
2.
Front Microbiol ; 11: 568381, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072027

RESUMEN

Nowadays, contamination by polycyclic aromatic hydrocarbons (PAHs) has become a serious problem all over the world; in particular, high-molecular-weight PAHs (HWM PAHs, four to seven rings) are more harmful to human health and environment due to their more complex structure and metabolic pathway. Biodegradation of PAHs with six or more rings, such as indeno[1,2,3-cd]pyrene (IcdP), was rarely described. An IcdP-degrading strain, Rhodococcus aetherivorans IcdP1, was isolated from HWM PAH-contaminated soil. It could grow on and efficiently degrade various HWM PAHs, such as IcdP, benzo[a]pyrene, and benzo[j]fluoranthene. It showed highest degrading ability toward IcdP (> 70% within 10 days). The IcdP degradation was initiated by ring hydroxylation with multiple pathways, including the hydroxylation at the 1,2 and 7,8 positions, according to the relevant metabolites detected, e.g., cyclopenta[cd]pyrene-3,4-dicarboxylic acid and 2,3-dimethoxy-2,3-dihydrofluoranthene. The transcriptional patterns of the genes encoding ring-hydroxylating oxygenases (RHOs) and cytochrome P450 monooxygenases (CYP450s) under the induction of IcdP, pyrene, and benzo[b]fluoranthene (BbF) were compared to determine the key initial RHOs in the conversion of IcdP. The expression of genes encoding RHOs 1892-1894, 1917-1920, and 4740-4741 was induced strictly by IcdP, and the amino acid sequences of these proteins showed very low identities with their homologs. These results suggested that IcdP was degraded through a dioxygenation-initiated metabolism pattern, and RHOs 1892-1894, 1917-1920, and 4740-4741 responded to the initial ring cleavage of IcdP through 1,2-dihydrodiol or 7,8-dihydrodiol. The studies would contribute to the understanding of the molecular mechanism of initial degradation of IcdP.

3.
Appl Microbiol Biotechnol ; 104(8): 3611-3625, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32043191

RESUMEN

Microbe-based decontamination of phenol-polluted environments has significant advantages over physical and chemical approaches by being relatively cheaper and ensuring complete phenol degradation. There is a need to search for commercially prospective bacterial strains that are resistant to phenol and other co-pollutants, e.g. oil hydrocarbons, in contaminated environments, and able to carry out efficient phenol biodegradation at a variable range of concentrations. This research characterizes the phenol-biodegrading ability of a new actinobacteria strain isolated from a lubricant-contaminated soil environment. Phenotypic and phylogenetic analyses showed that the novel strain UCM Ac-603 belonged to the species Rhodococcus aetherivorans, and phenol degrading ability was quantitatively characterized for the first time. R. aetherivorans UCM Ac-603 tolerated and assimilated phenol (100% of supplied concentration) and various hydrocarbons (56.2-94.4%) as sole carbon sources. Additional nutrient supplementation was not required for degradation and this organism could grow at a phenol concentration of 500 mg L-1 without inhibition. Complete phenol assimilation occurred after 4 days at an initial concentration of 1750 mg L-1 for freely-suspended cells and at 2000 mg L-1 for vermiculite-immobilized cells: 99.9% assimilation of phenol was possible from a total concentration of 3000 mg L-1 supplied at daily fractional phenol additions of 750 mg L-1 over 4 days. In terms of phenol degradation rates, R. aetherivorans UCM Ac-602 showed efficient phenol degradation over a wide range of initial concentrations with the rates (e.g. 35.7 mg L-1 h-1 at 500 mg L-1 phenol, and 18.2 mg L-1 h-1 at 1750 mg L-1 phenol) significantly exceeding (1.2-5 times) reported data for almost all other phenol-assimilating bacteria. Such efficient phenol degradation ability compared to currently known strains and other beneficial characteristics of R. aetherivorans UCM Ac-602 suggest it is a promising candidate for bioremediation of phenol-contaminated environments.


Asunto(s)
Lubricantes/metabolismo , Fenol/metabolismo , Rhodococcus/aislamiento & purificación , Rhodococcus/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Residuos Industriales , Fenotipo , Filogenia , Rhodococcus/clasificación , Ucrania
4.
Front Microbiol ; 9: 672, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29706937

RESUMEN

Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first insights into the genetic and metabolic mechanisms allowing a Rhodococcus strain to aerobically degrade NAs.

5.
Biodegradation ; 29(3): 301-310, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29696449

RESUMEN

Rhodococcus aetherivorans JCM 14343 can degrade 1,4-dioxane as a sole carbon and energy source. This study aimed to characterize this 1,4-dioxane degradation ability further, and assess the potential use of the strain for 1,4-dioxane removal in industrial wastewater. Strain JCM 14343 was able to degrade 1,4-dioxane inducibly, and its 1,4-dioxane degradation was also induced by tetrahydrofuran and 1,4-butanediol. The demonstration that 1,4-butanediol not only induced but also enhanced 1,4-dioxane degradation was a novel finding of this study. Although strain JCM 14343 appeared not to be an effective 1,4-dioxane degrader considering the maximum specific 1,4-dioxane degradation rate (0.0073 mg-dioxane/mg-protein/h), half saturation concentration (59.2 mg/L), and cell yield (0.031 mg-protein/mg-1,4-dioxane), the strain could degrade over 1100 mg/L of 1,4-dioxane and maintain its degradation activity at a wide range of temperature (5-40 °C) and pH (4-9) conditions. This suggests the usefulness of strain JCM 14343 in 1,4-dioxane treatment under acidic and cold conditions. In addition, 1,4-dioxane degradation experiments in the presence of ethylene glycol (EG) or other cyclic ethers revealed that 1,4-dioxane degradation by strain JCM 14343 was inhibited in the presence of other cyclic ethers, but not by EG, suggesting certain applicability of strain JCM 14343 for industrial wastewater treatment.


Asunto(s)
Dioxanos/metabolismo , Rhodococcus/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Éteres Cíclicos/farmacología , Glicol de Etileno/farmacología , Concentración de Iones de Hidrógeno , Cinética , Rhodococcus/enzimología , Rhodococcus/crecimiento & desarrollo , Temperatura
6.
N Biotechnol ; 41: 1-8, 2018 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-29174512

RESUMEN

The wide anthropogenic use of selenium compounds represents the major source of selenium pollution worldwide, causing environmental issues and health concerns. Microbe-based strategies for metal removal/recovery have received increasing interest thanks to the association of the microbial ability to detoxify toxic metal/metalloid polluted environments with the production of nanomaterials. This study investigates the tolerance and the bioconversion of selenite (SeO32-) by the aerobically grown Actinomycete Rhodococcus aetherivorans BCP1 in association with its ability to produce selenium nanoparticles and nanorods (SeNPs and SeNRs). The BCP1 strain showed high tolerance towards SeO32- with a Minimal Inhibitory Concentration (MIC) of 500mM. The bioconversion of SeO32- was evaluated considering two different physiological states of the BCP1 strain, i.e. unconditioned and/or conditioned cells, which correspond to cells exposed for the first time or after re-inoculation in fresh medium to either 0.5 or 2mM of Na2SeO3, respectively. SeO32- bioconversion was higher for conditioned grown cells compared to the unconditioned ones. Selenium nanostructures appeared polydisperse and not aggregated, as detected by electron microscopy, being embedded in an organic coating likely responsible for their stability, as suggested by the physical-chemical characterization. The production of smaller and/or larger SeNPs was influenced by the initial concentration of provided precursor, which resulted in the growth of longer and/or shorter SeNRs, respectively. The strong ability to tolerate high SeO32- concentrations coupled with SeNP and SeNR biosynthesis highlights promising new applications of Rhodococcus aetherivorans BCP1 as cell factory to produce stable Se-nanostructures, whose suitability might be exploited for biotechnology purposes.


Asunto(s)
Bacterias Aerobias/metabolismo , Nanopartículas/química , Nanotubos/química , Rhodococcus/metabolismo , Ácido Selenioso/metabolismo , Selenio/química , Dispersión Dinámica de Luz , Nanopartículas/ultraestructura , Nanotubos/ultraestructura , Tamaño de la Partícula , Espectrometría por Rayos X , Electricidad Estática
7.
Microb Cell Fact ; 15(1): 204, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27978836

RESUMEN

BACKGROUND: Tellurite (TeO32-) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO32- into the less toxic and available form of elemental Tellurium (Te0), producing Te-deposits or Te-nanostructures. The use of TeO32--reducing bacteria can lead to the decontamination of polluted environments and the development of "green-synthesis" methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO32- have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. RESULTS: Aerobically grown BCP1 cells showed high tolerance towards TeO32- with a minimal inhibitory concentration (MIC) of 2800 µg/mL (11.2 mM). TeO32- consumption has been evaluated exposing the BCP1 strain to either 100 or 500 µg/mL of K2TeO3 (unconditioned growth) or after re-inoculation in fresh medium with new addition of K2TeO3 (conditioned growth). A complete consumption of TeO32- at 100 µg/mL was observed under both growth conditions, although conditioned cells showed higher consumption rate. Unconditioned and conditioned BCP1 cells partially consumed TeO32- at 500 µg/mL. However, a greater TeO32- consumption was observed with conditioned cells. The production of intracellular, not aggregated and rod-shaped Te-nanostructures (TeNRs) was observed as a consequence of TeO32- reduction. Extracted TeNRs appear to be embedded in an organic surrounding material, as suggested by the chemical-physical characterization. Moreover, we observed longer TeNRs depending on either the concentration of precursor (100 or 500 µg/mL of K2TeO3) or the growth conditions (unconditioned or conditioned grown cells). CONCLUSIONS: Rhodococcus aetherivorans BCP1 is able to tolerate high concentrations of TeO32- during its growth under aerobic conditions. Moreover, compared to unconditioned BCP1 cells, TeO32- conditioned cells showed a higher oxyanion consumption rate (for 100 µg/mL of K2TeO3) or to consume greater amount of TeO32- (for 500 µg/mL of K2TeO3). TeO32- consumption by BCP1 cells led to the production of intracellular and not aggregated TeNRs embedded in an organic surrounding material. The high resistance of BCP1 to TeO32- along with its ability to produce Te-nanostructures supports the application of this microorganism as a possible eco-friendly nanofactory.


Asunto(s)
Nanotubos/análisis , Rhodococcus/metabolismo , Telurio/metabolismo , Aerobiosis
8.
Res Microbiol ; 167(9-10): 766-773, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27394988

RESUMEN

In the present study, the response of Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7 to various stress conditions and several antimicrobials was examined by PM in relation with genetic determinants, as revealed by annotation analysis of the two genomes. Comparison between metabolic activities and genetic features of BCP1 and R7 provided new insight into the environmental persistence of these two members of the genus Rhodococcus.


Asunto(s)
Análisis por Micromatrices , Fenotipo , Rhodococcus/fisiología , Estrés Fisiológico , Antibacterianos/metabolismo , Genes Bacterianos , Genotipo , Rhodococcus/efectos de los fármacos , Rhodococcus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA