Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.248
Filtrar
Más filtros

Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1448: 249-267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39117819

RESUMEN

A wide variety of infections can trigger cytokine storm syndromes including those caused by bacteria, viruses, fungi and parasites. The most frequent viral trigger is Epstein-.Barr virus which is covered in Chapter 16. CSS associated with COVID-19 is also discussed separately (Chapter 22). This chapter will focus on other viruses including the hemorrhagic fever viruses, influenza, parainfluenza, adenovirus, parvovirus, hepatitis viruses, measles, mumps, rubella, enterovirus, parechovirus, rotavirus, human metapneumovirus and human T-lymphotropic virus. The published literature consists of many single case reports and moderate-sized case series reporting CSS, in most circumstances meeting the 2004 diagnostic criteria for hemophagocytic lymphohistiocytosis (HLH). There is no published clinical trial evidence specifically for management of HLH associated with these viruses. In some situations, patients received supportive therapy and blood product transfusions only but in most cases, they were treated with one or more of intravenous corticosteroids, intravenous immunoglobulin and/or etoposide. These were successful in many patients although in significant numbers progression of infection to CSS was associated with mortality.


Asunto(s)
COVID-19 , Síndrome de Liberación de Citoquinas , Humanos , Síndrome de Liberación de Citoquinas/inmunología , COVID-19/complicaciones , COVID-19/inmunología , COVID-19/terapia , COVID-19/virología , Linfohistiocitosis Hemofagocítica/terapia , Linfohistiocitosis Hemofagocítica/inmunología , Linfohistiocitosis Hemofagocítica/virología , SARS-CoV-2 , Fiebres Hemorrágicas Virales/virología
2.
Virology ; 598: 110195, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089050

RESUMEN

Rotavirus A is a leading cause of non-bacterial gastroenteritis in humans and domesticated animals. Despite the vast diversity of bovine Rotavirus A strains documented in South Asian countries, there are very few whole genomes available for phylogenetic study. A cross-sectional study identified a high prevalence of the G6P[11] genotype of bovine Rotavirus A circulating in the commercial cattle population in Bangladesh. Next-generation sequencing and downstream phylogenetic analysis unveiled all 11 complete gene segments of this strain (BD_ROTA_CVASU), classifying it under the genomic constellation G6P[11]-I2-R2-C2-M2-A13-N2-T6-E2-H3, which belongs to a classical DS-1-like genomic backbone. We found strong evidence of intragenic recombination between human and bovine strains in the Non-structural protein 4 (NSP4) gene, which encodes a multifunctional enterotoxin. Our analyses highlight frequent zoonotic transmissions of rotaviruses in diverse human-animal interfaces, which might have contributed to the evolution and pathogenesis of this dominant genotype circulating in the commercial cattle population in Bangladesh.

3.
Virology ; 598: 110185, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39096775

RESUMEN

Among group A rotaviruses (RVAs), the G1 genotype is the main genotype causing diarrhea in children, but it has rarely been reported in pigs. During our epidemiological investigation, we detected G1P[7] rotavirus infection in piglets across several provinces in China and then isolated a porcine G1P[7] rotavirus strain (CN1P7). Sequencing revealed that the virus constellation was G1-P[7]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Phylogenetic analyses revealed that CN1P7 most likely emerged due to genetic reassortment among porcine, human, giant panda and dog rotavirus strains. In vivo experiments were conducted on two-day-old piglets, which revealed that the CN1P7 strain was pathogenic to piglets. The virus was shed through the digestive tract and respiratory tract. In addition to the intestine, the CN1P7 strain displayed extraintestinal tropisms in piglets. Histopathological analysis revealed that the lung and small intestine were the targets of CN1P7. This study is the first to explore the molecular and pathogenic characterization of a pig-origin G1P[7] rotavirus.

4.
Pan Afr Med J ; 47: 197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119109

RESUMEN

Introduction: approximately over 80% of mortalities due to rotavirus occur in countries that have limited resources, especially in sub-Saharan Africa and South Asia. The study was intended to determine the genetic characteristics of rotavirus A in children exhibiting gastroenteritis at Kericho County Referral Hospital. Methods: the study design was cross-sectional. Consecutive sampling was engaged obtaining a sample size of 200 stool samples. Genetic characterization of group A rotavirus strains was done using Enzyme-Linked Immunosorbent Assay. Positive samples underwent Sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Afterwards viewing of the RNA double strands of the rotavirus genome in gels was done using Silver Nitrate. The positive samples underwent RT-PCR amplification followed by sequencing on the pieces of the VP7 or VP4 gene obtained. Results: one hundred and six (53%) samples from males and 94 (47%) from females. Twenty-three samples were positive hence a prevalence of 11.5%. The most affected demographics were children of guardians with secondary school education (51%). The most affected social economic status was housewives (46.5%). The most affected age was 21-30 months at 26.5%. Long electropherotypes were in 22 samples (96%). The G3 genotype of rotavirus A was prevalent 16/23 (69.57%). Conclusion: rotavirus prevalence was 11.5%. The G3 genotype was the most prevalent in circulation. The occurrence of non-typable strains indicated that the strains may be diversified emphasizing the need to include emerging strains within the vaccines in use. Hence the need to continuously monitor the effects in older children.


Asunto(s)
Heces , Gastroenteritis , Genotipo , Infecciones por Rotavirus , Rotavirus , Humanos , Gastroenteritis/virología , Gastroenteritis/epidemiología , Rotavirus/genética , Rotavirus/aislamiento & purificación , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Femenino , Preescolar , Estudios Transversales , Masculino , Lactante , Enfermedad Aguda , Prevalencia , Heces/virología , Kenia/epidemiología , Niño , Ensayo de Inmunoadsorción Enzimática , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Intervirology ; 67(1): 83-98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38981462

RESUMEN

INTRODUCTION: Diarrheal diseases constitute a significant public health problem in terms of mortality and morbidity. In Honduras and around the world, RVs have consistently emerged as the single most important etiologic agent in acute childhood diarrhea. However, other viruses, such as NoVs and HAstVs, have also been shown to be responsible for viral gastroenteritis. Unfortunately, the country has limited information concerning the etiologic role of these viral agents in acute gastroenteritis. This study investigated the frequency, genotypes, and epidemiological characteristics of RV-A, NoVs, and HAstVs among children under 5 years old in Distrito Central, Honduras. METHODS: Stool samples and their corresponding epidemiological data were collected from children with acute gastroenteritis in three healthcare centers in Distrito Central. All samples were screened by immunoassays for RV-A and HAstVs. RV-A-positive samples were molecularly characterized by RT-PCR and genotyping assays. RT-PCR was also applied to confirm HAstVs positivity and to detect NoVs, followed by nucleotide sequencing to assign their genotypes. RESULTS: Our results show that at least one viral agent was detected in 31% of the children. The frequency of RV-A, NoVs, and HAstVs was 14%, 13%, and 5%, respectively. The most frequent RV-A genotype was G2P[4], occurring in 93% of cases. 92.3% of NoVs-positive samples belonged to genogroup II, with GII.4 and GII.16 being the most common. HAstVs were clustered into three genotypes: HAstV-1, HAstV-2, and HAstV-8. Only one sample showed coinfection with NoVs and HAstVs. CONCLUSION: This comprehensive molecular and epidemiological characterization of enteric viruses demonstrates the vast diversity of these agents and describes for the first time NoVs and HAstVs as causative agents of acute childhood gastroenteritis in Distrito Central, Honduras. This suggests that further in-depth studies of the pediatric population are necessary to develop and implement effective preventive and control measures in the country.


Asunto(s)
Heces , Gastroenteritis , Genotipo , Humanos , Honduras/epidemiología , Gastroenteritis/virología , Gastroenteritis/epidemiología , Preescolar , Lactante , Heces/virología , Masculino , Femenino , Diarrea/virología , Diarrea/epidemiología , Filogenia , Rotavirus/genética , Rotavirus/aislamiento & purificación , Rotavirus/clasificación , ARN Viral/genética , Norovirus/genética , Norovirus/clasificación , Norovirus/aislamiento & purificación , Infecciones por Caliciviridae/epidemiología , Infecciones por Caliciviridae/virología , Enfermedad Aguda/epidemiología , Recién Nacido , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/epidemiología
6.
Transl Pediatr ; 13(6): 877-888, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38984032

RESUMEN

Background: The clinical features and prognosis of intussusception in children vaccinated against rotavirus were undefined. Hence, we conducted the study to explore the clinical characteristics and outcomes of primary intussusception patients who received rotavirus vaccine. Methods: A single-center retrospective study was performed in 327 primary intussusception patients between January 2019 and December 2021. Of these, 168 were vaccinated against rotavirus and 159 were not, the latter serving as the control group. Data on patients' clinical characteristics, commonly used inflammatory biomarkers, treatment, and outcomes were collected and evaluated. Results: Most of the vaccination group received pentavalent rotavirus vaccine produced by Merck, USA (89.88%). There were no differences in demographic characteristics, time from onset to hospital attendance, clinical symptoms and signs between the vaccination group and the control group. The success rate of air enema reduction in the vaccination group was higher than that in the control group (98.21% vs. 88.68%, q=0.01). The vaccination group had lower rates of surgery and complication (1.79% vs. 11.32%, q=0.008; 2.98% vs. 12.58%, q=0.006). Both platelet-lymphocyte ratio (PLR) and C-reactive protein (CRP) levels were lower in the vaccinated group (q=0.02, q=0.004). Higher CRP level [odds ratio (OR): 1.635; 95% confidence interval (CI): 1.248-2.143; P=0.006] and the longer time from onset to hospital attendance (OR: 3.040; 95% CI: 2.418-12.133; P=0.01) were associated with increased adverse events. Rotavirus vaccination (OR: 0.527; 95% CI: 0.103-0.751; P=0.02) was associated with a reduction in the probability of adverse events. Conclusions: Adverse events such as surgery and complications were lower in the vaccination group. Rotavirus vaccination was an independent protective factor for adverse events in patients with primary intussusception.

7.
World J Virol ; 13(2): 93774, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38984077

RESUMEN

Rotaviruses are non-enveloped double-stranded RNA virus that causes acute diarrheal diseases in children (< 5 years). More than 90% of the global rotavirus infection in humans was caused by Rotavirus group A. Rotavirus infection has caused more than 200000 deaths annually and predominantly occurs in the low-income countries. Rotavirus evolution is indicated by the strain dynamics or the emergence of the unprecedented strain. The major factors that drive the rotavirus evolution include the genetic shift that is caused by the reassortment mechanism, either in the intra- or the inter-genogroup. However, other factors are also known to have an impact on rotavirus evolution. This review discusses the structure and types, epidemiology, and evolution of rotaviruses. This article also reviews other supplemental factors of rotavirus evolution, such as genetic reassortment, mutation rate, glycan specificity, vaccine introduction, the host immune responses, and antiviral drugs.

8.
World J Virol ; 13(2): 92586, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38984084

RESUMEN

BACKGROUND: Rotavirus is a highly contagious virus responsible for a significant burden of acute gastroenteritis, particularly among infants and young children worldwide, however, vaccination against this viral agent is available. Several studies have hypothesized that rotavirus vaccination has been linked to lower rates of antibiotic resistance. AIM: To assess the relationship between rotavirus vaccination and antibiotic resistance. METHODS: The present systematic review was tailored based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. Several electronic databases (PubMed/MEDLINE, Scopus and Web of Science) were searched independently by two investigators in order to retrieve relevant publications published until April 2023 that investigated the aforementioned research question. RESULTS: The comprehensive database search identified a total of 91 records. After the duplicates were removed (n = 75), we screened the titles and abstracts of 16 potentially eligible publications. After the irrelevant records were excluded (n = 5), we screened the full texts of 11 manuscripts. Finally, 5 studies were entered into the qualitative and quantitative analysis. CONCLUSION: In conclusion, all the studies support the idea that vaccinations can reduce the need for antibiotic prescriptions which could potentially contribute to mitigating antibiotic resistance. However, to fully comprehend the mechanisms of antibiotic resistance, enhance treatment guidelines, and consider diverse demographic situations, further research is necessary to use evidence-based strategies to fight antibiotic misuse and resistance.

9.
BMC Vet Res ; 20(1): 305, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982473

RESUMEN

BACKGROUND: Pigeon Rotavirus A (RVA) infection has been confirmed in pigeons in the last decade as a cause of Young Pigeon Disease (YPD). Although YPD has been known for many years to date, no studies have been conducted to track the spread of RVA infection in pigeons during the racing season. The presented research aims to determine the course of RVA infection during the flights of young racing pigeons in the summer season, in one of the districts in the Mazovian Voivodeship in Poland. RESULTS: Faecal samples of pigeons collected from transport baskets in vehicles transporting pigeons to the starting point were tested. The quantitative RT-PCR (qRT-PCR) was used to detect the genetic material of RVA. Samples taken during 6 flights were analysed. The study showed a percentage increase in infections up to the fourth flight of pigeons, and then their decrease. With Cq values below 20, breeders did not participate in the next flight and/or reported disease in the flock. With positive Cq values of 20 to 30, clinical signs of disease were not reported. Of the 76 breeders participating in the races, at least one positive result was found in 46 (60.5%). Including the occurrence of the disease during the racing season was reported by 11 breeders (14.4%). The main clinical signs in sick pigeons were vomiting, diarrhea and stowed crop. The tested pigeons were not vaccinated against RVA. CONCLUSIONS: During training and racing of pigeons, it is not possible to avoid exposing them to pathogens, including RVA, regardless of whether pigeons from different breeders are placed in the same baskets or are in separate baskets. However, after four flights the number of new cases of the disease decreases which indicates the development of immunity. The qRT-PCR test is useful in the diagnosis and differentiation of clinical (Cq below 20) and subclinical RVA infections in racing pigeons.


Asunto(s)
Enfermedades de las Aves , Columbidae , Heces , Infecciones por Rotavirus , Rotavirus , Estaciones del Año , Animales , Columbidae/virología , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/virología , Infecciones por Rotavirus/epidemiología , Enfermedades de las Aves/virología , Enfermedades de las Aves/epidemiología , Rotavirus/aislamiento & purificación , Heces/virología , Polonia/epidemiología
10.
Saudi J Biol Sci ; 31(8): 104031, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38946847

RESUMEN

Human Rotavirus (HRV) is the causative pathogen of severe acute enteric infections that cause mortality among children worldwide. This study focuses on developing a new and effective treatment for rotavirus infection using an extract from Saccharomyces cerevisiae, aiming to make this treatment easily accessible to everyone. 15 antigens and 26 antibodies were detected in serum and stool using ELISA. The titers of HRVq1, HRVq2, HRVC1, and HRVC2 on Vero cells were determined to be 1.2x106, 3.0x106, 4.2x106, and 7.5x105 (Plaque forming unit, PFU/ml) four days after infection, respectively. The HRVq1 isolate induced cytopathic effects, i.e., forming multinucleated, rounded, enlarged, and expanding gigantic cells. RT-PCR identified this isolate, and the accession number 2691714 was assigned to GeneBank. The molecular docking analysis revealed that nonstructural proteins (NSPs) NSP1, NSP2, NSP3, NSP4, NSP5, and NSP6 exhibited significant binding with RNA. NSP2 demonstrated the highest binding affinity and the lowest binding energy (-8.9 kcal/mol). This affinity was maintained via hydrophobic interactions and hydrogen bonds spanning in length from 1.12 Å to 3.11 Å. The ADMET and bioactivity predictions indicated that the yeast extract possessed ideal solubility, was nontoxic, and did not cause cancer. The inhibitory constant values predicted for the S. cerevisiae extract in the presence of HRV vital proteins varied from 5.32 to 7.45 mM, indicating its potential as a viable drug candidate. Saccharomyces cerevisiae extract could be utilized as a dietary supplement to combat HRV as an alternative dietary supplement.

11.
Virus Evol ; 10(1): veae045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952820

RESUMEN

Animal rotaviruses A (RVAs) are considered the source of emerging, novel RVA strains that have the potential to cause global spread in humans. A case in point was the emergence of G8 bovine RVA consisting of the P[8] VP4 gene and the DS-1-like backbone genes that appeared to have jumped into humans recently. However, it was not well documented what evolutionary changes occurred on the animal RVA-derived genes during circulation in humans. Rotavirus surveillance in Vietnam found that DS-1-like G8P[8] strains emerged in 2014, circulated in two prevalent waves, and disappeared in 2021. This surveillance provided us with a unique opportunity to investigate the whole process of evolutionary changes, which occurred in an animal RVA that had jumped the host species barrier. Of the 843 G8P[8] samples collected from children with acute diarrhoea in Vietnam between 2014 and 2021, fifty-eight strains were selected based on their distinctive electropherotypes of the genomic RNA identified using polyacrylamide gel electrophoresis. Whole-genome sequence analysis of those fifty-eight strains showed that the strains dominant during the first wave of prevalence (2014-17) carried animal RVA-derived VP1, NSP2, and NSP4 genes. However, the strains from the second wave of prevalence (2018-21) lost these genes, which were replaced with cognate human RVA-derived genes, thus creating strain with G8P[8] on a fully DS-1-like human RVA gene backbone. The G8 VP7 and P[8] VP4 genes underwent some point mutations but the phylogenetic lineages to which they belonged remained unchanged. We, therefore, propose a hypothesis regarding the tendency for the animal RVA-derived genes to be expelled from the backbone genes of the progeny strains after crossing the host species barrier. This study underlines the importance of long-term surveillance of circulating wild-type strains in order to better understand the adaptation process and the fate of newly emerging, animal-derived RVA among the human population. Further studies are warranted to disclose the molecular mechanisms by which spillover animal RVAs become readily transmissible among humans, and the roles played by the expulsion of animal-derived genes and herd immunity formed in the local population.

12.
Virol J ; 21(1): 160, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039549

RESUMEN

Porcine Rotavirus (PoRV) is a significant pathogen affecting swine-rearing regions globally, presenting a substantial threat to the economic development of the livestock sector. At present, no specific pharmaceuticals are available for this disease, and treatment options remain exceedingly limited. This study seeks to design a multi-epitope peptide vaccine for PoRV employing bioinformatics approaches to robustly activate T-cell and B-cell immune responses. Two antigenic proteins, VP7 and VP8*, were selected from PoRV, and potential immunogenic T-cell and B-cell epitopes were predicted using immunoinformatic tools. These epitopes were further screened according to non-toxicity, antigenicity, non-allergenicity, and immunogenicity criteria. The selected epitopes were linked with linkers to form a novel multi-epitope vaccine construct, with the PADRE sequence (AKFVAAWTLKAAA) and RS09 peptide attached at the N-terminus of the designed peptide chain to enhance the vaccine's antigenicity. Protein-protein docking of the vaccine constructs with toll-like receptors (TLR3 and TLR4) was conducted using computational methods, with the lowest energy docking results selected as the optimal predictive model. Subsequently, molecular dynamics (MD) simulation methods were employed to assess the stability of the protein vaccine constructs and TLR3 and TLR4 receptors. The results indicated that the vaccine-TLR3 and vaccine-TLR4 docking models remained stable throughout the simulation period. Additionally, the C-IMMSIM tool was utilized to determine the immunogenic triggering capability of the vaccine protein, demonstrating that the constructed vaccine protein could induce both cell-mediated and humoral immune responses, thereby playing a role in eliciting host immune responses. In conclusion, this study successfully constructed a multi-epitope vaccine against PoRV and validated the stability and efficacy of the vaccine through computational analysis. However, as the study is purely computational, experimental evaluation is required to validate the safety and immunogenicity of the newly constructed vaccine protein.


Asunto(s)
Antígenos Virales , Biología Computacional , Epítopos de Linfocito B , Epítopos de Linfocito T , Simulación de Dinámica Molecular , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Vacunas de Subunidad , Animales , Porcinos , Rotavirus/inmunología , Rotavirus/genética , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/química , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/genética , Vacunas contra Rotavirus/inmunología , Vacunas contra Rotavirus/química , Vacunas contra Rotavirus/genética , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/inmunología , Infecciones por Rotavirus/virología , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/genética , Vacunas de Subunidad/química , Antígenos Virales/inmunología , Antígenos Virales/genética , Antígenos Virales/química , Simulación del Acoplamiento Molecular , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/química , Desarrollo de Vacunas , Inmunogenicidad Vacunal
13.
Microb Pathog ; 193: 106775, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960216

RESUMEN

Rotavirus, a primary contributor to severe cases of infantile gastroenteritis on a global scale, results in significant morbidity and mortality in the under-five population, particularly in middle to low-income countries, including India. WHO-approved live-attenuated vaccines are linked to a heightened susceptibility to intussusception and exhibit low efficacy, primarily attributed to the high genetic diversity of rotavirus, varying over time and across different geographic regions. Herein, molecular data on Indian rotavirus A (RVA) has been reviewed through phylogenetic analysis, revealing G1P[8] to be the prevalent strain of RVA in India. The conserved capsid protein sequences of VP7, VP4 and VP6 were used to examine helper T lymphocyte, cytotoxic T lymphocyte and linear B-cell epitopes. Twenty epitopes were identified after evaluation of factors such as antigenicity, non-allergenicity, non-toxicity, and stability. These epitopes were then interconnected using suitable linkers and an N-terminal beta defensin adjuvant. The in silico designed vaccine exhibited structural stability and interactions with integrins (αvß3 and αIIbß3) and toll-like receptors (TLR2 and TLR4) indicated by docking and normal mode analyses. The immune simulation profile of the designed RVA multiepitope vaccine exhibited its potential to trigger humoral as well as cell-mediated immunity, indicating that it is a promising immunogen. These computational findings indicate potential efficacy of the designed vaccine against rotavirus infection.


Asunto(s)
Antígenos Virales , Proteínas de la Cápside , Epítopos de Linfocito T , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Rotavirus/inmunología , Rotavirus/genética , Vacunas contra Rotavirus/inmunología , Vacunas contra Rotavirus/administración & dosificación , Vacunas contra Rotavirus/genética , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/inmunología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Proteínas de la Cápside/química , Antígenos Virales/inmunología , Antígenos Virales/genética , Humanos , India , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Vacunología/métodos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/genética , Filogenia , Simulación del Acoplamiento Molecular , Epítopos/inmunología , Epítopos/genética , Desarrollo de Vacunas
14.
Mol Immunol ; 173: 10-19, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39004021

RESUMEN

Adjuvant is a major supplementary component of vaccines to boost adaptive immune responses. To select an efficient adjuvant from the heat-labile toxin B subunit (LTB) of E. coli, four LTB mutants (numbered LTB26, LTB34, LTB57, and LTB85) were generated by multi-amino acid random replacement. Mice have been intranasally vaccinated with human rotavirus VP8 admixed. Among the four mutants, enzyme-linked immunosorbent assay (ELISA) revealed that LTB26 had enhanced mucosal immune adjuvanticity compared to LTB, showing significantly enhanced immune responses in both serum IgG and mucosal sIgA levels. The 3D modeling analysis suggested that the enhanced immune adjuvanticity of LTB26 might be due to the change of the first LTB α-helix to a ß-sheet. The molecular mechanism was studied using transcriptomic and flow cytometric (FCM) analysis. The transcriptomic data demonstrated that LTB26 enhanced immune response by enhancing B cell receptor (BCR) and major histocompatibility complex (MHC) II+-related pathways. Furthermore, LTB26 promoted Th1 and Th2-type immune responses which were confirmed by detecting IFN-γ and IL-4 expression levels. Immunohistochemical analysis demonstrated that LTB26 enhanced both Th1 and Th2 type immunity. Therefore, LTB26 was a potent mucosal immune adjuvant meeting the requirement for use in human clinics in the future.

15.
medRxiv ; 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38978639

RESUMEN

Background: Available live-oral rotavirus vaccines are associated with low to moderate performance in low- and middle-income settings. There is limited evidence relating to how the vaccine dosing schedule might be adjusted to improve vaccine performance in these settings. Methods: We used mathematical models fitted to rotavirus surveillance data for children <5 years of age from three different hospitals in Ghana (Korle-Bu Teaching Hospital in Accra, Komfo Anokye Teaching Hospital in Kumasi and War Memorial Hospital in Navrongo) to project the impact of rotavirus vaccination over a 10-year period (April 2012-March 2022). We quantified and compared the impact of the previous vaccination program in Ghana to the model-predicted impact for other vaccine dosing schedules across the three hospitals and the entire country, under different assumptions about vaccine protection. To project the rotavirus vaccine impact over Ghana, we sampled from the range of model parameters for Accra and Navrongo, assuming that these two settings represent the "extremes" of rotavirus epidemiology within Ghana. Results: For the previously implemented 6/10-week monovalent Rotarix vaccine (RV1) schedule, the model-estimated average annual incidence of moderate-to-severe rotavirus-associated gastroenteritis (RVGE) ranged between 1,151 and 3,002 per 100,000 people per year over the 10-year period for the three sites. Compared to no vaccination, the model-estimated median percentage reductions in RVGE ranged from 28-85% and 12-71% among children <1 year and <5 years of age respectively, with the highest and lowest percentage reductions predicted using model parameters estimated for Accra and Navrongo, respectively. The median predicted reductions in RVGE for the whole country ranged from 57-66% and 35-45% among children <1 year and <5 years of age, respectively. The 1/6/10- and 6/10/14-week schedules provided the best and comparable reductions in RVGE compared to the original 6/10-week schedule, whereas there was no improvement in impact for the 10/14-week schedule. Conclusions: We found that administering an additional dose of RV1 might be an effective strategy to improve rotavirus vaccine impact, particularly in settings with low vaccine effectiveness. The results could be extrapolated to other countries using a 2-dose vaccine schedule with low to moderate vaccine performance.

16.
Environ Monit Assess ; 196(8): 746, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023654

RESUMEN

The occurrence and persistence of rotaviruses in raw and treated wastewater and their discharge into rivers represent a significant health risk for humans and animals, worldwide. In this study, samples were collected monthly from each of the four Durban wastewater treatment plants (DWWTPs) and receiving rivers for a period of 3 months. Rotavirus was quantified by real-time quantitative PCR (RT-qPCR), and viability was assessed using integrated cell culture (ICC)-qPCR. Rotavirus was detected consistently in 100% of influent wastewaters (mean concentration range, 4.36-4.46 log10 genome equivalent (GE) copies/L) and final effluent samples of three DWWTPs (range, 3.35-3.61 log10 GE copies/L). Overall, 94% (45/48) of the wastewater analyzed and 95% (20/21) of the associated river water samples were positive for rotavirus (range, 2.04-6.77 log10 GE copies/L). The activated sludge process with 0.10-0.43 log10 reduction values (LRV) only moderately reduced the viral loads. Similarly, one of the DWWTPs that operated the biofilter modality produced 0.20 LRV. Though the additional treatment with chlorine produced higher LRV (range, 0.31-0.53) than the corresponding activated sludge or biofilter process, the difference in viral removals was not significant (p > 0.05). The equivalent treatment efficiencies of the four DWWTPs varied from 19 to 43% decay in the population of rotavirus. Further, infectious rotavirus ranging from 66.67 to 100%, 50 to 100%, and 66.67 to 100% were detected in the post-activated sludge, final effluents, and river water samples, respectively. In conclusion, the findings of infectious rotavirus in both the final effluents and associated rivers represent an infection risk for humans or animals during contact. Thus, close monitoring for rotavirus and risk assessment studies under distinct exposure scenarios may further shed light on the health-related risks associated with water recovery and reuse in urban settings.


Asunto(s)
Monitoreo del Ambiente , Rotavirus , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/virología , Sudáfrica , Humanos , Eliminación de Residuos Líquidos/métodos , Ríos/virología , Ríos/química , Aguas del Alcantarillado/virología , Purificación del Agua/métodos
17.
J Infect Dis ; 230(1): e75-e79, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052701

RESUMEN

To evaluate how breakthrough rotavirus disease contributes to transmission, we examined the impact of rotavirus vaccination on fecal shedding and duration of illness. We used multivariable linear regression to analyze rotavirus quantity by RT-qPCR and duration among 184 episodes of rotavirus diarrhea positive by ELISA in the PROVIDE study. Vaccinated children had less fecal viral shedding compared to unvaccinated children (mean difference = -0.59 log copies per gram of stool; 95% confidence interval [CI], -.99 to -.19). Duration of illness was on average 0.47 days (95% CI, -.23 to 1.17 days) shorter among vaccinated children. Rotarix vaccination reduces shedding burden among breakthrough cases of rotavirus gastroenteritis. Clinical Trials Registration . NCT01375647.


Asunto(s)
Heces , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Vacunas Atenuadas , Esparcimiento de Virus , Humanos , Vacunas contra Rotavirus/administración & dosificación , Vacunas contra Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Lactante , Bangladesh/epidemiología , Rotavirus/inmunología , Heces/virología , Femenino , Masculino , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología , Gastroenteritis/virología , Gastroenteritis/prevención & control , Gastroenteritis/epidemiología , Vacunación , Diarrea/virología , Diarrea/prevención & control , Diarrea/epidemiología , Administración Oral
18.
medRxiv ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39072019

RESUMEN

Objective: Non-disease-specific WHO-CHOICE unit costs are often used in cost and cost-effectiveness studies in the absence of country-specific data. This study aims to compare reported country-specific disease costs and the corresponding WHO-CHOICE estimates. We use generically defined "diarrhea" (including rotavirus diarrhea) and pathogen-specific "respiratory syncytial virus (RSV)" disease as examples. Methods: We updated systematic reviews for both diseases in low-income (LICs), lower-middle-income (LMICs) and upper-middle-income (UMICs) countries. Diarrheal (including a sub-analysis of rotavirus-specific) and RSV-specific outpatient and inpatient costs per episode were extracted and compared with WHO-CHOICE estimates in the same countries. If a consistent pattern of under- or over-estimation was identified, we quantified the magnitude of the discrepancy. All costs were updated to 2022 international dollar values. Results: Out of 1975 new records identified, 23 new cost studies were included. Including previous reviews, we retained 31 diarrhea and 16 RSV studies for comparison. WHO-CHOICE based direct medical costs were similar for diarrheal disease including rotavirus diarrhea, but lower for RSV-related disease. We estimated the cost per episode of diarrhea and RSV in 128 countries. RSV outpatient cost were adjusted by multiplying WHO-CHOICE costs by 6.89 (95% uncertainty interval: 5.58-8.58) in LICs and LMICs and 5.87 (4.95-6.96) in UMICs; RSV inpatient costs were multiplied by 1.43 (1.01-2.01) and 1.36 (0.82-2.27), respectively. Conclusion: WHO-CHOICE based costs should be used cautiously. They aligned well with studies for diarrheal disease, but underestimate costs of RSV-related disease. More country- and disease-specific cost data are needed, especially for RSV in LICs.

19.
Front Microbiol ; 15: 1430557, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050631

RESUMEN

In the 2010s, several unusual rotavirus strains emerged, causing epidemics worldwide. This study reports a comprehensive molecular epidemiological study of rotaviruses in Japan based on full-genome analysis. From 2014 to 2019, a total of 489 rotavirus-positive stool specimens were identified, and the associated viral genomes were analyzed by next-generation sequencing. The genotype constellations of those strains were classified into nine patterns (G1P[8] (Wa), G1P[8]-E2, G1P[8] (DS-1), G2P[4] (DS-1), G3P[8] (Wa), G3P[8] (DS-1), G8P[8] (DS-1), G9P[8] (Wa), and G9P[8]-E2). The major prevalent genotype differed by year, comprising G8P[8] (DS-1) (37% of that year's isolates) in 2014, G1P[8] (DS-1) (65%) in 2015, G9P[8] (Wa) (72%) in 2016, G3P[8] (DS-1) (66%) in 2017, G1P[8]-E2 (53%) in 2018, and G9P[8] (Wa) (26%) in 2019. The G1P[8]-E2 strains (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1) isolated from a total of 42 specimens in discontinuous years (2015 and 2018), which were the newly-emerged NSP4 mono-reassortant strains. Based on the results of the Bayesian evolutionary analyses, G1P[8]-E2 and G9P[8]-E2 were hypothesized to have been generated from distinct independent inter-genogroup reassortment events. The G1 strains detected in this study were classified into multiple clusters, depending on the year of detection. A comparison of the predicted amino acid sequences of the VP7 epitopes revealed that the G1 strains detected in different years encoded VP7 epitopes harboring distinct mutations. These mutations may be responsible for immune escape and annual changes in the prevalent strains.

20.
Iran J Microbiol ; 16(3): 401-410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39005596

RESUMEN

Background and Objectives: Rotavirus and Hepatitis A virus are responsible for causing gastroenteritis and jaundice. The current vaccination approaches have proven insufficient, especially in low-income countries. In this study, we presented a novel dual-vaccine candidate that combines the rotavirus VP8 protein and the hepatitis A virus VP1. Materials and Methods: The VP8*-rotavirus+AAY+HAV-VP1 fusion protein was produced using an Escherichia coli expression system. The recombinant protein had a molecular weight of approximately 45.5 kDa and was purified through affinity chromatography. BALB/c mice were injected subcutaneously with the recombinant protein, VP1, VP8 and vaccines for rotavirus and hepatitis A virus, both with and without ALUM and M720 adjuvants. ELISA assays were used to measure total IgG, IgG1, IgG2, and short-term and long-term IL-5 and IFN-γ responses. Results: The fusion protein, when combined with adjuvants, elicited significantly higher total IgG, IgG1, and IgG2 responses compared to VP1 and VP8 alone, as well as the rotavirus and hepatitis A vaccines. Furthermore, it induced a higher short-term IL-5 and IFN-γ response while demonstrating a higher long-term IL-5 response compared to the rotavirus and hepatitis A vaccines. Conclusion: This study demonstrates that the VP8*-rotavirus+AAY+HAV-VP1 fusion protein is a promising dual vaccine candidate for immunization against hepatitis A and rotaviruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA