Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Curr Res Toxicol ; 3: 100075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651589

RESUMEN

3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a drug of abuse used by millions worldwide. MDMA human abuse and dependence is well described, but addictive properties are not always consistent among studies. This amphetamine is a substrate type releaser, binding to monoamine transporters, leading to a pronounced release of serotonin and noradrenaline and to a minor extent dopamine. The toxicity of MDMA is well studied at the pre-clinical level, with neurotoxicity and hepatotoxicity being particularly described. In this review, we describe the most relevant MDMA effects at the mitochondrial level found in in vitro and in vivo models, these later conducted in mice and rats. Most of these reports focus on the mitochondria of brain or liver. In in vitro models, MDMA causes depletion of ATP levels and inhibition of mitochondrial complex I and III, loss in mitochondrial membrane potential (ΔΨm) and induction of mitochondrial permeability transition. The involvement of mitochondria in the apoptotic cell death evoked by MDMA has also been shown, such as the release of cytochrome c. Additionally, MDMA or its metabolites impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria. In animal studies, MDMA decreased mitochondrial complex I activity and decreased ATP levels. Moreover, MDMA-evoked oxidative stress has been shown to cause deletion on mitochondrial DNA and impairment in mitochondrial protein synthesis. Although the concentrations and doses used in some studies do not always correlate to the human scenario, the mitochondrial abnormalities evoked by MDMA are well described and are in part responsible for its mechanism of toxicity.

2.
Eur J Med Chem ; 236: 114347, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35430560

RESUMEN

Depression is identified as one of the most common psychiatric symptoms in Alzheimer's disease (AD). The comorbidity of AD and depression increases the burden of clinical treatment and care in elderly patients. In order to find new treatment options, we first proposed the dual RAGE/SERT inhibitors by fusing the key pharmacophore of vilazodone and azeliragon for the potential treatment of AD with comorbid depression. After a series of structural modifications, 34 dual-target directed ligands were designed and synthesized, and their RAGE and SERT inhibitory activities were systematically evaluated. Among them, compound 12 showed good dual-target bioactivities against RAGE (IC50 = 8.26 ± 1.12 µM) and SERT (IC50 = 31.09 ± 5.15 nM) in vitro, better safety profile than azeliragon, good liver microsomal stability, weak CYP inhibition, and acceptable pharmacokinetic properties. Moreover, 12 ameliorated Aß25-35-induced neurotoxicity in SH-SY5Y cells and alleviated the depressive symptom in tail suspension test. In brief, these results indicated that 12 is a prospective prototype for the potential treatment of AD with comorbid depression.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Comorbilidad , Depresión/tratamiento farmacológico , Diseño de Fármacos , Humanos , Estudios Prospectivos , Receptor para Productos Finales de Glicación Avanzada/uso terapéutico
3.
IBRO Neurosci Rep ; 11: 56-63, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34939063

RESUMEN

INTRODUCTION: Several drugs of abuse (DOA) are capable of modulating neurohypophysial hormones, such as oxytocin (OT) and vasopressin (VP), potentially resulting in the development of psychological abnormalities, such as cognitive dysfunction, psychoses, and affective disorders. Efavirenz (EFV), widely used in Africa and globally to treat HIV, induces diverse neuropsychiatric side effects while its abuse has become a global concern. The actions of EFV may involve neurohypophysial system (NS) disruption like that of known DOA. This study investigated whether sub-chronic EFV exposure, at a previously-determined rewarding dose, alters peripheral OT and VP levels versus that of a control, ∆9-tetrahydrocannabinol (∆9-THC), methamphetamine (MA) and cocaine. MATERIALS AND METHODS: To simulate the conditions under which reward-driven behavior had previously been established for EFV, male Sprague Dawley rats (n = 16/exposure) received intraperitoneal vehicle (control) or drug administration across an alternating sixteen-day dosing protocol. Control administration (saline/olive oil; 0.2 ml) occurred on odd-numbered and drug administration (EFV: 5 mg/kg, ∆9-THC: 0.75 mg/kg, MA: 1 mg/kg, or cocaine: 20 mg/kg) on even-numbered days followed by euthanasia, trunk blood collection and plasma extraction for neuropeptide assay. Effect of drug exposure on peripheral OT and VP levels was assessed versus controls and quantified using specific ELISA kits. Statistical significance was determined by Kruskal-Wallis ANOVA, with p < 0.05. Ethics approval: NWU-00291-17-A5. RESULTS: Delta-9-THC reduced OT and VP plasma levels (p < 0.0001, p = 0.0141; respectively), cocaine reduced plasma OT (p = 0.0023), while MA reduced plasma VP levels (p = 0.0001), all versus control. EFV reduced OT and VP plasma levels (p < 0.0001; OT and VP) versus control, and similar to ∆9-THC. CONCLUSION: EFV markedly affects the NS in significantly reducing both plasma OT and VP equivalent to DOA. Importantly, EFV has distinct effects on peripheral OT and VP levels when assessed within the context of drug dependence. The data highlights a possible new mechanism underlying previously documented EFV-induced effects in rats, and whereby EFV may induce neuropsychiatric adverse effects clinically; also providing a deeper understanding of the suggested abuse-potential of EFV.

4.
Biochem Biophys Rep ; 19: 100660, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31297456

RESUMEN

We have revealed that diacylglycerol kinase η (DGKη)-knockout (KO) mice display bipolar disorder (BPD) remedy-sensitive mania-like behaviors. However, the molecular mechanisms causing the mania-like abnormal behaviors remain unclear. In the present study, microarray analysis was performed to determine global changes in gene expression in the DGKη-KO mouse brain. We found that the DGKη-KO brain had 43 differentially expressed genes and the following five affected biological pathways: "neuroactive ligand-receptor interaction", "transcription by RNA polymerase II", "cytosolic calcium ion concentration", "Jak-STAT signaling pathway" and "ERK1/2 cascade". Interestingly, mRNA levels of prolactin and growth hormone, which are augmented in BPD patients and model animals, were most strongly increased. Notably, all five biological pathways include at least one gene among prolactin, growth hormone, forkhead box P3, glucagon-like peptide 1 receptor and interleukin 1ß, which were previously implicated in BPD. Consistent with the microarray data, phosphorylated ERK1/2 levels were decreased in the DGKη-KO brain. Microarray analysis showed that the expression levels of several glycerolipid metabolism-related genes were also changed. Liquid chromatography-mass spectrometry revealed that several polyunsaturated fatty acid (PUFA)-containing phosphatidic acid (PA) molecular species were significantly decreased as a result of DGKη deficiency, suggesting that the decrease affects PUFA metabolism. Intriguingly, the PUFA-containing lysoPA species were markedly decreased in DGKη-KO mouse blood. Taken together, our study provides not only key broad knowledge to gain novel insights into the underlying mechanisms for the mania-like behaviors but also information for developing BPD diagnostics.

5.
IBRO Rep ; 6: 160-175, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31193360

RESUMEN

Asiaticoside-D (AD) was shown to efficacy of ganglionic degenerated Lumbricus terrestris as a pioneering observation in our earlier research. Though, extract molecular mechanisms of AD for degenerative diseases (DDs) remains largely unknown. We investigated the neuroprotective effects of AD against ROT in cerebral ganglions (CGs) of degenerative L. terrestris. Worms were exposed to 0.4 ppm ROT for 7 days were subjected to co- treatment with 15 ppm of AD. After, CGs was removed. The levels oxidant, non-antioxidant, antioxidant status, ganglioside, ceramide and ceramide glycanase (CGase) were estimated. The m-RNA levels of dopamine transporter (DAT), octopamine transporter (OAT), innexins-9 (inx-9), ionotropic glutamate receptor 3 (iGlu3), heat shock proteins (hsp70), XPRLamide neuropeptide precursor, tyramine beta-hydroxylase (tbh-1) and ß- adrenergic receptor kinase-2 (ß-ARK2-3) by semi-qRT- PCR. The expression pattern of tyramine beta hydroxylase (TBH), glutamate receptor (iGluR), serotonin transporter (SERT), dopamine transporters (DAT), nerve growth factors (NGF), cytochrome C oxidase (COC), NADH dehydogenase subunit-1 (ND-1), neurotrophin receptor p75 (p75NTR), neuronal nitric oxiside synthase (nNOs) interleukin 1- beta (IL1-ß) and tumor necrosis factor alpha (TNF-α) by western blotting. Glutaminergic, serotogenic and dopaminergic toxicity variations were also performed. The levels of oxidant, non-antioxidant, antioxidant status, lipids, proteins and m-RNAs were significantly altered (p < 0.001) on ROT-induced (group II) and their levels were significantly changes (p < 0.05) by ROT+AD in CGs. The sensitive study plan concluded the neuroprotective effects of AD against ROT induced degeneration in worms and suggest that the AD deserves future studies for its use as an effective alternative medicine that could minimize the morbidity of ganglionic degenerative diseases patients.

6.
Neuroimage Clin ; 18: 630-637, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29845011

RESUMEN

Introduction: Sleep disturbances are common non-motor symptoms in Parkinson's disease (PD). Experimental studies suggest involvement of the serotonergic system in the regulation of sleep and arousal. Using [11C]DASB positron emission tomography, a marker of serotonin transporter availability, we investigated whether sleep dysfunction is associated with serotonergic dysfunction in PD. Methods: We studied 14 PD patients with sleep dysfunction, 14 PD without sleep dysfunction, and 12 healthy controls. Groups were matched for age, disease duration, severity of motor symptoms, daily intake of levodopa equivalent units, body-mass-index, depression and fatigue. [11C]DASB non-displaceable binding potential (BPND) was calculated for regions with a role in the regulation of sleep and arousal. Results: [11C]DASB BPND was reduced by 32-49% in PD patients with sleep dysfunction, and 14-25% in PD without sleep dysfunction, compared to healthy controls. PD patients with sleep dysfunction had lower [11C]DASB BPND in caudate (P < 0.01), putamen (P < 0.001), ventral striatum (P < 0.001), thalamus (P < 0.05), hypothalamus (P < 0.001) and raphe nuclei (P < 0.01), compared to PD without sleep dysfunction. Higher severity of sleep symptoms (assessed with Parkinson Disease Sleep Scale) correlated with lower [11C]DASB binding in caudate (r = 0.77; P < 0.001), putamen (r = 0.84; P < 0.001), ventral striatum (r = 0.86; P < 0.001), thalamus (r = 0.79; P < 0.001), hypothalamus (r = 0.90; P < 0.001) and raphe nuclei (r = 0.83; P < 0.001). Conclusions: Our findings demonstrate that sleep dysfunction in PD is associated with reduced serotonergic function in the midbrain raphe, basal ganglia and hypothalamus. Strategies to increase serotonin levels in the brain could be a promising approach to treat sleep dysfunction in PD, and may also have relevance in other neurodegenerative disorders.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Parkinson/complicaciones , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Serotonina/metabolismo , Trastornos del Sueño-Vigilia/complicaciones , Anciano , Nivel de Alerta/fisiología , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Tomografía de Emisión de Positrones , Trastornos del Sueño-Vigilia/diagnóstico por imagen , Trastornos del Sueño-Vigilia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA