Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Genes (Basel) ; 15(7)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39062637

RESUMEN

In recent years, significant progress has been made in 5q Spinal Muscular Atrophy therapeutics, emphasizing the importance of early diagnosis and intervention for better clinical outcomes. Characterized by spinal cord motor neuron degeneration, 5q-SMA leads to muscle weakness, swallowing difficulties, respiratory insufficiency, and skeletal deformities. Recognizing the pre-symptomatic phases supported by screening and confirmatory genetic tests is crucial for early diagnosis. This work addresses key considerations in implementing 5q-SMA screening within the Brazilian National Newborn Screening Program and explores Brazil's unique challenges and opportunities, including genetic tests, time-to-patient referral to specialized centers, program follow-up, and treatment algorithms. We aim to guide healthcare professionals and policymakers, facilitating global discussions, including Latin American countries, and knowledge-sharing on this critical subject to improve the care for newborns identified with 5q SMA.


Asunto(s)
Atrofia Muscular Espinal , Tamizaje Neonatal , Humanos , Recién Nacido , Tamizaje Neonatal/métodos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Brasil , Pruebas Genéticas/métodos , Diagnóstico Precoz , Atención al Paciente/métodos , Atrofias Musculares Espinales de la Infancia/diagnóstico , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/terapia
2.
Int J Neonatal Screen ; 10(3)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39051405

RESUMEN

Spinal muscular atrophy (SMA) is a genetic neuromuscular disorder causing the degeneration of motor neurons in the spinal cord. Recent studies suggest greater effectiveness of treatment in the presymptomatic stage. This systematic review synthesises findings from 37 studies (and 3 overviews) of newborn screening for SMA published up to November 2023 across 17 countries to understand the methodologies used; test accuracy performance; and timing, logistics and feasibility of screening. All studies screened for the homozygous deletion of SMN1 exon 7. Most (28 studies) used RT-PCR as the initial test on dried blood spots (DBSs), while nine studies also reported second-tier tests on DBSs for screen-positive cases. Babies testing positive on DBSs were referred for confirmatory testing via a range of methods. Observed SMA birth prevalence ranged from 1 in 4000 to 1 in 20,000. Most studies reported no false-negative or false-positive cases (therefore had a sensitivity and specificity of 100%). Five studies reported either one or two false-negative cases each (total of six cases; three compound heterozygotes and three due to system errors), although some false-negatives may have been missed due to lack of follow-up of negative results. Eleven studies reported false-positive cases, some being heterozygous carriers or potentially related to heparin use. Time to testing and treatment varied between studies. In conclusion, several countries have implemented newborn screening for SMA in the last 5 years using a variety of methods. Implementation considerations include processes for timely initial and confirmatory testing, partnerships between screening and neuromuscular centres, and timely treatment initiation.

3.
Artículo en Ruso | MEDLINE | ID: mdl-38884441

RESUMEN

Advances in the treatment of spinal muscular atrophy (SMA) have revolutionized the field. SMA is a rare autosomal recessive neurodegenerative motor neuron disease in which wide phenotypic variability has been described. The rate of increase in neurological deficit and the severity of the disease is mainly determined by the amount of functional SMN (Survival of Motor Neuron) protein. However, the clinical picture may differ significantly in patients carrying homozygous deletions of the SMN1 gene (Survival of Motor Neuron 1) and an identical number of copies of the SMN2 gene (Survival of Motor Neuron 2). A family clinical case of adult patients with spinal muscular atrophy 5q with a homozygous deletion of the SMN1 gene and the same number of copies of the SMN2 gene, having a different clinical picture of the disease, is presented, and the dynamics of the condition against the background of oral pathogenetic therapy is presented.


Asunto(s)
Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Humanos , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Masculino , Homocigoto , Eliminación de Gen , Adulto , Femenino , Compuestos Azo , Pirimidinas
4.
Biochem Genet ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581475

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disorder with an autosomal recessive inheritance pattern. Patients with severe symptoms may suffer respiratory failure, leading to death. The homozygous deletion of exon 7 in the SMN1 gene accounts for nearly 95% of all cases. Population carrier screening for SMA and prenatal diagnosis by amniocentesis for high-risk couples can assist in identifying the risk of fetal disease. We provided the SMA carrier screening process to 55,447 pregnant women in Yancheng from October 2020 to December 2022. Among them, 8185 participated in this process, with a participation rate of around 14.76% (95% CI 14.47-15.06%). Quantitative real-time polymerase chain reaction (qPCR) was used to detect deletions of SMN1 exons 7 and 8 (E7, E8) in screened pregnant women. 127 were identified as carriers (111 cases of E7 and E8 heterozygous deletions, 15 cases of E7 heterozygous deletions, and 1 case of E7 heterozygous deletions and E8 homozygous deletions), resulting in a carrying rate of around 1.55% (95% CI 1.30-1.84%). After genetic counseling, 114 spouses of pregnant women who tested positive underwent SMA carrier screening; three of them were screened as SMA carriers. Multiplexed ligation-dependent probe amplification (MLPA) was used for the prenatal diagnosis of the fetuses of high-risk couples. Two of them exhibited two copies of SMN1 exon 7 (normal), and the pregnancy was continued; one exhibited no copies of SMN1 exon 7 and exon 8 (SMA patient), and the pregnancy was terminated. Analyzing SMN1 mutations in Yancheng and provide clinical evidence for SMA genetic counseling and birth defect prevention. Interventional prenatal diagnosis for high-risk families can promote informed reproductive selection and prepare for the fetus's early treatment.

5.
Hum Mol Genet ; 33(13): 1120-1130, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38520738

RESUMEN

Spinal muscular atrophy (SMA), which results from the deletion or/and mutation in the SMN1 gene, is an autosomal recessive neuromuscular disorder that leads to weakness and muscle atrophy. SMN2 is a paralogous gene of SMN1. SMN2 copy number affects the severity of SMA, but its role in patients treated with disease modifying therapies is unclear. The most appropriate individualized treatment for SMA has not yet been determined. Here, we reported a case of SMA type I with normal breathing and swallowing function. We genetically confirmed that this patient had a compound heterozygous variant: one deleted SMN1 allele and a novel splice mutation c.628-3T>G in the retained allele, with one SMN2 copy. Patient-derived sequencing of 4 SMN1 cDNA clones showed that this intronic single transversion mutation results in an alternative exon (e)5 3' splice site, which leads to an additional 2 nucleotides (AG) at the 5' end of e5, thereby explaining why the patient with only one copy of SMN2 had a mild clinical phenotype. Additionally, a minigene assay of wild type and mutant SMN1 in HEK293T cells also demonstrated that this transversion mutation induced e5 skipping. Considering treatment cost and goals of avoiding pain caused by injections and starting treatment as early as possible, risdiplam was prescribed for this patient. However, the patient showed remarkable clinical improvements after treatment with risdiplam for 7 months despite carrying only one copy of SMN2. This study is the first report on the treatment of risdiplam in a patient with one SMN2 copy in a real-world setting. These findings expand the mutation spectrum of SMA and provide accurate genetic counseling information, as well as clarify the molecular mechanism of careful genotype-phenotype correlation of the patient.


Asunto(s)
Mutación , Empalme del ARN , Atrofias Musculares Espinales de la Infancia , Proteína 2 para la Supervivencia de la Neurona Motora , Femenino , Humanos , Alelos , Compuestos Azo , Exones/genética , Células HEK293 , Pirimidinas/uso terapéutico , Empalme del ARN/genética , Atrofias Musculares Espinales de la Infancia/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Recién Nacido , Lactante
6.
Artículo en Ruso | MEDLINE | ID: mdl-38465810

RESUMEN

Spinal muscular atrophy (SMA) is a devastating disease that is the leading genetic cause of death in infants and young children. It includes a broad spectrum of phenotypes that are classified into clinical groups based on the age of onset and maximum motor function achieved. The most common form of SMA is due to a defect in the survival motor neuron 1 gene (SMN1) localized to 5q11.2-q13.3. The development of clinical symptoms and disease progression is thought to be due to decreased levels of survival motor neuron (SMN) protein. SMA type 1 results in almost inevitable mortality within the first 2 years of life. The first two drugs approved globally for the treatment of SMA were the antisense oligonucleotide nusinersen (Spinraza), and the gene therapy onasemnogene abeparvovec-xioi (Zolgensma). Both interventions have approval and restrictions on use in different countries around the world. Despite these approved therapies, the medical unmet need in SMA (the majority of patients with SMA are not on a disease-modifying therapy) remains high with therapies in the pipeline to address some of the remaining limitations. The third and more recently approved drug for SMA is risdiplam (Evrysdi), an orally administered, centrally and peripherally distributed small molecule that modulates SMN2 pre-mRNA splicing toward the production of full-length SMN2 mRNA to increase functional SMN protein levels. In Russia the drug risdiplam was approved for use on November 26, 2020 with indications for the treatment of SMA in patients aged 2 months and older, and in 2023 the indications were expanded - use is allowed starting from the birth. Risdiplam is widely distributed into the CNS and peripheral tissues including muscles. Following risdiplam administration, SMN protein levels compared with baseline levels increase between 2- and 6-fold depending on the SMA phenotype treated. The risdiplam clinical development program currently has four ongoing clinical trials assessing its safety and efficacy. Clinical trials included more than 450 patients receiving risdiplam to date, has been well tolerated and no treatment-related safety findings leading to study withdrawal have been observed. Data from real clinical practice - more than 11.000 patients worldwide receive therapy with risdiplam, also confirm the safety and good tolerability of the drug.


Asunto(s)
Atrofia Muscular Espinal , Niño , Lactante , Humanos , Preescolar , Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/genética , Pirimidinas/uso terapéutico , Compuestos Azo/uso terapéutico , Empalme del ARN , Factores de Transcripción
7.
Front Neurol ; 15: 1308296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487326

RESUMEN

Objective: To review the clinical characteristics and effect of treatment in patients with spinal muscular atrophy (SMA) and three copies of the SMN2 gene. Methods: We conducted a literature search in October 2022 to identify English-language clinical research on SMA that included SMN2 copy number according to PRISMA guidelines. Results: Our search identified 44 studies examining the impact of three SMN2 copies on clinical characteristics (21 on phenotype, 13 on natural history, and 15 on functional status and other signs/symptoms). In children with type I SMA or presymptomatic infants with an SMN1 deletion, three SMN2 copies was associated with later symptom onset, slower decline in motor function and longer survival compared with two SMN2 copies. In patients with SMA type II or III, three SMN2 copies is associated with earlier symptom onset, loss of ambulation, and ventilator dependence compared with four SMN2 copies. Eleven studies examined treatment effects with nusinersen (nine studies), onasemnogene abeparvovec (one study), and a range of treatments (one study) in patients with three SMN2 copies. In presymptomatic infants, early treatment delayed the onset of symptoms and maintained motor function in those with three SMN2 copies. The impact of copy number on treatment response in symptomatic patients is still unclear. Conclusion: SMN2 copy number is strongly correlated with SMA phenotype in patients with SMN1 deletion, while no correlation was found in patients with an SMN1 mutation. Patients with three SMN2 copies show a highly variable clinical phenotype. Early initiation of treatment is highly effective in presymptomatic patients with three SMN2 copies.

8.
J Neurol ; 271(5): 2787-2797, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38409538

RESUMEN

Newborn screening for 5qSMA offers the potential for early, ideally pre-symptomatic, therapeutic intervention. However, limited data exist on the outcomes of individuals with 4 copies of SMN2, and there is no consensus within the SMA treatment community regarding early treatment initiation in this subgroup. To provide evidence-based insights into disease progression, we performed a retrospective analysis of 268 patients with 4 copies of SMN2 from the SMArtCARE registry in Germany, Austria and Switzerland. Inclusion criteria required comprehensive baseline data and diagnosis outside of newborn screening. Only data prior to initiation of disease-modifying treatment were included. The median age at disease onset was 3.0 years, with a mean of 6.4 years. Significantly, 55% of patients experienced symptoms before the age of 36 months. 3% never learned to sit unaided, a further 13% never gained the ability to walk independently and 33% of ambulatory patients lost this ability during the course of the disease. 43% developed scoliosis, 6.3% required non-invasive ventilation and 1.1% required tube feeding. In conclusion, our study, in line with previous observations, highlights the substantial phenotypic heterogeneity in SMA. Importantly, this study provides novel insights: the median age of disease onset in patients with 4 SMN2 copies typically occurs before school age, and in half of the patients even before the age of three years. These findings support a proactive approach, particularly early treatment initiation, in this subset of SMA patients diagnosed pre-symptomatically. However, it is important to recognize that the register will not include asymptomatic individuals.


Asunto(s)
Atrofia Muscular Espinal , Proteína 2 para la Supervivencia de la Neurona Motora , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Edad de Inicio , Austria/epidemiología , Progresión de la Enfermedad , Alemania , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico , Tamizaje Neonatal , Sistema de Registros , Estudios Retrospectivos , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Suiza
9.
Methods Protoc ; 7(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38392683

RESUMEN

Spinal muscular atrophy is a neuromuscular disorder caused by mutations in both copies of the survival motor neuron gene 1 (SMN1), which lead to reduction in the production of the SMN protein. Currently, there are several therapies that have been approved for SMA, with many more undergoing active research. While various biomarkers have been proposed for assessing the effectiveness of SMA treatment, a universally accepted one still has not been identified. This study aimed to describe a fast and reliable method using the number of gems in cell nuclei as a potential tool for assessment of splicing correction of oligonucleotide efficacy in SMA cells. To gain insight into whether the number of gems in cell nuclei varies based on their SMN genotype and whether the increase in gem number is associated with therapeutic response, we utilized fibroblast cell cultures obtained from a patient with SMA type II and from a healthy individual. We discovered a remarkable difference in the number of gems found in the nuclei of these cells, specifically when counting gems per 100 nuclei. The SMA fibroblasts treated with antisense oligonucleotide showed beneficial effects in correcting the abnormal splicing of SMN2 exon 7. It was observed that there was a significant increase in the number of gems in the treated cells compared to the intact SMA cells. The results obtained significantly correlate with an increase of full-length SMN transcript sharing. Based on our findings, we propose using the quantity of gems as a reliable biomarker for SMA drug development.

10.
Int J Neonatal Screen ; 10(1)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38390973

RESUMEN

Spinal muscular atrophy 5q (SMA) is one of the most common neuromuscular inherited diseases and is the most common genetic cause of infant mortality. SMA is associated with homozygous deletion of exon 7 in the SMN1 gene. Recently developed drugs can improve the motor functions of infants with SMA when they are treated in the pre-symptomatic stage. With aim of providing an early diagnosis, newborn screening (NBS) for SMA using a real-time PCR assay with dried blood spots (DBS) was performed from January 2022 through November 2022 in Saint Petersburg, which is a representative Russian megapolis. Here, 36,140 newborns were screened by the GenomeX real-time PCR-based screening test, and three genotypes were identified: homozygous deletion carriers (4 newborns), heterozygous carriers (772 newborns), and wild-type individuals (35,364 newborns). The disease status of all four newborns that screened positive for the homozygous SMN1 deletion was confirmed by alternate methods. Two of the newborns had two copies of SMN2, and two of the newborns had three copies. We determined the incidence of spinal muscular atrophy in Saint Petersburg to be 1 in 9035 and the SMA carrier frequency to be 1 in 47. In conclusion, providing timely information regarding SMN1, confirmation of disease status, and SMN2 copy number as part of the SMA newborn-screening algorithm can significantly improve clinical follow-up, testing of family members, and treatment of patients with SMA.

11.
BMC Med Genomics ; 17(1): 30, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254109

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder which is characterized by the loss of both upper and lower motor neurons in the central nervous system. In a significant fraction of ALS cases - irrespective of family history- a genetic background may be identified. The genetic background of ALS shows a high variability from one ethnicity to another. The most frequent genetic cause of ALS is the repeat expansion of the C9orf72 gene. With the emergence of next-generation sequencing techniques and copy number alteration calling tools the focus in ALS genetics has shifted from disease causing genes and mutations towards genetic susceptibility and risk factors.In this review we aimed to summarize the most widely recognized and studied ALS linked repeat expansions and copy number variations other than the hexanucleotide repeat expansion in the C9orf72 gene. We compare and contrast their involvement and phenotype modifying roles in ALS among different populations.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Humanos , Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Variaciones en el Número de Copia de ADN , Genes Reguladores , Factores de Riesgo
12.
Arch Pediatr ; 31(2): 117-123, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38135619

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is a rare genetic neuromuscular disorder due to an autosomal recessive mutation in the survival motor neuron 1 gene (SMN1), causing degeneration of the anterior horn cells of the spinal cord and resulting in muscle atrophy. This study aimed to report on the 36-month follow-up of children with SMA treated with nusinersen before the age of 3 years. Changes in motor function, nutritional and ventilatory support, and orthopedic outcomes were evaluated at baseline and 36 months after intrathecal administration of nusinersen and correlated with SMA type and SMN2 copy number. RESULTS: We found that 93% of the patients gained new motor skills during the 3 years-standing without help for 12 of 37 and walking with help for 11 of 37 patients harboring three SMN2 copies. No patients with two copies of SMN2 can stand alone or walk. Patients bearing three copies of SMN2 are more likely to be spared from respiratory, nutritional, and orthopedic complications than patients with two SMN2 copies. CONCLUSION: Children with SMA treated with nusinersen continue to make motor acquisitions at 3 years after initiation of treatment. Children with two SMN2 copies had worse motor, respiratory, and orthopedic outcomes after 3 years of treatment than children with three copies.


Asunto(s)
Variaciones en el Número de Copia de ADN , Atrofia Muscular Espinal , Preescolar , Humanos , Mutación , Oligonucleótidos/uso terapéutico , Proteína 2 para la Supervivencia de la Neurona Motora/genética
13.
Arch Pediatr ; 30(8S1): 8S12-8S17, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38043977

RESUMEN

Infantile SMA is a neuromuscular disease caused by the motor neuron degeneration, depending on the age of appearance of clinical signs and the evolution of the disease, three types of decreasing severity have been defined. SMA is caused by mutations or deletions of the SMN1 gene and disease. Various therapies aimed at increasing SMN protein levels have been developed. Gene therapy is part of the therapeutic arsenal now available for the treatment of SMA under certain conditions. It uses the scAAV9 vector carrying a functional copy of SMN1 to restore SMN protein expression at the cellular level. Because the adeno-associated virus genome is maintained as it is an episome, a single intravenous administration is sufficient to producing a long-lasting therapeutic effect. The effectiveness of gene replacement therapy in patients with SMA has been demonstrated in various studies. It is now clear that treatment as early as possible provides better clinical results. However, this treatment must be carried out in a suitable medical environment, with close monitoring initially due to potentially serious side effects. In France, this treatment has been available since 2019. A national committee of experts involved in the treatment of pediatric SMA patients has established that pediatric patients with SMA decide on the indications for disease-modifying therapies (DMT) in children. The French Spinal Muscular Atrophy Registry (SMA France Registry) was established in January 2020. The registry includes all patients with genetically confirmed SMN1-related SMA. All patients treated with GT are systematically included in the registry. As of July 21, 2023: 72 patients with SMA have been treated with GT in France since June 2019. The arrival of new treatments reveals new clinical phenotypes of SMA which constitute a new management challenge. Treatment as early as possible is also a very important factor for a favorable outcome and calls for presymptomatic screening. However, the arrival of these new treatments, extremely expensive raises other socio-economic questions. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.


Asunto(s)
Atrofia Muscular Espinal , Humanos , Niño , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Terapia Genética , Mutación , Fenotipo , Francia
14.
Genes (Basel) ; 14(12)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38136980

RESUMEN

The survival motor neuron 2 (SMN2) gene is a recognized modifier gene of spinal muscular atrophy (SMA). However, our knowledge about the role of SMN2-other than its modification of SMA phenotypes-is very limited. Discussions regarding the relationship between homozygous SMN2 deletion and motor neuron diseases, including amyotrophic lateral sclerosis, have been mainly based on retrospective epidemiological studies of the diseases, and the precise relationship remains inconclusive. In the present study, we first estimated that the frequency of homozygous SMN2 deletion was ~1 in 20 in Japan. We then established a real-time polymerase chain reaction (PCR)-based screening method using residual dried blood spots to identify infants with homozygous SMN2 deletion. This method can be applied to a future prospective cohort study to clarify the relationship between homozygous SMN2 deletion and motor neuron diseases. In our real-time PCR experiment, both PCR (low annealing temperatures) and blood (high hematocrit values and low white blood cell counts) conditions were associated with incorrect results (i.e., false negatives and positives). Together, our findings not only help to elucidate the role of SMN2, but also aid in our understanding of the pitfalls of current SMA newborn screening programs for detecting homozygous SMN1 deletions.


Asunto(s)
Atrofia Muscular Espinal , Lactante , Recién Nacido , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estudios Retrospectivos , Estudios Prospectivos , Eliminación de Gen , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Neuronas Motoras , Tamizaje Neonatal/métodos , Proteína 2 para la Supervivencia de la Neurona Motora/genética
15.
Genes (Basel) ; 14(12)2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38137033

RESUMEN

Newborn screening (NBS) for spinal muscular atrophy (SMA) is necessary, as favorable outcomes can be achieved by treatment with disease-modifying drugs in early infancy. Although SMA-NBS has been initiated in Japan, its clinical results have not been fully reported. We report the findings of the initial 2.5 years of a pilot SMA-NBS of approximately 16,000 infants conducted from February 2021 in Hyogo Prefecture, Japan. Clinical data of 17 infants who tested positive were retrospectively obtained from the NBS follow-up centers participating in this multicenter cohort observational study. Genetic testing revealed 14 false positives, and three infants were diagnosed with SMA. Case 1 had two copies of survival motor neuron (SMN) 2 and showed SMA-related symptoms at diagnosis. Case 2 was asymptomatic, with two copies of SMN2. Asymptomatic case 3 had four copies of SMN2 exon 7, including the SMN1/2 hybrid gene. Cases 1 and 2 were treated within 1 month and case 3 at 8 months. All the patients showed improved motor function scores and did not require respiratory support. The identification of infants with SMA via NBS and early treatment improved their motor and respiratory outcomes. Thus, implementation of SMA-NBS at a nationwide scale should be considered.


Asunto(s)
Atrofia Muscular Espinal , Tamizaje Neonatal , Lactante , Recién Nacido , Humanos , Japón , Estudios Retrospectivos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/epidemiología , Atrofia Muscular Espinal/genética , Pruebas Genéticas
16.
Biomedicines ; 11(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38002071

RESUMEN

Spinal muscular atrophy (SMA) is a devastating neurodegenerative disease caused by mutations in the SMN1 gene. Existing therapies demonstrate positive results on SMA patients but still might be ameliorated in efficacy and price. In the presented study we designed antisense oligonucleotides (AONs), targeting intronic splicing silencer sites, some were modified with 2'-O-methyl, others with LNA. The AONs have been extensively tested in different concentrations, both individually and combined, in order to effectively target the ISS-N1 and A+100G splicing silencer regions in intron 7 of the SMN2 gene. By treating SMA-cultured fibroblasts with certain AONs, we discovered a remarkable increase in the levels of full-length SMN transcripts and the number of nuclear gems. This increase was observed to be dose-dependent and reached levels comparable to those found in healthy cells. When added to cells together, most of the tested molecules showed a remarkable synergistic effect in correcting splicing. Through our research, we have discovered that the impact of oligonucleotides is greatly influenced by their length, sequence, and pattern of modification.

17.
Mol Genet Genomic Med ; 11(12): e2184, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37964750

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive disease caused by mutations and deletions in SMN1 at exon 7. The carrier frequency for SMN1 mutations ranges from 2 to 4% in the general population. METHODS: We examined allelic, genotypic relatedness and copy number (CN) variations and frequencies of SMN1 and SMN2, in 13,426 samples from Qatar biobank (QBB) to provide a precise estimation of SMA carrier frequency in Qatar in comparison to other populations. RESULTS: The SMA carrier frequency was found to be (2.8%) and the rs143838139 was found in 491/13426 (3.66%) of individuals. The SNP rs121909192, which is a pathogenic risk factor, was found in 321/13500 (2.38%). In Addition 242/11379 (2.13%) had two copies of SMN1 and the rs143838139, which may explain the (2 + 0) silent carrier. Additionally, two participants were found to be SMA type 4 with 0 and 4 copy numbers in SMN1 and SMN2, respectively. CONCLUSION: The SMA carrier frequency in Qatar was found to be comparable to Saudi Arabia and Caucasians. The likely pathogenic variant, rs121909192, was found to be significantly higher when compering with other in our study. The rs143838139 variant, which has a strong association with the silent carrier genotype, has been found. Consequently, testing for this SNP may enhance the precision of evaluating the likelihood of a patient having an affected child. We conclude that the frequency of SMA carriers varies within the Qatar population and other ethnic groups.


Asunto(s)
Etnicidad , Atrofia Muscular Espinal , Niño , Humanos , Proyectos Piloto , Qatar , Atrofia Muscular Espinal/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-37711122

RESUMEN

INTRODUCTION: Newborn screening (NBS) in Portugal is a significant public health measure to provide early detection for specific disorders so that early treatment is possible. Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that causes degeneration of anterior horn cells in the human spinal cord and subsequent loss of motor neurons. Its incidence is estimated in 1.6000-11.800 live births. A pilot study on 100.000 newborns is being carried out at the neonatal screening laboratory with the aim of determining the specificity, sensitivity, and feasibility of the SMA screening at the NBS laboratory in Portugal. METHODS: The study presented here was based on data obtained from neonatal screening, involving the analysis of 25.000 newborns. SMA screening is performed by a qualitative detection of exon 7 of the SMN1 gene. The assay was performed using a commercially available real-time PCR, the Eonis SMN1, TREC, and KREC kit. RESULTS/CASE REPORT: The dried blood spots of a total of 25.000 newborns were tested; among these newborns, two were diagnosed as having SMA with survival motor neuron 1 (SMN1) deletion. These two SMA-positive samples were sent to a specialized clinical centre and a peripheral blood sample was sent to the reference laboratory for confirmation of the exon 7 deletion and determination of the SMN2 copy number. CONCLUSION: Early diagnosis and intervention are important for SMA treatment to be effective; the treatment should be started at the pre-symptomatic stage of SMA. Thus, newborn screening for SMA is strongly recommended. Currently, targeted therapies for SMA are available, and attempts are being made worldwide to include SMA screening in newborns.

19.
bioRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662340

RESUMEN

Pre-mRNA splicing, a key process in gene expression, can be therapeutically modulated using various drug modalities, including antisense oligonucleotides (ASOs). However, determining promising targets is impeded by the challenge of systematically mapping splicing-regulatory elements (SREs) in their native sequence context. Here, we use the catalytically dead CRISPR-RfxCas13d RNA-targeting system (dCas13d/gRNA) as a programmable platform to bind SREs and modulate splicing by competing against endogenous splicing factors. SpliceRUSH, a high-throughput screening method, was developed to map SREs in any gene of interest using a lentivirus gRNA library that tiles the genetic region, including distal intronic sequences. When applied to SMN2, a therapeutic target for spinal muscular atrophy, SpliceRUSH robustly identified not only known SREs, but also a novel distal intronic splicing enhancer, which can be targeted to alter exon 7 splicing using either dCas13d/gRNA or ASOs. This technology enables a deeper understanding of splicing regulation with applications for RNA-based drug discovery.

20.
Expert Rev Neurother ; 23(11): 1005-1012, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635694

RESUMEN

INTRODUCTION: Over the last decade, the treatment of spinal muscular atrophy (SMA) has become a paradigm of the importance of early and accurate diagnosis and prompt treatment. Three different therapeutic approaches that aims to increase SMN protein are approved now by Food and Drug Administration (FDA) and European Medicines Agency (EMA) for treatment of SMA; their efficacies have been demonstrated in pivotal trials. AREAS COVERED: The authors report on the two controlled studies and real-world evidence that have demonstrated that the treatment of patients pre-symptomatically ensures normal or only slightly sub-normal motor development in children who would otherwise develop a severe form of the disease. Furthermore, the authors highlight the several newborn screening (NBS) methods that are now available, all of which are based on real-time PCR, that reliably and robustly diagnose SMA except in subjects with disease caused by a point mutation. EXPERT OPINION: Pre-symptomatic treatment of SMA has been clearly demonstrated to prevent the most severe forms of the disease. NBS constitutes more than a simple test and should be considered as a global process to accelerate treatment access and provide global management of patients and parents. Even though the cost of NBS is low and health economics studies have clearly demonstrated its value, the fear of identifying more patients than the system can treat is often reported in large middle-income countries.


Asunto(s)
Atrofia Muscular Espinal , Tamizaje Neonatal , Recién Nacido , Niño , Humanos , Tamizaje Neonatal/métodos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA