Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Lab Med ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780206

RESUMEN

OBJECTIVE: This study aimed to investigate the diagnostic value of stress-induced phosphoprotein 1 (STIP1) in serum for hepatocellular carcinoma (HCC) and alpha-fetoprotein (AFP)-negative HCC (ANHC). METHODS: In this study, serum samples were collected from 158 HCC patients and 63 non-HCC patients. Logistic regression analysis was performed to identify independent risk factors associated with HCC and ANHC. The diagnostic values of each index for HCC and ANHC were analyzed using receiver operating characteristic (ROC) curve analysis. RESULTS: The STIP1, des-γ-carboxy prothrombin (DCP), and AFP levels were higher in the HCC groups than in the non-HCC groups (P < .05). Age, DCP, STIP1, and hepatitis B virus infection were independent predictors of HCC (P < .05). The diagnostic value of STIP1 for HCC was higher than that of DCP. Additionally, age, STIP1, and hepatitis B virus infection were independent predictors for ANHC patients. The ROC curve exhibited an area under the curve value of 0.919 for STIP1, with a diagnostic cutoff value of 68.5 U/mL. Moreover, 36 ANHC patients and 19 AFP-negative non-HCC patients were included to validate the diagnostic model. A total of 20 patients had STIP1 levels greater than 68.5 U/mL, resulting in diagnostic accuracy of 67.3%, sensitivity of 55.6%, and specificity of 89.5%. CONCLUSION: STIP1 demonstrates excellent diagnostic value for HCC and ANHC.

2.
Bull Exp Biol Med ; 176(4): 477-480, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38492099

RESUMEN

Adaptor proteins stress induced phosphoprotein 1 (STIP1) and ST13 Hsp70 interacting protein (ST13) may play a crucial role in the pathophysiology of ischemic stroke through controlling protein folding, neuronal survival, and regulation of HSP70/HSP90. The present pilot study investigated whether tagSNPs in genes encoding ST13 (rs138335, rs138344, rs7290793, and rs138344) and STIP1 (rs4980524) are associated with ischemic stroke. DNA samples from 721 ischemic stroke patients and 471 healthy controls were genotyped using the MassArray-4. Our research revealed a relationship between rs138344 ST13 and the risk of ischemic stroke, which was seen only in females (risk allele G; OR=1.34, 95%CI=1.07-1.69; p=0.01). The haplotype rs138335G-rs138344C-rs7290793C ST13 was linked with lower risk of ischemic stroke in females: OR=0.42; 95%CI=0.26-0.68; p=0.0005. Thus, ST13 represents a novel genetic marker for ischemic stroke.


Asunto(s)
Proteínas de Choque Térmico , Accidente Cerebrovascular Isquémico , Chaperonas Moleculares , Proteínas Supresoras de Tumor , Femenino , Humanos , Genotipo , Proteínas de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Chaperonas Moleculares/genética , Proyectos Piloto , Polimorfismo Genético , Proteínas Supresoras de Tumor/genética
3.
Cancer Lett ; 577: 216436, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37806517

RESUMEN

Gastric cancer (GC) remains one of the most common malignances and the leading cause of cancer-related mortality worldwide. Although the critical role of several long non-coding RNAs (lncRNAs) transcribed from several GC-risk loci has been established, we still know little about the biological significance of these lncRNAs at most gene loci and how they play in cell signaling. In the present study, we identified a novel oncogenic lncRNA LINC01226 transcribed from the 1p35.2 GC-risk locus. LINC01226 shows markedly higher expression levels in GC specimens compared with those in normal tissues. High expression of LINC01226 is evidently correlated with worse prognosis of GC cases. In line with these, oncogenic LINC01226 promotes proliferation, migration and metastasis of GC cells ex vivo and in vivo. Importantly, LINC01226 binds to STIP1 protein, leads to disassembly of the STIP1-HSP90 complex, elevates interactions between HSP90 and ß-catenin, stabilizes ß-catenin protein, activates the Wnt/ß-catenin signaling and, thereby, promote GC progression. Together, our findings uncovered a novel layer regulating the Wnt signaling in cancers and uncovers a new epigenetic mode of GC tumorigenesis. These discoveries also shed new light on the importance of functional lncRNAs as innovative therapeutic targets through precisely controlling protein-protein interactions in cancers.


Asunto(s)
ARN Largo no Codificante , Neoplasias Gástricas , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Cateninas/genética , Cateninas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Citoplasma/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , ARN Largo no Codificante/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Vía de Señalización Wnt/genética
4.
Ecotoxicol Environ Saf ; 264: 115482, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717354

RESUMEN

The pervasive weak electromagnetic fields (EMF) inundate the industrialized society, but the biological effects of EMF as weak as 10 µT have been scarcely analyzed. Heat shock proteins (HSPs) are molecular chaperones that mediate a sequential stress response. HSP70 and HSP90 provide cells under undesirable situations with either assisting covalent folding of proteins or degrading improperly folded proteins in an ATP-dependent manner. Here we examined the effect of extremely low-frequency (ELF)-EMF on AML12 and HEK293 cells. Although the protein expression levels of HSP70 and HSP90 were reduced after an exposure to ELF-EMF for 3 h, acetylations of HSP70 and HSP90 were increased, which was followed by an enhanced binding affinities of HSP70 and HSP90 for HSP70/HSP90-organizing protein (HOP/STIP1). After 3 h exposure to ELF-EMF, the amount of mitochondria was reduced but the ATP level and the maximal mitochondrial oxygen consumption were increased, which was followed by the reduced protein aggregates and the increased cell viability. Thus, ELF-EMF exposure for 3 h activated acetylation of HSPs to enhance protein folding, which was returned to the basal level at 12 h. The proteostatic effects of ELF-EMF will be able to be applied to treat pathological states in humans.


Asunto(s)
Campos Electromagnéticos , Proteínas de Choque Térmico , Humanos , Acetilación , Campos Electromagnéticos/efectos adversos , Células HEK293 , Pliegue de Proteína , Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico , Adenosina Trifosfato
5.
Exp Cell Res ; 430(2): 113714, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37442266

RESUMEN

Gastric cancer (GC) is the 5th most common cancer over the world. Ubiquitin protease 43 (UBP43) is a multifunctional protein with deubiquitinase activities. Abnormal expression of UBP43 has been reported in numerous types of malignancies. Bioinformatic analysis was performed to identify the differentially expressed genes (Fold change ≥2 or ≤ -2 and p < 0.01) in GC from the datasets downloaded from Gene Expression Omnibus and Gene Expression Profiling Interactive Analysis databases, which showed that UBP43 and stress-inducible phosphoprotein 1 (STIP1) were up-regulated in both datasets. Online databases displayed the binding of UBP43 to STIP1 and the positive correlation between the two proteins. This study aims to explore: the role of UBP43 in cell proliferation and apoptosis in GC; the relationship between UBP43 and STIP1; and whether UBP43 exerts its function via STIP1 in GC. Knockdown/overexpression stable GC cell lines were generated by transducing lentivirus carrying coding sequence/short hairpin RNA of UBP43 and puromycin selection. GC patients with higher expressions of UBP43 had poor prognosis. Loss-/gain-of-function experiments revealed that pro-proliferative and anti-apoptotic abilities of UBP43 in GC cells and xenografts. UBP43 could interact with STIP1, inhibit its ubiquitination, and promote its protein stability, thereby enhancing STIP1 expression. Moreover, STIP1 knockdown reversed the pro-proliferative ability of UBP43 in GC cells. Our study uncovers that the pro-proliferative role of UBP43 in GC development is STIP1-dependent and indicates that UBP43 may act as a potent therapeutic target in GC treatment.


Asunto(s)
Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Endopeptidasas/genética , Regulación Neoplásica de la Expresión Génica , Péptido Hidrolasas/genética , Fosfoproteínas/metabolismo , Neoplasias Gástricas/genética , Ubiquitina/metabolismo
6.
Virol Sin ; 38(4): 497-507, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37182691

RESUMEN

Chikungunya virus (CHIKV) is a re-emerging mosquito-transmitted RNA virus causing joint and muscle pain. To better understand how CHIKV rewires the host cell and usurps host cell functions, we generated a systematic CHIKV-human protein-protein interaction map and revealed several novel connections that will inform further mechanistic studies. One of these novel interactions, between the viral protein E1 and STIP1 homology and U-box containing protein 1 (STUB1), was found to mediate ubiquitination of E1 and degrade E1 through the proteasome. Capsid associated with G3BP1, G3BP2 and AAA+ â€‹ATPase valosin-containing protein (VCP). Furthermore, VCP inhibitors blocked CHIKV infection, suggesting VCP could serve as a therapeutic target. Further work is required to fully understand the functional consequences of these interactions. Given that CHIKV proteins are conserved across alphaviruses, many virus-host protein-protein interactions identified in this study might also exist in other alphaviruses. Construction of interactome of CHIKV provides the basis for further studying the function of alphavirus biology.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Virus , Animales , Humanos , Virus Chikungunya/genética , ADN Helicasas , Replicación Viral/fisiología , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN , Proteínas de Unión a Poli-ADP-Ribosa , Ubiquitina-Proteína Ligasas/metabolismo
7.
Cytotechnology ; 75(3): 207-217, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37187948

RESUMEN

To investigate the involvement of stress induced phosphoprotein 1 (STIP1), heat shock protein (HSP) 70, and HSP90 in ubiquitination of connexin 43 (Cx43) in rat H9c2 cardiomyocytes. Co-immunoprecipitation was used to detect protein-protein interactions and Cx43 ubiquitination. Immunofluorescence was used for protein co-localization. The protein binding, Cx43 protein expression, and Cx43 ubiquitination were reanalyzed in H9c2 cells with modified STIP1 and/or HSP90 expression. STIP1 bound to HSP70 and HSP90, and Cx43 bound to HSP40, HSP70, and HSP90 in normal H9c2 cardiomyocytes. Overexpression of STIP1 promoted the transition of Cx43-HSP70 to Cx43-HSP90 and inhibited Cx43 ubiquitination; knockdown of STIP1 resulted in the opposite effects. Inhibition of HSP90 counteracted the inhibitory effect of STIP1 overexpression on Cx43 ubiquitination. STIP1 suppresses Cx43 ubiquitination in H9c2 cardiomyocytes by promoting the transition of Cx43-HSP70 to Cx43-HSP90.

8.
Cell Tissue Res ; 392(2): 565-579, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36575252

RESUMEN

Sertoli cells (SCs) preferentially use glucose to convert to lactate. As an energy source, lactate is essential for survival of developed germ cells (GCs) due to its anti-apoptotic effect. Failure to maintain lactate metabolism homeostasis leads to infertility or germ cell apoptosis. Several Sertoli cell-expressed genes, such as Foxq1 and Gata4, have been identified as critical regulators for lactate synthesis, but the pathways that potentially modulate their expression remain ill defined. Although recent work from our collaborators pointed to an involvement of STIP1 homology and U-box-containing protein 1 (STUB1) in the modulation of Sertoli cell response to GCs-derived IL-1α, a true physiological function of STUB1 signaling in SCs has not been demonstrated. We therefore conditionally ablated Stub1 in SCs using Amh-Cre. Stub1 knockout males exhibited impaired fertility due to oligozoospermia and asthenospermia, possibly caused by lactate deficiency. Furthermore, by means of chromatin immunoprecipitation, in vivo ubiquitination, and luciferase reporter assays, we showed that STUB1 directed forkhead box Q1 (FOXQ1)-mediated transactivation of the lactate dehydrogenase A (Ldha) gene via K63-linked non-proteolytic polyubiquitination, thus facilitating lactate production in follicle-stimulating hormone (FSH)-stimulated SCs. In agreement, overexpression of LDHA by lentivirus infection effectively rescued the lactate production in TM4Stub1-/- cells. Our results collectively identify STUB1-mediated transactivation of FOXQ1 signaling as a post-translationally modified transcriptional regulatory network underlying nursery function in SCs, which may nutritionally contribute to Sertoli cell dysfunction of male infertility.


Asunto(s)
Ácido Láctico , Células de Sertoli , Animales , Masculino , Ratones , Ácido Láctico/metabolismo , Activación Transcripcional/genética , Ubiquitinación , L-Lactato Deshidrogenasa
9.
Subcell Biochem ; 101: 81-125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36520304

RESUMEN

The Hsp70/Hsp90 organising protein (Hop, also known as stress-inducible protein 1/STI1/STIP1) has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins, although recent evidence suggests that eukaryotic Hop is regulatory within chaperone complexes rather than essential. Consequently, Hop is implicated in many key signalling pathways, including aberrant pathways leading to cancer. Hop is also secreted, and it is now well established that Hop interacts with the prion protein, PrPC, to mediate multiple signalling events. The intracellular and extracellular forms of Hop most likely represent two different isoforms, although the molecular determinants of these divergent functions are yet to be identified. There is also a growing body of research that reports the involvement of Hop in cellular activities that appear independent of either chaperones or PrPC. While the various cellular functions of Hop have been described, its biological function remains elusive. However, recent knockout studies in mammals suggest that Hop has an important role in embryonic development. This review provides a critical overview of the latest molecular, cellular and biological research on Hop, critically evaluating its function in healthy systems and how this function is adapted in diseased states.


Asunto(s)
Proteínas de Choque Térmico , Chaperonas Moleculares , Animales , Humanos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Mamíferos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , Transducción de Señal
10.
Acta Neuropathol ; 144(5): 881-910, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36121476

RESUMEN

The predominantly pre-synaptic intrinsically disordered protein α-synuclein is prone to misfolding and aggregation in synucleinopathies, such as Parkinson's disease (PD) and Dementia with Lewy bodies (DLB). Molecular chaperones play important roles in protein misfolding diseases and members of the chaperone machinery are often deposited in Lewy bodies. Here, we show that the Hsp90 co-chaperone STI1 co-immunoprecipitated α-synuclein, and co-deposited with Hsp90 and Hsp70 in insoluble protein fractions in two mouse models of α-synuclein misfolding. STI1 and Hsp90 also co-localized extensively with filamentous S129 phosphorylated α-synuclein in ubiquitin-positive inclusions. In PD human brains, STI1 transcripts were increased, and in neurologically healthy brains, STI1 and α-synuclein transcripts correlated. Nuclear Magnetic Resonance (NMR) analyses revealed direct interaction of α-synuclein with STI1 and indicated that the STI1 TPR2A, but not TPR1 or TPR2B domains, interacted with the C-terminal domain of α-synuclein. In vitro, the STI1 TPR2A domain facilitated S129 phosphorylation by Polo-like kinase 3. Moreover, mice over-expressing STI1 and Hsp90ß presented elevated α-synuclein S129 phosphorylation accompanied by inclusions when injected with α-synuclein pre-formed fibrils. In contrast, reduced STI1 function decreased protein inclusion formation, S129 α-synuclein phosphorylation, while mitigating motor and cognitive deficits as well as mesoscopic brain atrophy in α-synuclein-over-expressing mice. Our findings reveal a vicious cycle in which STI1 facilitates the generation and accumulation of toxic α-synuclein conformers, while α-synuclein-induced proteostatic stress increased insoluble STI1 and Hsp90.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Proteínas Intrínsecamente Desordenadas , alfa-Sinucleína/metabolismo , Animales , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Ratones , Chaperonas Moleculares/metabolismo , Fosfoproteínas , Ubiquitinas , alfa-Sinucleína/toxicidad
11.
Virol Sin ; 37(4): 569-580, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35533808

RESUMEN

RNA interference (RNAi) is an intrinsic antiviral immune mechanism conserved in diverse eukaryotic organisms. However, the mechanism by which antiviral RNAi in mammals is regulated is poorly understood. In this study, we uncovered that the E3 ubiquitin ligase STIP1 homology and U-box-containing protein 1 (STUB1) was a new regulator of the RNAi machinery in mammals. We found that STUB1 interacted with and ubiquitinated AGO2, and targeted it for degradation in a chaperon-dependent manner. STUB1 promoted the formation of Lys48 (K48)-linked polyubiquitin chains on AGO2, and facilitated AGO2 degradation through ubiquitin-proteasome system. In addition to AGO2, STUB1 also induced the protein degradation of AGO1, AGO3 and AGO4. Further investigation revealed that STUB1 also regulated Dicer's ubiquitination via K48-linked polyubiquitin and induced the degradation of Dicer as well as its specialized form, termed antiviral Dicer (aviDicer) that expresses in mammalian stem cells. Moreover, we found that STUB1 deficiency up-regulated Dicer and AGO2, thereby enhancing the RNAi response and efficiently inhibiting viral replication in mammalian cells. Using the newborn mouse model of Enterovirus A71 (EV-A71), we confirmed that STUB1 deficiency enhanced the virus-derived siRNAs production and antiviral RNAi, which elicited a potent antiviral effect against EV-A71 infection in vivo. In summary, our findings uncovered that the E3 ubiquitin ligase STUB1 was a general regulator of the RNAi machinery by targeting Dicer, aviDicer and AGO1-4. Moreover, STUB1 regulated the RNAi response through mediating the abundance of Dicer and AGO2 during viral infection, thereby providing novel insights into the regulation of antiviral RNAi in mammals.


Asunto(s)
Antivirales , Poliubiquitina , Animales , Proteínas Argonautas , ARN Helicasas DEAD-box , Mamíferos/metabolismo , Ratones , Poliubiquitina/genética , Poliubiquitina/metabolismo , Interferencia de ARN , Ribonucleasa III , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
12.
Cells ; 11(10)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35626686

RESUMEN

Parkinson's disease (PD) is a debilitating movement disorder characterised by the loss of dopaminergic neurons in the substantia nigra. As neuroprotective agents mitigating the rate of neurodegeneration are unavailable, the current therapies largely focus only on symptomatic relief. Here, we identified stress-inducible phosphoprotein 1 (STIP1) as a putative neuroprotective factor targeted by PD-specific autoantibodies. STIP1 is a co-chaperone with reported neuroprotective capacities in mouse Alzheimer's disease and stroke models. With human dopaminergic neurons derived from induced pluripotent stem cells, STIP1 was found to alleviate staurosporine-induced neurotoxicity. A case-control study involving 50 PD patients (average age = 62.94 ± 8.48, Hoehn and Yahr >2 = 55%) and 50 age-matched healthy controls (HCs) (average age = 63.1 ± 8) further revealed high levels of STIP1 autoantibodies in 20% of PD patients compared to 10% of HCs. Using an overlapping peptide library covering the STIP1 protein, we identified four PD-specific B cell epitopes that were not recognised in HCs. All of these epitopes were located within regions crucial for STIP1's chaperone function or prion protein association. Our clinical and neuro-immunological studies highlight the potential of the STIP1 co-chaperone as an endogenous neuroprotective agent in PD and suggest the possible involvement of autoimmune mechanisms via the production of autoantibodies in a subset of individuals.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Autoanticuerpos , Estudios de Casos y Controles , Proteínas de Choque Térmico/uso terapéutico , Humanos , Ratones , Chaperonas Moleculares/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/metabolismo , Fosfoproteínas
13.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269562

RESUMEN

Stress-induced phosphoprotein-1 (STIP1)-a heat shock protein (HSP)70/HSP90 adaptor protein-is commonly overexpressed in malignant cells, where it controls proliferation via multiple signaling pathways, including JAK2/STAT3. We have previously shown that STIP1 stabilizes the protein tyrosine kinase JAK2 in cancer cells via HSP90 binding. In this study, we demonstrate that STIP1 may act as a substrate for JAK2 and that phosphorylation of tyrosine residues 134 and 152 promoted STIP1 protein stability, induced its nuclear-cytoplasmic shuttling, and promoted its secretion into the extracellular space. We also found that JAK2-mediated STIP1 phosphorylation enhanced cell viability and increased resistance to cisplatin-induced cell death. Conversely, interference STIP1 with JAK2 interaction-attained either through site-directed mutagenesis or the use of cell-penetrating peptides-decreased JAK2 protein levels, ultimately leading to cell death. On analyzing human ovarian cancer specimens, JAK2 and STIP1 expression levels were found to be positively correlated with each other. Collectively, these results indicate that JAK2-mediated phosphorylation of STIP-1 is critical for sustaining the JAK2/STAT3 signaling pathway in cancer cells.


Asunto(s)
Resistencia a Antineoplásicos , Proteínas de Choque Térmico/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Neoplasias Ováricas/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Cisplatino/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Proteínas de Choque Térmico/química , Humanos , Neoplasias Ováricas/genética , Fosforilación , Estabilidad Proteica , Transporte de Proteínas , Transducción de Señal
14.
Syst Biol Reprod Med ; 68(4): 298-313, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35343345

RESUMEN

STIP1 Homology and U-Box Containing Protein 1 (STUB1), a ubiquitin E3 ligase initially involved in immune responses, has recently emerged as a pleiotropic regulator of different biological systems, including skeletal and male reproduction systems. On the latter, a homozygous mutation in the STUB1 gene has been identified in patients with hypogonadism. However, the pattern of expression and biological actions of STUB1 in testis remains so far unexplored. Herein, we report analyses on the testicular expression of STUB1 in human testes with impaired spermatogenesis and paracrine regulation of STUB1 expression in mouse testis development and the direct effects of ablation STUB1 on Sertoli cell (SC) functions. STUB1 was expressed abundantly in pachytene spermatocytes and SCs, and weakly in spermatogonia and differentiating spermatids in normal human testis. In contrast, Sertoli-specific expression of STUB1 was significantly decreased in the human testes with impaired spermatogenesis. Throughout postnatal development of mouse testis, however, STUB1 was expressed exclusively in the nuclei of the functionally mature SCs. The adjacent germ cell (GC)-derived IL-1α overtly regulated STUB1 expression through promoting the ETS domain transcription factor Elk-1 (ELK1)-mediated transactivation. Importantly, ablation of endogenous STUB1 caused lipid accumulation and senescence in GC co-incubated SCs. Together with previous reports on the stimulatory effects of IL-1α on cell senescence, our findings suggest that STUB1 may serve as an important negative feedback signaling to modulate the magnitude of GCs-derived IL-1α, which is normally maintained at low levels within testis.


Asunto(s)
Células de Sertoli , Testículo , Ubiquitina-Proteína Ligasas , Animales , Humanos , Masculino , Ratones , Células de Sertoli/metabolismo , Espermátides , Espermatocitos/metabolismo , Espermatogénesis , Espermatogonias/metabolismo , Testículo/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
15.
Front Oncol ; 12: 1085917, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713524

RESUMEN

Objective: Although there have been remarkable achievements in the molecular landscape of oral squamous cell carcinoma (OSCC) in recent years, bringing advances in the understanding of its pathogenesis, development and progression, little has been applied in the prognosis and choosing the optimal treatment. In this study, we explored the influence of the stress induced phosphoprotein 1 (STIP1), which is frequently reported to be highly expressed in many cancers, in OSCCs. Methods: STIP1 expression was assessed in the TCGA database and in two independent cohorts by immunohistochemistry. Knockdown strategy was applied in OSCC cell lines to determine the impact of STIP1 on viability, proliferation, migration and invasion. The zebrafish model was applied for studying tumor formation and metastasis in vivo. The association of STIP1 and miR-218-5p was explored by bioinformatics and mimics transfection. Results: STIP1 was highly expressed in OSCCs and significantly associated with shortened survival and higher risk of recurrence. STIP1 down-regulation decreased proliferation, migration and invasion of tumor cells, and reduced the number of metastases in the Zebrafish model. STIP1 and miR-218-5p were inversely expressed, and the transfection of miR-218-5p mimics into OSCC cells decreased STIP1 levels as well as proliferation, migration and invasion. Conclusion: Our findings show that STIP1 overexpression, which is inversely associated with miR-218-5p levels, contributes to OSCC aggressiveness by controlling proliferation, migration and invasion and is a determinant of poor prognosis.

16.
Chem Biol Interact ; 341: 109446, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766539

RESUMEN

Stress-induced phosphoprotein 1 (STIP1) plays an important role in cancer tumorigenesis and progression. However, the role of STIP1 in colorectal cancer (CRC) remains unclear. This study aimed to explore clinical significance, biological function and potential molecular mechanism of STIP1 in CRC. Immunohistochemistry (IHC) and Western bolt were performed to detect STIP1 protein level in CRC and adjacent normal tissues. DLD1 and HCT116 cell lines were treated with shSTIP1, cell proliferation was detected by CCK8 and colony formation assays, and cell migration and invasion were detected by wound healing and transwell assays. Moreover, western blot and immunofluorescence assays were performed to explore the potential molecular mechanism of STIP1 in the progression of CRC. We found that STIP1 expression in CRC tissues was significantly higher than in adjacent normal tissues. High STIP1 expression was associated with poor overall survival (OS) in CRC patients. Furthermore, secreted STIP1 promoted CRC cell proliferation and invasion through STAT3 signaling pathway, while STIP1 knockdown inhibited the proliferation, migration and invasion of CRC cells. Mechanistically, STIP1 knockdown suppressed the activation of STAT3 signaling pathway in CRC. In conclusion, STIP1 knockdown suppresses CRC cell proliferation, migration and invasion by inhibiting the activation of STAT3 signaling, and STIP1 is a potential target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales/patología , Proteínas de Choque Térmico/genética , Factor de Transcripción STAT3/metabolismo , Anciano , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Choque Térmico/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico
17.
Hum Cell ; 34(3): 901-917, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33665786

RESUMEN

Breast cancer (BC) threatened the life health of a tremendous amount of the population, and the estimated number of death is still rising nowadays. We found that stress-induced phosphoprotein 1 (STIP1) is overexpressed in BC tissues compared to non-tumorous breast tissues. Our study is to validate the prognostic value of STIP1 and investigate its biological role in BC. We verified the upregulation of STIP1 in multiple databases, proved that STIP1 is upregulated in BC tissues and cell lines using real-time quantitative PCR (qRT-PCR). We used small interfering RNA to examine the function of STIP1 in BC cell lines (BT-549, MDA-MB-231, Hs-578 T) and explored the mechanism of function of STIP1 in BC cells using Western blotting and qRT-PCR. Analyses of multiple databases indicated that high STIP1 expression is a marker that effectively distinguishes BC patients from healthy control and predicts worse clinical outcomes in BC. The loss-of-function experiments showed that STIP1 silencing results in inhibition of cell proliferation and migration, inducing cell apoptosis, and S-phase arrest in vitro. Our study also showed that STIP1 downregulation inhibited the JAK2/STAT3 pathway and epithelial-mesenchymal transition process. Rescue experiments demonstrated that the oncogenic effect of STIP1 is partially dependent on mediating JAK2 expression. This study verified that STIP1 is an oncogenic gene that promotes BC progression and serves as a valuable diagnostic and outcome-related marker of BC.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica/genética , Expresión Génica/genética , Proteínas de Choque Térmico/fisiología , Apoproteínas/genética , Biomarcadores de Tumor , Neoplasias de la Mama/diagnóstico , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Femenino , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Janus Quinasa 2/metabolismo , Pronóstico , Fase S/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
18.
Transl Cancer Res ; 10(3): 1313-1323, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35116457

RESUMEN

BACKGROUND: Extracellular and cell-surface molecules remain the most common druggable cancer targets. However, intracellular therapeutic modalities are gaining momentum. The overexpression of stress-induced phosphoprotein 1 (STIP1), an adaptor protein that coordinates the functions of different chaperones in protein folding, has been reported in several solid malignancies. Here, we investigated the effects of intracellular STIP1 inhibition, attained either through the HEPES-mediated cytosolic delivery of anti-STIP1 antibodies or the use of a cell-penetrating signal-tagged peptide 520, in different human cancer cell lines and luciferase-expressing murine ovarian cancer cells (MOSEC/Luc) tumor-bearing C57BL/6 mice. METHODS: The effects of STIP1 in different human cell lines were determined by cell viability, cell cytotoxicity and cell apoptosis assays. Immunoblotting was used to assess the relevant proteins found in this study and tumor xenograft mice models were also employed. RESULTS: Intracellular targeting of STIP1 inhibited cancer cell line growth and promoted caspase 3-dependent apoptotic cell death. Moreover, the intracellular delivery of anti-STIP1 antibodies facilitated the degradation of STIP1 and two of its client proteins, lysine-specific demethylase 1 and Janus kinase 2. In vivo studies demonstrated that survival of mice bearing experimental tumors was improved by administration of anti-STIP1 antibodies. CONCLUSIONS: Our findings demonstrate that the cytosolic inhibition of STIP1 in tumor cells is feasible and provides a solid basis for further investigation of STIP1 as an intracellular cancer target. Our findings demonstrate that cytosolic inhibition of STIP1 in tumor cells is feasible and provide a solid basis for further exploration of STIP1 as an intracellular cancer target.

19.
Cytokine Growth Factor Rev ; 57: 73-84, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32561134

RESUMEN

Stress inducible protein 1 (STI1) is a co-chaperone acting with Hsp70 and Hsp90 for the correct client proteins' folding and therefore for the maintenance of cellular homeostasis. Besides being expressed in the cytosol, STI1 can also be found both in the cell membrane and the extracellular medium playing several relevant roles in the central nervous system (CNS) and tumor microenvironment. During CNS development, in association with cellular prion protein (PrPc), STI1 regulates crucial events such as neuroprotection, neuritogenesis, astrocyte differentiation and survival. In cancer, STI1 is involved with tumor growth and invasion, is undoubtedly a pro-tumor factor, being considered as a biomarker and possibly therapeutic target for several malignancies. In this review, we discuss current knowledge and new findings on STI1 function as well as its role in tissue homeostasis, CNS and tumor progression.


Asunto(s)
Chaperonas Moleculares , Proteínas de Choque Térmico , Humanos , Microambiente Tumoral
20.
BMC Pulm Med ; 20(1): 303, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208131

RESUMEN

BACKGROUND: Asthma is a common chronic lung disease in children. We aimed to determine the associations between stress-induced phosphoprotein 1 (STIP1) and glucocorticoid-induced transcript 1 (GLCCI1) polymorphisms and susceptibility of childhood asthma and inhaled corticosteroid (ICS) response in children. METHODS: A total of 263 Chinese Han asthmatic children were recruited from the Xiangya Hospital, Central South University. Pulmonary function tests were performed before the treatment and 3 months after the treatment. One hundred fifty non-asthmatic children were recruited. Each participant's DNA was extracted from the peripheral blood and Method of MassARRAY was used to genotype the single-nucleotide polymorphisms (SNPs). RESULTS: STIP1 rs2236647 wild-type homozygote (CC) was associated with increased asthma risk of children (OR = 1.858, 95% CI:1.205-2.864), but not associated with the ICS response. GLCCI1 rs37969, rs37972 and rs37973 polymorphisms were not associated with the risk of childhood asthma. However, rs37969 mutant genotypes (TT/GT) were significantly associated with less improvement in PD20 (p = 0.028). We also found significant associations between rs37969, rs37972 and rs37973 mutant genotypes and less improvement in maximal midexpiratory flow (MMEF) after ICS treatment for 3 months (p = 0.036, p = 0.010 and p = 0.003, respectively). CONCLUSIONS: STIP1 rs2236647 was associated with asthma risk of children and GLCCI1 rs37969 mutant genotypes were associated with less improvement in airway hyper-responsiveness. GLCCI1 rs37969, rs37972 and rs37973 polymorphisms might be associated with pulmonary function in childhood asthma patients after ICS treatment.


Asunto(s)
Corticoesteroides/administración & dosificación , Asma/tratamiento farmacológico , Asma/genética , Proteínas de Choque Térmico/genética , Receptores de Glucocorticoides/genética , Administración por Inhalación , Pueblo Asiatico , Asma/etnología , Asma/fisiopatología , Estudios de Casos y Controles , Niño , Preescolar , Susceptibilidad a Enfermedades , Femenino , Genotipo , Humanos , Masculino , Mutación , Polimorfismo de Nucleótido Simple , Pruebas de Función Respiratoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA