Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21138, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256422

RESUMEN

In the present study the authors' main goal is to avoid the corrosive attack of the chloride ions of 3.5% NaCl solution in saline medium on the mild steel (MS), by addition of small amount of a new derivative of the hydrazide called ligand (HL), as a corrosion inhibitor. This study had been achieved by employing different electrochemical measurements such as, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentio-dynamic polarization (PDP) methods. The results of the electrochemical test (OCP), showed that, the open circuit potential of the mild steel in saline solution, was guided to more positive direction in presence of the ligand (HL), at its ideal concentration (1 × 10-3 M), compared to the (OCP), of the mild steel in absence of (HL). The results of the electrochemical methods, EIS and PDP presented that, the ligand (HL), was acted as a good corrosion inhibitor for hindering the corrosion process of the mild steel in 3.5% sodium chloride, as it was recorded a good percentage of the inhibition efficiency (77.45%, 53.41%, by EIS and PDP techniques respectively), at its optimum concentration (1 × 10-3 M). Also, the corrosion rate of the mild steel in the saline medium without (HL), was listed about (0.0017 mm/year), while in existence of (HL), was decreased to a value about (0.00061 mm/year). As well, some of electrical properties of (HL), and its derivative [Pd(II), Cr(III), and Ru(III)], complexes were investigated such as; the activation energy (Ea(ac)), which recorded values in the range of 0.02-0.44 (eV) range and electrical conductivity which listed values at room temperature in the range of 10-5-10-8 S.cm-1. The results of the AC and DC electrical conductivity measurements for (HL), and its derivative [Pd(II), Cr(III) and Ru(III)] complexes indicate semiconducting nature which suggests that these compounds could be used in electronic devices. Also, the complexes exhibited higher conductivity values than (HL). Photophysical studies showed good florescence properties of HL that indicated that it can be used to determine most of the drugs with no fluorescence properties by quenching and calculating quantum yield. Moreover, the hydrazide ligand (HL), has shown selectivity as an active anticancer candidate drug for both breast and colon cancer in humans. Density function theory demonstrated that, the frontier molecular orbital HOMOs of the complexes have exhibited similar behavior and the charge density has localized in the metallic region of all the studied complexes. Also, the values of the energy gap of the ligand (HL), and its complexes Pd(II), Cr(III) and Ru(III), had been arranged in this order HL > Cr(III) > Ru(III) > Pd(II). All characterization using different spectroscopic techniques were reported to elucidate the proposed structures such as; thermal analysis, elemental analysis of C, H, and N atoms, spectral analysis using IR, UV, 1H NMR techniques, scanning electron microscopy and energy dispersive X-ray analyses.


Asunto(s)
Antineoplásicos , Hidrazinas , Acero , Corrosión , Acero/química , Hidrazinas/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Espectroscopía Dieléctrica , Técnicas Electroquímicas/métodos , Cloruro de Sodio/química
2.
Carbohydr Polym ; 230: 115466, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31887965

RESUMEN

Seven natural polymers namely, chitosan (CHI), dextran (Dex), carboxymethyl cellulose (CMC), sodium alginate (ALG), pectin (PEC), hydroxylethyl cellulose (HEC), and Gum Arabic (GA) were screened for anticorrosion property towards AZ31 Mg alloy in 3.5 wt.% NaCl solution. CHI, Dex, CMC, PEC, and GA accelerated the corrosion while ALG and HEC moderately inhibited the corrosion of the alloy. HEC and ALG (1 g/L) protected the alloy by 64.13 % and 58.27 %, respectively. Two inhibitor cocktails consisting of either HEC or ALG, KI, and Date palm seed oil have been formulated. HEC- and ALG-formulations inhibited the alloy corrosion by 80.56 % and 77.43 %, respectively from EIS technique. Surface observation studies using SECM, AFM, SEM, and EDX agreed with other experimental results revealing effective corrosion inhibition by the formulations. X-ray photoelectron spectroscopy, FTIR, and UV-vis results disclose that Mg(OH)2 co-existed with adsorbed inhibitor complexes.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles Revestidos/química , Corrosión , Polímeros/química , Adsorción/efectos de los fármacos , Alginatos/química , Carboximetilcelulosa de Sodio/química , Quitosano/química , Goma Arábiga/química , Magnesio/química , Ensayo de Materiales , Propiedades de Superficie
3.
Environ Sci Pollut Res Int ; 24(33): 25676-25681, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27402252

RESUMEN

During the last decades, methods of halo conditioning have been developed to increase the tolerance to salinity in glucophyta crops. Some experiments have carried out the application of hydrogen peroxide (H2O2), in support to the modification of cell tolerance in saline medium. The first objective of this study was to evaluate the effects of the incorporation of H2O2 in salinity tolerance development of the aquatic lily (Eichhornia crassipes). Results showed that the incorporation of 0.03 % H2O2 salinity tolerance developed in salt concentrations similar to seawater. Saline stress tolerance in aquatic lily was shown by the excretion of salts in its leaves; this process helped also in removing salt from seawater. At the same time, the reproduction of the lily is intimately linked to the content of nitrogen (N) and phosphorus (P) (nutrients) in water. This reason is important to control the concentrations of these elements in the water. This will allow maintaining a control in the dissemination of the lily. Considering the mentioned above, the second objective was to continue development of the adaptation of the aquatic lily in seawater, using H2O2 and the required amount of nutrients. This paper points out the importance of considering a biological process for the treatments in the desalination of seawater, making the process more sustainable.


Asunto(s)
Eichhornia/metabolismo , Peróxido de Hidrógeno/análisis , Plantas Tolerantes a la Sal/metabolismo , Agua de Mar/análisis , Cloruro de Sodio/metabolismo , Purificación del Agua/métodos , Salinidad , Purificación del Agua/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA