Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Contam Hydrol ; 267: 104423, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39316945

RESUMEN

Column-leaching tests are a common approach for assessing the leaching behavior and resulting environmental risks of contaminated soils and waste materials, which are frequently reused for various construction purposes. The observed breakthrough curves of the contaminants are influenced by the complex dynamics of solute transport and kinetic inter-phase mass transfer. Disentangling these interactions necessitates numerical models. However, inverse modeling and sensitivity analysis can be time-consuming, especially when sorption kinetics are explicitly described by intraparticle diffusion, which requires discretizing the domain both in the flow direction along the column axis and inside the grains. To circumvent the need for such computationally intensive models, we have developed two different ensemble surrogate models. These models employ two separate ensemble methods: random forest stacking and inverse-distance weighted interpolation. Each method is applied to base surrogate models that cover different parts of the parameter space. The base surrogate models use the method of Extremely randomized Trees (ExtraTrees). The defined parameter range is based on the German standard for column-leaching tests. To optimize the base surrogate models, we utilized adaptive-sampling methods based on three distinct infill criteria: maximizing the expected improvement, staying within a certain Mahalanobis distance to the best estimate (both for exploitation), and maximizing the standard deviation (for exploration). The ensemble surrogate model demonstrates excellent performance in emulating the behavior of the original numerical model, with a relative root mean squared error of 0.09. We applied our proposed ensemble surrogate model to estimate the complete posterior parameter distribution using Simulation-Based Inference, specifically Neural Posterior Estimation, to determine the full parameter distribution conditioned on copper-leaching data from two different soils. Samples drawn from the posterior distribution align perfectly with the observed data for both the surrogate and original models.

2.
Materials (Basel) ; 17(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124348

RESUMEN

The presence of pharmaceuticals or their active metabolites in receiving waters is a sign of the inefficient removal of bioactive substrates from wastewater. Adsorption seems to be the most effective and inexpensive method of their removal. Waste management aimed at sorbents is a promising way to sustain several sustainable development goals. In the presented paper, the removal of the two most widely used drugs in the wastewater was examined. Diclofenac and carbamazepine were removed from water and wastewater using textile waste-derived sorbents. Their removal efficiency was verified by testing several process parameters such as the time of the sorption, the presence of interfering inorganic ions, the presence of dissolved organic matter, the initial pH and ionic strength of the solution, and various water matrices. The adsorption capacity was noted for diclofenac (57.1 mg/g) and carbamazepine (21.25 mg/g). The tested process parameters (pH, presence of inorganic ions, dissolved organic matter, ionic strength, water matrix) confirmed that the presented waste materials possessed a great potential for pharmaceutical removal from water matrices.

3.
J Environ Sci (China) ; 146: 264-271, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969454

RESUMEN

Slow release of emerging contaminants limits their accessibility from soil to pore water, constraining the treatment efficiency of physio-chemical treatment sites. DC fields mobilize organic contaminants and influence their interactions with geo-matrices such as zeolites. Poor knowledge, however, exists on the joint application of heating and electrokinetic approaches on perfluorooctanoic acid (PFOA) transport in porous media. Here, we investigated electrokinetic PFOA transport in zeolite-filled percolation columns at varying temperatures. Variations of pseudo-second-order kinetic constants (kPSO) were correlated to the liquid viscosity variations (η) and elctroosmotic flow velocities (vEOF). Applying DC fields and elevated temperature significantly (>37%) decreased PFOA sorption to zeolite. A good correlation between η, vEOF, and kPSO was found and used to develop an approach interlinking the three parameters to predict the joint effects of DC fields and temperature on PFOA sorption kinetics. These findings may give rise to future applications for better tailoring PFOA transport in environmental biotechnology.


Asunto(s)
Caprilatos , Fluorocarburos , Zeolitas , Caprilatos/química , Fluorocarburos/química , Adsorción , Zeolitas/química , Cinética , Modelos Químicos
4.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063114

RESUMEN

The aim of this study was to examine the use of zwitterionic microparticles as new and efficient macromolecular supports for the sorption of an antibiotic (doxycycline hydrochloride, DCH) from aqueous solution. The effect of relevant process parameters of sorption, like dosage of microparticles, pH value, contact time, the initial concentration of drug and temperature, was evaluated to obtain the optimal experimental conditions. The sorption kinetics were investigated using Lagergren, Ho, Elovich and Weber-Morris models, respectively. The sorption efficiency was characterized by applying the Langmuir, Freundlich and Dubinin-Radushkevich isotherm models. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) show that the sorption of doxycycline hydrochloride onto zwitterionic microparticles is endothermic, spontaneous and favorable at higher temperatures. The maximum identified sorption capacity value is 157.860 mg/g at 308 K. The Higuchi, Korsmeyer-Peppas, Baker-Lonsdale and Kopcha models are used to describe the release studies. In vitro release studies show that the release mechanism of doxycycline hydrochloride from zwitterionic microparticles is predominantly anomalous or non-Fickian diffusion. This study could provide the opportunity to expand the use of these new zwitterionic structures in medicine and water purification.


Asunto(s)
Betaína , Doxiciclina , Doxiciclina/química , Betaína/química , Cinética , Adsorción , Termodinámica , Concentración de Iones de Hidrógeno , Antibacterianos/química , Liberación de Fármacos , Temperatura , Microesferas
5.
Bull Environ Contam Toxicol ; 113(1): 6, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980453

RESUMEN

Pesticide transport in the environment is impacted by the kinetics of its adsorption onto soil. The adsorption kinetics of pyrimethanil was investigated in ten soil samples of varying physicochemical properties. The highest adsorption was in the soil having the maximum silt and CaCO3 contents, pH and electrical conductance but the lowest amorphous Fe oxides and CaCl2 extractable Mn. Pseudo-second order kinetics and intra-particle diffusion model best accounted the adsorption kinetics of pyrimethanil. The equilibrium adsorption estimated by pseudo-second order kinetics (q02) was significantly and positively correlated with CaCl2 extractable Cu content (r = 0.709) while rate coefficient (k02) had a negative correlation with crystalline iron oxides content (r = -0.675). The intra-particle diffusion coefficient (ki.d.) had inverse relationship with CaCl2 extractable Mn content in soils (r = -0.689). FTIR spectra showed a significant interaction of pyrimethanil with micronutrient cations. Adsorption kinetic parameters of pyrimethanil could be successfully predicted by soil properties. The findings may help to evolve fungicide management decisions.


Asunto(s)
Fungicidas Industriales , Pirimidinas , Contaminantes del Suelo , Suelo , Adsorción , Fungicidas Industriales/química , Fungicidas Industriales/análisis , Cinética , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Suelo/química , Pirimidinas/química , Pirimidinas/análisis , Modelos Químicos
6.
Mol Pharm ; 21(6): 2908-2921, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38743928

RESUMEN

The physical stability of amorphous solid dispersions (ASDs) is a major topic in the formulation research of oral dosage forms. To minimize the effort of investigating the long-term stability using cost- and time-consuming experiments, we developed a thermodynamic and kinetic modeling framework to predict and understand the crystallization kinetics of ASDs during long-term storage below the glass transition. Since crystallization of the active phrarmaceutical ingredients (APIs) in ASDs largely depends on the amount of water absorbed by the ASDs, water-sorption kinetics and API-crystallization kinetics were considered simultaneously. The developed modeling approach allows prediction of the time evolution of viscosity, supersaturation, and crystallinity as a function of drug load, relative humidity, and temperature. It was applied and evaluated against two-year-lasting crystallization experiments of ASDs containing nifedipine and copovidone or HPMCAS measured in part I of this work. We could show that the proposed modeling approach is able to describe the interplay between water sorption and API crystallization and to predict long-term stabilities of ASDs just based on short-term measurements. Most importantly, it enables explaining and understanding the reasons for different and sometimes even unexpected crystallization behaviors of ASDs.


Asunto(s)
Cristalización , Agua , Cristalización/métodos , Agua/química , Cinética , Estabilidad de Medicamentos , Nifedipino/química , Compuestos de Vinilo/química , Termodinámica , Pirrolidinas/química , Viscosidad , Química Farmacéutica/métodos , Humedad , Temperatura , Solubilidad , Metilcelulosa/química , Metilcelulosa/análogos & derivados
7.
Environ Sci Technol ; 58(13): 5987-5995, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38504492

RESUMEN

Sorption to activated carbon is a common approach to reducing environmental risks of waterborne perfluorooctanoic acid (PFOA), while effective and flexible approaches to PFOA sorption are needed. Variations in temperature or the use of electrokinetic phenomena (electroosmosis and electromigration) in the presence of external DC electric fields have been shown to alter the contaminant sorption of contaminants. Their role in PFOA sorption, however, remains unclear. Here, we investigated the joint effects of DC electric fields and the temperature on the sorption of PFOA on activated carbon. Temperature-dependent batch and column sorption experiments were performed in the presence and absence of DC fields, and the results were evaluated by using different kinetic sorption models. We found an emerging interplay of DC and temperature on PFOA sorption, which was linked via the liquid viscosity (η) of the electrolyte. For instance, the combined presence of a DC field and low temperature increased the PFOA loading up to 38% in 48 h relative to DC-free controls. We further developed a model that allowed us to predict temperature- and DC field strength-dependent electrokinetic benefits on the drivers of PFOA sorption kinetics (i.e., intraparticle diffusivity and the film mass transfer coefficient). Our insights may give rise to future DC- and temperature-driven applications for PFOA sorption, for instance, in response to fluctuating PFOA concentrations in contaminated water streams.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Temperatura , Carbón Orgánico , Adsorción , Fluorocarburos/análisis , Caprilatos , Cinética , Contaminantes Químicos del Agua/análisis
8.
ACS Sens ; 9(2): 689-698, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38349676

RESUMEN

Nanomechanical sensors have gained significant attention as promising platforms for artificial olfaction. Since sorption kinetic parameters that can be estimated from the sensing signals of nanomechanical sensors reflect the chemical and physicochemical interactions between the odorant and receptor material, the parameters can be utilized for the direct discrimination of each odorant. In this study, we demonstrated the discrimination of 20 vapors, including hydrocarbons, alcohols, organic acids, ketones, and aldehydes, which are reported as human body odor components, using the parameters extracted in the analytical solution of nanomechanical sensors based on sorption kinetics with viscoelastic behaviors. By using one of the specific nanomechanical sensors─membrane-type surface stress sensor─as a sensing unit, we successfully discriminated trans-2-nonenal known as an aging marker from other saturated aldehydes along with quantifying their concentrations.


Asunto(s)
Odorantes , Olfato , Humanos , Aldehídos , Gases
9.
Adv Mater ; 36(41): e2310219, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38219071

RESUMEN

Sorption-based atmospheric water harvesting (SAWH) offers a sustainable strategy to address the global freshwater shortage. However, obtaining sorbents with excellent performance over a wide relative humidity (RH) range and devices with fully autonomous water production remains challenging. Herein, magnesium chloride (MgCl2) is innovatively converted into super hygroscopic magnesium complexes(MC), which can effectively solve the problems of salt deliquescence and agglomeration. The MC are then integrated with photothermal aerogels composed of sodium alginate and carbon nanotubes (SA/CNTs) to form composite aerogels, which showed high water uptake over a wide RH range, reaching 5.43 and 0.27 kg kg-1 at 95% and 20% RH, respectively. The hierarchical porous structure enables the as-prepared SA/CNTs/MC to exhibit rapid absorption/desorption kinetics with 12 cycles per day at 70% RH, equivalent to a water yield of 10.0 L kg-1 day-1. To further realize continuous and practical freshwater production, a fully solar-driven autonomous atmospheric water generator is designed and constructed with two SA/CNTs/MC-based absorption layers, which can alternately conduct the water absorption/desorption process without any other energy consumption. The design provides a promising approach to achieving autonomous, high-performance, and scalable SAWH.

10.
J Hazard Mater ; 465: 133311, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181594

RESUMEN

Intraparticle domains are the critical locations for storing contaminants and retarding contaminant transport in subsurface environments. While the kinetics and extent of antibiotics sorption and desorption in subsurface materials have been extensively studied, their behaviors in intraparticle domains have not been well understood. This study investigated the sorption and desorption of antibiotics (ATs) in the intraparticle domains using quartz grains and clay, and antibiotic tetracycline (TC) and levofloxacin (LEV) as examples that are commonly present in groundwater systems. Batch experiments coupled with the analyses using various microscopic and spectroscopic techniques were performed to investigate the sorption and desorption kinetics, and to provide insights into the intraparticle sorption and desorption of TC and LEV. Results indicated that both TC and LEV with different physiochemical properties can migrate into intraparticle domains that were consistent with sorptive diffusion. The rate and extent of the sorption are a function of intraparticle surface area and properties, pore volume and connectivity, and ionic properties of the ATs. The sorptive diffusion led to the slow desorption of both TC and LEV after their sorption, apparently showing an irreversible desorption behavior (with desorption percentage about 1.86-20.51%). These results implied that intraparticle domains can be important locations for storing ATs, retarding ATs transport, and may serve as a long-term secondary source for groundwater contamination.


Asunto(s)
Antibacterianos , Tetraciclina , Adsorción , Arcilla , Levofloxacino , Cinética
11.
Adv Sci (Weinh) ; 11(7): e2304603, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070182

RESUMEN

Provision of atomic hydrogen by hydrogen dissociation catalysts only moderately accelerates the hydrogenation rate of magnesium. They shed light on this well-known but technically challenging fact through a combined approach using an unconventional surface science technique together with Density Functional Theory (DFT) calculations. The calculations demonstrate the drastic electronic structure changes during transformation of Mg to MgH2 , which make fractional hydrogen coverage on the surface, as well as substoichiometric hydrogen content in the bulk energetically unfavorable. Reflecting Electron Energy Loss Spectroscopy (REELS) is used to measure the surface and bulk plasmon during hydrogen sorption in magnesium. The measurements show that the hydrogenation proceeds via the growth of magnesium hydride without the presence of chemisorbed hydrogen on the metallic magnesium surface exactly as indicated by the calculations. This is due to the low stability of sub-stoichiometric amounts of chemisorbed H correlating with the unfavorable charge state of Mg. They are merely bound to the unchanged adjacent Mg layers, thereby explaining the failure of classical hydrogenation catalysts, which effectively only hydrogenate Mg in their direct vicinity. The acceleration of hydrogen sorption kinetics in Mg must affect the polarization in the interface between Mg and MgH2 during hydrogenation.

12.
J Environ Manage ; 348: 119205, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37832288

RESUMEN

Walnut shells and apricot pits were used to produce non-activated, air-activated and steam-activated biochar. The specific surface area decreased in the order steam-activated (500-727 m 2.g-1), air-activated (59-514 m2.g-1) and non-activated biochars (1.71-236 m2.g-1). The results indicated that water steam created a multi-layer block structure with a well-developed porous structure, especially at 900 °C, while activation with air resulted in a more fragmented structure with a higher amount of coarse pores, leading to lower specific surface values. Acetone sorption experiments were performed in order to determine the acetone sorption capacity and to evaluate the acetone sorption kinetics of the biochars, as well as to identify the possible mechanism of sorption. The maximum sorption capacity estimated from the adsorption isotherms up to a relative pressure of 0.95 ranged from 60.3 to 277.3 mg g-1, and was highest in the steam-activated biochar with the largest surface area. The acetone adsorption isotherms were fitted with different adsorption models, where the Fritz-Schlunder model showed the best fitting results. The adsorption kinetics was evaluated using two kinetics models - pseudo first order and pseudo second order. The results indicated that the biochars with a large surface area exhibited physical sorption through van der Waals forces as the dominant mechanism, while acetone sorption on samples with a smaller surface area can be attributed to a mixed dual sorption mechanism, which combines physical sorption and chemisorption on oxygen functional groups. The perfect reusability of the biochars was confirmed by four consecutive adsorption-desorption cycles.


Asunto(s)
Vapor , Contaminantes Químicos del Agua , Acetona , Carbón Orgánico/química , Agua , Adsorción , Contaminantes Químicos del Agua/química
13.
Pharmaceutics ; 15(8)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37631351

RESUMEN

Powder deposition and accumulation on walls of spray drying chamber has been known to impact spray drying processes, resulting in lower yield, frequent shutdowns, and downtimes. Critical factors that impact the extent and rate of wall deposition have been studied extensively in the chemical and food industry. In this paper, we present an atypical process yield issue wherein acceptable yield is obtained during the first batch of spray drying but undergoes significant yield loss in consecutive batches. Through understanding the interplay of the process, material properties, and equipment, we identify key mechanisms that are playing a role in causing the process yield issue. These mechanisms include surface roughness of the inner wall of the spray dryer, variation in gas flow due to the introduction of process analytical technology, start-up and shutdown operating parameters that expose the wall deposited powder from the prior batch to temperatures close to the onset of glass transition temperature and cause depression of its glass transition temperature. These factors result in more wall accumulation and impact the yield in subsequent batches. By correcting for most of these factors, the yield reduction issue was mitigated, and processing efficiency was improved.

14.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37569760

RESUMEN

Here, we report a new version of the extended Rate Constants Distribution (RCD) model for metal ion sorption, which includes complex-formation equilibria. With the RCD-complex model, one can predict sorbent performance in the presence of complexing agents using data on metal ion sorption from ligand-free solutions and a set of coefficients for sorption rate constants of different ionic species. The RCD-complex model was applied to breakthrough curves of Cu(II) sorption from acetate and tartrate solutions on polyethyleneimine (PEI) monolith cryogel at different flow rates and ionic speciation. We have shown that, despite the lower stability of Cu(II)-acetate complex, at high flow rates, acetate has a more pronounced negative effect on sorption kinetics than tartrate. The RCD model was successfully used to predict the shape of the breakthrough curves at an arbitrary acetate concentration but failed to predict Cu(II) sorption from tartrate solutions in a broad range of ligand concentrations. Since a twofold increase in sorption capacity was observed at low tartrate concentrations, the latter fact was related to an alteration in the sorption mechanism of Cu(II)-ions, which depended on Cu(II) ionic speciation. The obtained results emphasize the importance of information about sorption kinetics of different ionic forms for the optimization of sorption filter performance in the presence of complexing agents.


Asunto(s)
Criogeles , Polietileneimina , Cinética , Tartratos , Concentración de Iones de Hidrógeno , Metales , Iones , Acetatos , Adsorción , Cobre , Soluciones
15.
J Environ Sci Health B ; 58(9): 583-593, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614009

RESUMEN

In this work, vermicompost was prepared with maize stover and cattle dung in ratios of 60:40 (VC1), 50:50 (VC2) and 40:60 (VC3), and the physicochemical properties of the vermicompost were related to the ratio of the raw materials used. The effect of the vermicomposts on the adsorption kinetics, adsorption isotherms and desorption of atrazine were investigated in unamended soil (S) and soil amended with 4% (w/w) of VC1(S-VC1), VC2(S-VC2) and VC3(S-VC3). The total organic carbon (TOC) content of VC1, VC2 and VC3 was 38.46, 37.33 and 34.47%, the HA content was 43.50, 42.22 and 39.28 g/kg, and the HA/FA ratios was 1.47, 0.44 and 0.83, respectively. The adsorption of atrazine on the soil, on the vermicompost and on soils amended with vermicompost followed a pseudo-second-order kinetic model. The Freundlich equation better fitted the adsorption isotherm of atrazine. The vermicomposts enhanced atrazine adsorption and decreased atrazine desorption. Correlation analysis showed that the TOC and HA were significantly positively correlated with Kf, which indicated that TOC and HA of the vermicomposts contributed significantly to the adsorption and desorption of atrazine. This study demonstrated that vermicomposts have great potential in the bioremediation of atrazine pollution and that their role is related to the raw materials used to prepare them.


Asunto(s)
Atrazina , Animales , Bovinos , Adsorción , Contaminación Ambiental , Heces , Suelo
16.
Materials (Basel) ; 16(13)2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37445132

RESUMEN

The spillage of oil causes severe and long-lasting impacts on both the environment and human life. It is crucial to carefully reconsider the methods and techniques currently employed to recover spilled oil in order to prevent any possible secondary pollution and save time. Therefore, the techniques used to recover spilled oil should be readily available, highly responsive, cost-effective, environmentally safe, and, last but not least, they should have a high sorption capacity. The use of sorbents obtained from natural materials is considered a suitable approach for dealing with oil spills because of their exceptional physical characteristics that support sustainable environmental protection strategies. This article presents a novel sorbent material, which is a composite siloxane foam filled with bentonite clay, aimed at enhancing the hydrophobic and oleophilic behavior of the material. The thermal treatment of bentonite optimizes its sorption capacity by eliminating water, and increasing the surface area, and, consequently, its interaction with oils. In particular, the maximum sorption capacity is observed in kerosene and naphtha for the bentonite clay thermally treated at 600 °C, showing an uptake at saturation of 496.8% and 520.1%, respectively. Additionally, the reusability of the composite foam is evaluated by squeezing it after reaching its saturation point to determine its sorption capacity and reusability.

17.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047521

RESUMEN

In January 2023, the derogation loophole was closed on "emergency authorisations" for the use of three out of five neonicotinoids in all EU states. In this study, we analysed the sorption/desorption behaviour and kinetic parameters of acetamiprid and thiacloprid, the two neonicotinoids that are still approved for use, either regularly or under emergency authorisations in the EU, and widely used worldwide. Sorption and desorption curves in four soils with different organic matter content were analysed using four kinetic models, namely, Lagergren's pseudo first-order model, two-site model (TSM), Weber-Morris intraparticle diffusion model and Elovich's model. Kinetic parameters were correlated to soil physico-chemical characteristics. To determine the mutual influence of soil characteristics and sorption/desorption parameters in the analysed soils, a factor analysis based on principal component analysis (PCA) was performed. Even though the two insecticides are very similar in size and chemical structure, the results showed different sorption/desorption kinetics. The model that best fits the experimental data was TSM. Thiacloprid showed a more rapid sorption compared to acetamiprid, and, in all soils, a higher proportion sorbed at equilibrium. Intra-particle diffusion seemed to be a relevant process in acetamiprid sorption, but not for thiacloprid. Desorption results showed that acetamiprid is more easily and more thoroughly desorbed than thiacloprid, in all soils. The kinetic behaviour differences stem from variations in molecular structure, causing disparate water solubility, lipophilicity, and acid-base properties.


Asunto(s)
Contaminantes del Suelo , Adsorción , Neonicotinoides , Suelo/química , Cinética
18.
Environ Res ; 225: 115615, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36871944

RESUMEN

Plastics in the environment undergo various aging effects. Due to the changes in physical and chemical properties, the sorption behavior of aged microplastics (MPs) for pollutants differs from that of pristine MPs. In this paper, the most common disposable polypropylene (PP) rice box was used as the source of MPs to study the sorption and desorption behavior of nonylphenol (NP) on pristine and naturally aged PPs in summer and winter. The results show that summer-aged PP has more obvious property changes than winter-aged PP. The equilibrium sorption amount of NP on PP is summer-aged PP (477.08 µg/g) > winter-aged PP (407.14 µg/g) > pristine PP (389.29 µg/g). The sorption mechanism includes the partition effect, van der Waals forces, hydrogen bonds and hydrophobic interaction, among which chemical sorption (hydrogen bonding) dominates the sorption; moreover, partition also plays an important role in this process. Aged MPs' more robust sorption capacity is attributed to the larger specific surface area, stronger polarity and more oxygen-containing functional groups on the surface that are conducive to forming hydrogen bonds with NP. Desorption of NP in the simulated intestinal fluid is significant owning to intestinal micelles' presence: summer-aged PP (300.52 µg/g) > winter-aged PP (291.08 µg/g) > pristine PP (287.12 µg/g). Hence, aged PP presents a more vital ecological risk.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Polipropilenos , Fenoles , Adsorción , Contaminantes Químicos del Agua/análisis
19.
Environ Pollut ; 325: 121435, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36924915

RESUMEN

We investigated the feasibility of two novel engineered biochar composites by pyrolyzing cabbage leaves at 350 °C after pre-treating them with anthocyanin, followed by a post-treatment with kaolinite for the removal of two potentially toxic elements (copper and lead) and a pharmaceutical compound, metoprolol. Results showed that the Kaolinite-biochar composite (KB) exhibited the highest adsorption capacity, 188.67 and 48.07 mg/g for Pb and Cu at pH 5, and the anthocyanin-biochar composite (AB) exhibited the highest adsorption capacity: 41.15 mg/g for metoprolol at pH 6, compared to raw biochar respectively. The enhancement of the adsorption of heavy metal and metoprolol by KB and AB was due to an increase in certain oxygen functional groups, as confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results. The pseudo-second order kinetic model, along with Langmuir isotherm model, best described the kinetic and the isotherms for Pb, Cu and metoprolol in KB and AB composites, respectively. FTIR, XPS, and zeta potential measurements indicated that the sorption mechanisms involved electrostatic interaction, ion exchange, and complexation for the metals, while electrostatic interaction, H-bonding, π-πinteraction, and hydrophobic bonding were postulated as the contributing mechanisms in the sorption process of metoprolol. Anthocyanin and kaolinite could potentially be considered as alternative sustainable materials for modifying raw biochar and remediating toxic elements and pharmaceuticals in aqueous media.


Asunto(s)
Brassica , Contaminantes Químicos del Agua , Caolín , Antocianinas , Plomo , Metoprolol , Carbón Orgánico/química , Hojas de la Planta/química , Preparaciones Farmacéuticas , Adsorción , Cinética , Contaminantes Químicos del Agua/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Concentración de Iones de Hidrógeno
20.
Foods ; 12(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36766125

RESUMEN

Streptococcus thermophilus is a species frequently used in the manufacture of fermented milk. Apart from acid production, some strains additionally synthesize exopolysaccharides (EPS) which contribute to texture improvement and syneresis reduction, both being attributable to the EPS's high water binding capacity. There are two different types of EPS that may be produced, namely free exopolysaccharides (fEPS) which are secreted into the medium, and capsular EPS (cEPS) which remain attached to the bacterial cell wall. This study aims to analyze their individual contribution to techno-functional properties of fermented milk by determining the moisture sorption behavior of isolated fEPS and cell-attached cEPS from two S. thermophilus strains separately: ST-1G, a producer of non-ropy fEPS and cEPS, and ST-2E, a producer of ropy fEPS and cEPS. Differences in moisture load and sorption kinetics, determined for the first time for microbial EPS, were related to structural and macromolecular properties. The observed data are discussed by using previously published data on the physical properties of stirred fermented milk produced with these two strains. ST-1G EPS showed a higher cEPS fraction, a higher moisture load and slower moisture desorption than EPS produced by ST-2E, thus contributing to lower syneresis in fermented milk. For ST-2E, higher gel viscosity was related to a higher intrinsic viscosity and molecular mass of the ropy fEPS. Both strains produced complex EPS or EPS mixtures with clearly different molecular structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA