Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Open Biol ; 13(11): 230136, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37935354

RESUMEN

Spermatid elongation is a crucial event in the late stage of spermatogenesis in the Drosophila testis, eventually leading to the formation of mature sperm after meiosis. During spermatogenesis, significant structural and morphological changes take place in a cluster of post-meiotic germ cells, which are enclosed in a microenvironment surrounded by somatic cyst cells. Microtubule-based axoneme assembly, formation of individualization complexes and mitochondria maintenance are key processes involved in the differentiation of elongated spermatids. They provide important structural foundations for accessing male fertility. How these structures are constructed and maintained are basic questions in the Drosophila testis. Although the roles of several genes in different structures during the development of elongated spermatids have been elucidated, the relationships between them have not been widely studied. In addition, the genetic basis of spermatid elongation and the regulatory mechanisms involved have not been thoroughly investigated. In the present review, we focus on current knowledge with regard to spermatid axoneme assembly, individualization complex and mitochondria maintenance. We also touch upon promising directions for future research to unravel the underlying mechanisms of spermatid elongation in the Drosophila testis.


Asunto(s)
Proteínas de Drosophila , Espermátides , Animales , Masculino , Testículo , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Semen , Espermatogénesis/genética
2.
Redox Biol ; 62: 102671, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933391

RESUMEN

During spermatogenesis, mitochondria extend along the whole length of spermatid tail and offer a structural platform for microtubule reorganization and synchronized spermatid individualization, that eventually helps to generate mature sperm in Drosophila. However, the regulatory mechanism of spermatid mitochondria during elongation remains largely unknown. Herein, we demonstrated that NADH dehydrogenase (ubiquinone) 42 kDa subunit (ND-42) was essential for male fertility and spermatid elongation in Drosophila. Moreover, ND-42 depletion led to mitochondrial disorders in Drosophila testes. Based on single-cell RNA-sequencing (scRNA-seq), we identified 15 distinct cell clusters, including several unanticipated transitional subpopulations or differentiative stages for testicular germ cell complexity in Drosophila testes. Enrichments of the transcriptional regulatory network in the late-stage cell populations revealed key roles of ND-42 in mitochondria and its related biological processes during spermatid elongation. Notably, we demonstrated that ND-42 depletion led to maintenance defects of the major mitochondrial derivative and the minor mitochondrial derivative by affecting mitochondrial membrane potential and mitochondrial-encoded genes. Our study proposes a novel regulatory mechanism of ND-42 for spermatid mitochondrial derivative maintenance, contributing to a better understanding of spermatid elongation.


Asunto(s)
Proteínas de Drosophila , Espermátides , Animales , Masculino , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , ARN , Semen/metabolismo , Espermátides/metabolismo , Espermatogénesis/genética , Testículo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA