Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Adv Healthc Mater ; : e2402549, 2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39400478

RESUMEN

Wound management remains a critical challenge worldwide and imposes a huge financial burden on every nation. Hydrogels are promising for biomedical applications because of their extracellular matrix (ECM) like structure, good biocompatibility and multifunctional bioactivity. However, the poor mechanical properties and inconvenient operation of traditional hydrogels make it difficult to meet the complex and multifaceted needs of clinical practice. In recent years, the multifunctional nanocomposites hydrogel with especially sprayable feature have shown enhanced mechanical properties and facile operation, which enable their huge clinical applications value. A unique and powerful nanocomposite hydrogels (NCH) platform is developed by combining the many advantages of nanomaterials and hydrogels, which can achieve efficient trauma repair. This work reviews important advances on the preparation, functions and applications of sprayable NCH platforms. The challenges and future trends in the field with the aim of providing researchers with clarity on the past, present, and future of the emerging field of sprayable NCH are also proposed in detail.

2.
Biomater Adv ; 166: 214051, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39357110

RESUMEN

Acetic acid is a promising alternative to antibiotics for topical applications, particularly burn wounds, however its site specificity and retention are impaired by poor material properties. In this study, acetic acid was investigated as both the gelling agent and antimicrobial active in alginate fluid gels. The formed microstructure was found to be directly dependent on acetic acid concentration, leading to highly tuneable material properties. At clinically relevant concentrations of 2.5-5 % acetic acid, the fluid gels were elastically dominated at rest, with viscosities up to 7 orders of magnitude greater than acetic acid alone. These material properties imparted long term surface retention and microparticle barrier function, not seen with either acetic acid or alginate solutions. Most notably, sprayability was enhanced simultaneously with the increased viscosity and elasticity due to the introduction of a discretised microstructure, leading to a remarkable tenfold increase in spray coverage. Formulation was found not to inhibit antimicrobial activity, despite the less acidic pH, with common burn wound pathogens Staphylococcus aureus and Pseudomonas aeruginosa being equally susceptible to the fluid gels as to acetic acid solutions.

3.
Adv Healthc Mater ; : e2402024, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39226530

RESUMEN

In the pursuit of new wound care products, researchers are exploring methods to improve wound healing through exogenous wound healing products. However, diverging from this conventional approach, this work has developed an endogenous support system for wound healing, drawing inspiration from the body's innate healing mechanisms governed by the sequential release of metal ions by body at wound site to promote different stages of wound healing. This work engineers a multi-ion-releasing sprayable hydrogel system, to mimic this intricate process, representing the next evolutionary step in wound care products. It comprises Alginate (Alg) and Fibrin (Fib) hydrogel infused with Polylactic acid (PLA) polymeric microcarriers encapsulating multi (calcium, copper, and zinc) nanoparticles (Alg-Fib-PLA-nCMB). Developed sprayable Alg-Fib-PLA-nCMB hydrogel show sustained release of beneficial multi metallic ions at wound site, offering a range of advantages including enhanced cellular function, antibacterial properties, and promotion of crucial wound healing processes like cell migration, ROS mitigation, macrophage polarization, collagen deposition, and vascular regeneration. In a comparative study with a commercial product (Midstress spray), developed Alg-Fib-PLA-nCMB hydrogel demonstrates superior wound healing outcomes in a rat model, indicating its potential for next generation wound care product, addressing critical challenges and offering a promising avenue for future advancements in the wound management.

4.
Asian J Pharm Sci ; 19(3): 100911, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38948400

RESUMEN

Precision therapy has become the preferred choice attributed to the optimal drug concentration in target sites, increased therapeutic efficacy, and reduced adverse effects. Over the past few years, sprayable or injectable thermosensitive hydrogels have exhibited high therapeutic potential. These can be applied as cell-growing scaffolds or drug-releasing reservoirs by simply mixing in a free-flowing sol phase at room temperature. Inspired by their unique properties, thermosensitive hydrogels have been widely applied as drug delivery and treatment platforms for precision medicine. In this review, the state-of-the-art developments in thermosensitive hydrogels for precision therapy are investigated, which covers from the thermo-gelling mechanisms and main components to biomedical applications, including wound healing, anti-tumor activity, osteogenesis, and periodontal, sinonasal and ophthalmic diseases. The most promising applications and trends of thermosensitive hydrogels for precision therapy are also discussed in light of their unique features.

5.
Carbohydr Polym ; 337: 122147, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710554

RESUMEN

Treatment of infected wound by simultaneously eliminating bacteria and inducing angiogenesis to promote wound tissue regeneration remains a clinical challenge. Dynamic and reversable hydrogels can adapt to irregular wound beds, which have raised great attention as wound dressings. Herein, a sprayable chitosan-based hydrogel (HPC/CCS/ODex-IGF1) was developed using hydroxypropyl chitosan (HPC), caffeic acid functionalized chitosan (CCS), oxidized dextran (ODex) to crosslink through the dynamic imine bond, which was pH-responsive to the acidic microenvironment and could controllably release insulin growth factor-1 (IGF1). The HPC/CCS/ODex-IGF1 hydrogels not only showed self-healing, self-adaptable and sprayable properties, but also exhibited excellent antibacterial ability, antioxidant property, low-cytotoxicity and angiogenetic activity. In vivo experiments demonstrated that hydrogels promoted tissue regeneration and healing of bacteria-infected wound with a rate of approximately 98.4 % on day 11 by eliminating bacteria, reducing inflammatory and facilitating angiogenesis, demonstrating its great potential for wound dressing.


Asunto(s)
Antibacterianos , Quitosano , Hidrogeles , Neovascularización Fisiológica , Cicatrización de Heridas , Animales , Humanos , Masculino , Ratones , Angiogénesis , Antibacterianos/farmacología , Antibacterianos/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Vendajes , Quitosano/química , Quitosano/farmacología , Dextranos/química , Dextranos/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Factor I del Crecimiento Similar a la Insulina , Neovascularización Fisiológica/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología
6.
Pestic Biochem Physiol ; 201: 105905, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685227

RESUMEN

Recently, the first sprayable RNAi biopesticide, Ledprona, against the Colorado potato beetle, Leptinotarsa decemlineata, has been registered at the United States Environmental Protection Agency. Spider mites (Acari: Tetranychidae), a group of destructive agricultural and horticultural pests, are notorious for rapid development of insecticide/acaricide resistance. The management options, on the other hand, are extremely limited. RNAi-based biopesticides offer a promising control alternative to address this emerging issue. In this study, we i) developed an egg-soaking dsRNA delivery method; ii) evaluated the factors influencing RNAi efficiency, and finally iii) investigated the potential mode of entry of this newly developed egg-soaking RNAi method. In comparison to other dsRNA delivery methods, egg-soaking method was the most efficient, convenient/practical, and cost-effective method for delivering dsRNAs into spider mites. RNAi efficiency of this RNAi method was affected by target genes, dsRNA concentration, developmental stages, and mite species. In general, the hawthorn spider mite, Amphitetranychus viennensis, is more sensitive to RNAi than the two-spotted spider mite, Tetranychus urticae, and both of them have dose-dependent RNAi effect. For different life stages, egg and larvae are the most sensitive life stages to dsRNAs. For different target genes, there is no apparent association between the suppression level and the resultant phenotype. Finally, we demonstrated that this egg-soaking RNAi method acts as both stomach and contact toxicity. Our combined results demonstrate the effectiveness of a topically applied dsRNA delivery method, and the potential of a spray induced gene silencing (SIGS) method as a control alternative for spider mites.


Asunto(s)
Interferencia de ARN , ARN Bicatenario , Tetranychidae , Animales , Tetranychidae/genética , Tetranychidae/efectos de los fármacos , ARN Bicatenario/genética , Óvulo , Femenino
7.
Gels ; 10(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38534594

RESUMEN

Hydrogel-based dressings can effectively heal wounds by providing multiple functions, such as antibacterial, anti-inflammatory, and preangiogenic bioactivities. The ability to spray the dressing is important for the rapid and effective coverage of the wound surface. In this study, we developed a sprayable hydrogel-based wound dressing using naturally derived materials: hyaluronic acid and gelatin. We introduced methacrylate groups (HAMA and GelMA) to these materials to enable controllable photocrosslinking and form a stable hydrogel on the wound surface. To achieve sprayability, we evaluated the concentration of GelMA within a range of 5-15% (w/v) and then incorporated 1% (w/v) HAMA. Additionally, we incorporated calcium peroxide into the hydrogel at concentrations ranging from 0 to 12 mg/mL to provide self-oxygenation and antibacterial properties. The results showed that the composite hydrogels were sprayable and could provide oxygen for up to two weeks. The released oxygen relieved metabolic stress in fibroblasts and reduced cell death under hypoxia in in vitro culture. Furthermore, calcium peroxide added antibacterial properties to the wound dressing. In conclusion, the developed sprayable hydrogel dressing has the potential to be advantageous for wound healing due to its practical and conformable application, as well as its self-oxygenating and antibacterial functions.

8.
J Control Release ; 369: 573-590, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554773

RESUMEN

Postoperative abdominal adhesions are a common clinical problem after surgery and can cause many serious complications. Current most commonly used antiadhesion products are less effective due to their short residence time and focus primary on barrier function. Herein, we developed a sprayable hydrogel barrier (sHA-ADH/OHA-E) with self-regulated drug release based on ROS levels at the trauma site, to serve as a smart inflammatory microenvironment modulator and GATA6+ macrophages trap for non-adherent recovery from abdominal surgery. Sulfonated hyaluronic acid (HA) conjugates modified with adipic dihydrazide (sHA-ADH), and oxidized HA conjugates grafted with epigallocatechin-3-gallate (EGCG) via ROS-cleavable boronate bonds (OHA-E) were synthesized. sHA-ADH/OHA-E hydrogel was facilely fabricated within 5 s after simply mixing sHA-ADH and OHA-E through forming dynamic covalent acylhydrazones. With good biocompatibility, appropriate mechanical strength, tunable shear-thinning, self-healing, asymmetric adhesion, and reasonable in vivo retention time, sHA-ADH/OHA-E hydrogel meets the requirements of a perfect physical barrier. Intriguingly, sulfonic acid groups endowed the hydrogel with satisfactory anti-fibroblast and macrophage attachment capability, and were demonstrated for the first time to act as polyanion traps to prevent GATA6+ macrophages aggregation. Importantly, EGCG could be intelligently released by ROS triggering to alleviate oxidative stress and promote proinflammatory M1 macrophage polarize to antiinflammatory M2 phenotype. Further, the fibrinolytic system balance was restored to reduce fibrosis. Thanks to the above advantages, the sHA-ADH/OHA-E hydrogel exhibited excellent anti-adhesion effects in a rat sidewall defect-cecum abrasion model and is expected to be a promising and clinically translatable antiadhesion barrier.


Asunto(s)
Factor de Transcripción GATA6 , Ácido Hialurónico , Hidrogeles , Macrófagos , Complicaciones Posoperatorias , Especies Reactivas de Oxígeno , Adherencias Tisulares/prevención & control , Animales , Hidrogeles/química , Hidrogeles/administración & dosificación , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Hialurónico/química , Complicaciones Posoperatorias/prevención & control , Factor de Transcripción GATA6/metabolismo , Catequina/análogos & derivados , Catequina/química , Catequina/administración & dosificación , Catequina/farmacología , Ratas Sprague-Dawley , Ratones , Adipatos/química , Masculino , Abdomen/cirugía , Células RAW 264.7 , Depuradores de Radicales Libres/administración & dosificación , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Liberación de Fármacos
9.
Bioact Mater ; 34: 150-163, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38225944

RESUMEN

Effective sealing of wet, dynamic and concealed wounds remains a formidable challenge in clinical practice. Sprayable hydrogel sealants are promising due to their ability to cover a wide area rapidly, but they face limitations in dynamic and moist environments. To address this issue, we have employed the principle of a homogeneous network to design a sprayable hydrogel sealant with enhanced fatigue resistance and reduced swelling. This network is formed by combining the spherical structure of lysozyme (LZM) with the orthotetrahedral structure of 4-arm-polyethylene glycol (4-arm-PEG). We have achieved exceptional sprayability by controlling the pH of the precursor solution. The homogeneous network, constructed through uniform cross-linking of amino groups in protein and 4-arm-PEG-NHS, provides the hydrogel with outstanding fatigue resistance, low swelling and sustained adhesion. In vitro testing demonstrated that it could endure 2000 cycles of underwater shearing, while in vivo experiments showed adhesion maintenance exceeding 24 h. Furthermore, the hydrogel excelled in sealing leaks and promoting ulcer healing in models including porcine cardiac hemorrhage, lung air leakage and rat oral ulcers, surpassing commonly used clinical materials. Therefore, our research presents an advanced biomaterial strategy with the potential to advance the clinical management of wet, dynamic and concealed wounds.

10.
Adv Healthc Mater ; 13(4): e2302588, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37948613

RESUMEN

Wound healing remains a critical challenge in regenerative engineering. Great efforts are devoted to develop functional patches for wound healing. Herein, a novel sprayable black phosphorus (BP)-based multifunctional hydrogel with on-demand removability is presented as a joints' skin wound dressing. The hydrogel is facilely prepared by mixing dopamine-modified oxidized hyaluronic acid, cyanoacetategroup-functionalized dextran containing black phosphorus, and the catalyst histidine. The catechol-containing dopamine can not only enhance tissue adhesiveness, but also endow the hydrogel with antioxidant capacity. In addition, benefiting from the photothermal conversion ability of the BP and thermally reversible performance of the formed C═C double bonds between aldehyde groups and cyanoacetate groups, the resulting hydrogel displays excellent antibacterial performance and on-demand dissolving ability under NIR irradiation. Moreover, by loading vascular endothelial growth factor into the hydrogel, the promoted migration and angiogenesis effects of endothelial cells can also be achieved. Based on these features, it is demonstrated that such sprayable BP hydrogels can effectively facilitate joint wounds healing by accelerating angiogenesis, alleviating inflammation, and improving wound microenvironment. Thus, it is believed that this NIR-responsive removable BP hydrogel dressing will put forward an innovative concept in designing wound dressings.


Asunto(s)
Dopamina , Hidrogeles , Hidrogeles/farmacología , Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Aldehídos , Antibacterianos/farmacología
11.
Adv Mater ; 36(13): e2311109, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38127403

RESUMEN

Glioblastoma multiforme (GBM) is notoriously resistant to immunotherapy due to its intricate immunosuppressive tumor microenvironment (TME). Dysregulated cholesterol metabolism is implicated in the TME and promotes tumor progression. Here, it is found that cholesterol levels in GBM tissues are abnormally high, and glioma-supportive macrophages (GSMs), an essential "cholesterol factory", demonstrate aberrantly hyperactive cholesterol metabolism and efflux, providing cholesterol to fuel GBM growth and induce CD8+ T cells exhaustion. Bioinformatics analysis confirms that high 7-dehydrocholesterol reductase (DHCR7) level in GBM tissues associates with increased cholesterol biosynthesis, suppressed tumoricidal immune response, and poor patient survival, and DHCR7 expression level is significantly elevated in GSMs. Therefore, an intracavitary sprayable nanoregulator (NR)-encased hydrogel system to modulate cholesterol metabolism of GSMs is reported. The degradable NR-mediated ablation of DHCR7 in GSMs effectively suppresses cholesterol supply and activates T-cell immunity. Moreover, the combination of Toll-like receptor 7/8 (TLR7/8) agonists significantly promotes GSM polarization to antitumor phenotypes and ameliorates the TME. Treatment with the hybrid system exhibits superior antitumor effects in the orthotopic GBM model and postsurgical recurrence model. Altogether, the findings unravel the role of GSMs DHCR7/cholesterol signaling in the regulation of TME, presenting a potential treatment strategy that warrants further clinical trials.


Asunto(s)
Neoplasias Encefálicas , Disacáridos , Glioblastoma , Glioma , Glucuronatos , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Linfocitos T CD8-positivos/metabolismo , Hidrogeles/metabolismo , Línea Celular Tumoral , Proliferación Celular , Glioma/patología , Macrófagos/metabolismo , Inmunoterapia , Colesterol , Microambiente Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo
12.
ACS Appl Mater Interfaces ; 15(42): 49022-49034, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37819736

RESUMEN

Because peritoneal metastasis (PM) from ovarian cancer is characterized by non-specific symptoms, it is often diagnosed at advanced stages. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) can be considered a promising drug delivery method for unresectable PM. Currently, the efficacy of intraperitoneal (IP) drug delivery is limited by the off-label use of IV chemotherapeutic solutions, which are rapidly cleared from the IP cavity. Hence, this research aimed to improve PM treatment by evaluating a nanoparticle-loaded, pH-switchable supramolecular polymer hydrogel as a controlled release drug delivery system that can be IP nebulized. Moreover, a multidirectional nozzle was developed to allow nebulization of viscous materials such as hydrogels and to reach an even IP gel deposition. We demonstrated that acidification of the nebulized hydrogelator solution by carbon dioxide, used to inflate the IP cavity during laparoscopic surgery, stimulated the in situ gelation, which prolonged the IP hydrogel retention. In vitro experiments indicated that paclitaxel nanocrystals were gradually released from the hydrogel depot formed, which sustained the cytotoxicity of the formulation for 10 days. Finally, after aerosolization of this material in a xenograft model of PM, tumor progression could successfully be delayed, while the overall survival time was significantly increased compared to non-treated animals.


Asunto(s)
Dióxido de Carbono , Neoplasias Peritoneales , Animales , Humanos , Neoplasias Peritoneales/tratamiento farmacológico , Hidrogeles/química , Polímeros/química , Concentración de Iones de Hidrógeno
13.
Adv Healthc Mater ; 12(27): e2301174, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37612251

RESUMEN

Hydrogels, a class of materials with a 3D network structure, are widely used in various applications of therapeutic delivery, particularly cancer therapy. Micro and nanogels as miniaturized structures of the bioengineered hydrogels may provide extensive benefits over the common hydrogels in encapsulation and controlled release of small molecular drugs, macromolecular therapeutics, and even cells. Cancer immunotherapy is rapidly developing, and micro/nanostructured hydrogels have gained wide attention regarding their engineered payload release properties that enhance systemic anticancer immunity. Additionally, they are a great candidate due to their local administration properties with a focus on local immune cell manipulation in favor of active and passive immunotherapies. Although applied locally, such micro/nanostructured can also activate systemic antitumor immune responses by releasing nanovaccines safely and effectively inhibiting tumor metastasis and recurrence. However, such hydrogels are mostly used as locally administered carriers to stimulate the immune cells by releasing tumor lysate, drugs, or nanovaccines. In this review, the latest developments in cancer immunotherapy are summarized using micro/nanostructured hydrogels with a particular emphasis on their function depending on the administration route. Moreover, the potential for clinical translation of these hydrogel-based cancer immunotherapies is also discussed.


Asunto(s)
Hidrogeles , Neoplasias , Humanos , Hidrogeles/química , Sistemas de Liberación de Medicamentos , Nanogeles , Neoplasias/tratamiento farmacológico , Inmunoterapia
14.
Int J Biol Macromol ; 242(Pt 3): 125081, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245773

RESUMEN

Chronic wound unhealing is a common complication in diabetic patients, which is mainly caused by tissue hypoxia, slow vascular recovery, and a long period of inflammation. Here we present a sprayable alginate hydrogel (SA) dressing consisting of oxygen-productive (CP) microspheres and exosomes (EXO) to promote local oxygen generation, accelerate macrophage towards M2 polarization, and improve cell proliferation in diabetic wounds. Results show that the release of oxygen continues for up to 7 days, reducing the expression of hypoxic factors in fibroblasts. In vivo, the diabetic wounds experiment showed that the CP/EXO/SA dressing apparently accelerated full-thickness wound healing characteristics such as the promotion of wound healing efficiency, rapid re-epithelization, favorable collagen deposition, abundant angiogenesis at the wound beds, and shortened inflammation period. EXO synergistic oxygen (CP/EXO/SA) dressing suggests a promising treatment measure for diabetic wounds.


Asunto(s)
Diabetes Mellitus , Exosomas , Humanos , Hidrogeles/metabolismo , Oxígeno/metabolismo , Exosomas/metabolismo , Alginatos/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Vendajes , Inflamación/metabolismo
15.
Int J Biol Macromol ; 225: 1350-1360, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36436596

RESUMEN

In this study, one high-performance hemicelluloses (HC)-based sprayable and biodegradable pesticide mulch film was developed. Firstly, HC was transesterified with vinyl acetate (VA) to improve its solubility and film-forming ability. Then abamectin (ABA) was encapsulated by ß-cyclodextrin (ß-CD) to endow mulch film persistent anti-pesticide activity. After that, sodium alginate (SA) and gelatin were added to develop the mechanical performances of the mulch film. As a result, the obtained mulch film showed good characteristics, with optimum mechanical strength, elongation at break, water vapor permeability (WVP), swelling ratio (SR), and weight loss (biodegradability) of 7.9 ± 0.3 MPa, 43.6 ± 2.0 %, 2.1 ± 0.1 × 10-11 g mm m-2 s-1 kPa-1, 73.8 ± 2.0 %, and 69.3 %, respectively. After covering with mulch film, the soil moisture and temperature were developed to 90.8 % and 19.3 ± 0.2 °C, respectively, which could facilitate Chinese cabbage growth, with optimum germination rate of 98.6 ± 6.4 %.


Asunto(s)
Plaguicidas , Polisacáridos , Suelo , Alginatos
16.
Mater Today Bio ; 23: 100881, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38161511

RESUMEN

Wound healing is a critical process that facilitates the body's recovery from injuries and helps prevent infections, thereby maintaining overall tissue and organ functionality. However, delayed wound healing owing to various factors can lead to bacterial infections and secondary complications. In this study, a ciprofloxacin (CIP)-loaded MXene/sodium alginate (SA) hydrogel was fabricated to inhibit bacterial infections and enhance wound healing. The hydrogel was formulated in a sprayable state by blending CIP-loaded MXene (CIP-MX) with SA. This hydrogel was found to exhibit excellent photothermal conversion capability and biocompatibility under near-infrared (NIR) irradiation. In addition, the hydrogel enabled controlled drug release based on NIR irradiation, ultimately enabling improved antibacterial activity. Based on the in vitro and in vivo experiments, the CIP-loaded MXene/SA hydrogel (CIP-MX@Gel) accelerated wound healing. Overall, the CIP-MX@Gel has excellent potential as an effective wound healing material.

17.
Chemosensors (Basel) ; 11(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38463943

RESUMEN

Sprayable stimuli-responsive material coatings represent a new class of detection system which can be quickly implemented to transform a surface into a color-responsive sensor. In this work, we describe a dipicolylamine-terminated diacetylene-containing amphiphile formulation for spray coating on to a simple paper substrate to yield disposable test strips that can be used to detect the presence of lead ions in solution. We find the response to be very selective to only lead ions and that the sensitivity can be modulated by altering the UV curing time after spraying. Sensitive detection to at least 0.1 mM revealed a clear color change from a blue to red phase. This represents the first demonstration of a spray-on sensor system capable of detection of lead ions in solution.

18.
Nano Lett ; 22(10): 4182-4191, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35522052

RESUMEN

Spraying serves as an attractive, minimally invasive means of administering hydrogels for localized delivery, particularly due to high-throughput deposition of therapeutic depots over an entire target site of uneven surfaces. However, it remains a great challenge to design systems capable of rapid gelation after shear-thinning during spraying and adhering to coated tissues in wet, physiological environments. We report here on the use of a collagen-binding peptide to enable a supramolecular design of a biocompatible, bioadhesive, and sprayable hydrogel for sustained release of therapeutics. After spraying, the designed peptide amphiphile-based supramolecular filaments exhibit fast, physical cross-linking under physiological conditions. Our ex vivo studies suggest that the hydrogelator strongly adheres to the wet surfaces of multiple organs, and the extent of binding to collagen influences release kinetics from the gel. We envision that the sprayable organ-adhesive hydrogel can serve to enhance the efficacy of incorporated therapeutics for many biomedical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles , Hidrogeles/química , Péptidos
19.
Biomaterials ; 279: 121225, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34739984

RESUMEN

The development of a rapid-forming in-situ sprayable hydrogel with the functions of tumor treatment and wound healing is essential for eliminating residual tumor tissue and promoting wound healing caused by surgical resection. On account of its semiconductor properties, ß-FeSi2 (FS) was widely explored as a thermoelectric material. In this work, FS was first applied as a bioactive material for the application of tissue engineering. Excitedly, we found that FS could be used as a novel antitumor agent. It exhibited excellent photothermal performance, and the released Fe ions could generate •OH under the acidic conditions and excessive H2O2 in the tumor microenvironment. Moreover, the sprayable ß-FeSi2-incorporated sodium alginate (FS/SA) hydrogel was prepared as an instant gelation after spraying in situ, contributing to timely tumor-induced skin wound healing and efficiently suppressing tumors through photothermal and chemodynamic therapy (PTT and CDT). Furthermore, the released bioactive Fe and Si ions could promote the migration and differentiation of endothelial cells and the pro-angiogenesis of skin wounds. Accordingly, such sprayable hydrogel played an effective role in emergency wound treatment with the advantage of convenience and portability. Overall, with incorporation of FS into the sprayable FS/SA hydrogel, the composite hydrogel possessed dual functions of tumor therapy and skin wound healing.


Asunto(s)
Hidrogeles , Neoplasias Cutáneas , Células Endoteliales , Humanos , Peróxido de Hidrógeno , Neoplasias Cutáneas/tratamiento farmacológico , Microambiente Tumoral , Cicatrización de Heridas
20.
ACS Biomater Sci Eng ; 7(8): 3908-3916, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34323468

RESUMEN

Pressure-sensitive adhesives typically used for bandages are nonbiodegradable, inhibiting healing, and may cause an allergic reaction. Here, we investigated the effect of biodegradable copolymers with promising thermomechanical properties on wound healing for their eventual use as biodegradable, biocompatible adhesives. Blends of low molecular weight (LMW) and high molecular weight (HMW) poly(lactide-co-caprolactone) (PLCL) are investigated as tissue adhesives in comparison to a clinical control. Wounds treated with PLCL blend adhesives heal completely with similar vascularization, scarring, and inflammation indicators, yet require fewer dressing changes due to integration of the PLCL adhesive into the wound. A blend of LMW and HMW PLCL produces an adhesive material with significantly higher adhesive strength than either neat polymer. Wound adhesion is comparable to a polyurethane bandage, utilizing conventional nonbiodegradable adhesives designed for extremely strong adhesion.


Asunto(s)
Adhesivos Tisulares , Adhesivos , Vendajes , Poliésteres , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA