RESUMEN
The initial efficacy of placental extracts (Pla-Exts) and human mesenchymal stem-cell-derived exosomes (hMSC-Exo) against aging-induced stress in human dermal fibroblasts (HDFs) was examined. The effect of Pla-Ext alone, hMSC-Exo alone, the combined effect of Pla-Ext and hMSC-Exo, and the effect of hMSC-Exo (Pla/MSC-Exo) recovered from cultures with Pla-Ext added to hMSC were verified using collagen, elastin, and hyaluronic acid synthase mRNA levels for each effect. Cells were subjected to photoaging (UV radiation), glycation (glycation end-product stimulation), and oxidation (H2O2 stimulation) as HDF stressors. Pla-Ext did not significantly affect normal skin fibroblasts with respect to intracellular parameters; however, a pro-proliferative effect was observed. Pla-Ext induced resistance to several stresses in skin fibroblasts (UV irradiation, glycation stimulation, H2O2 stimulation) and inhibited reactive oxygen species accumulation following H2O2 stimulation. Although the effects of hMSC-Exo alone or the combination of hMSC-Exo and Pla-Ext are unknown, pretreated hMSC-Exo stimulated with Pla-Ext showed changes that conferred resistance to aging stress. This suggests that Pla-Ext supplementation may cause some changes in the surface molecules or hMSC-Exo content (e.g., microRNA). In skin cells, the direct action of Pla-Ext and exosomes secreted from cultured hMSCs pretreated with Pla-Ext (Pla/MSC-Exo) also conferred resistance to early aging stress.
RESUMEN
Neurological disorders are being increasingly recognized as major causes of death and disability around the world. Neurological disorders refer to a broad range of medical conditions that affect the brain and spinal cord. These disorders can have various causes, including genetic factors, infections, trauma, autoimmune reactions, or neurodegenerative processes. Each disorder has its own unique symptoms, progression, and treatment options. Optimal communication between interneurons and neuron-glia cells within the homeostatic microenvironment is of paramount importance. Within this microenvironment, exosomes play a significant role in promoting intercellular communication by transferring a diverse cargo of contents, including proteins, lipids, and non-coding RNAs (ncRNAs). Partially, nervous system homeostasis is preserved by various stem cell-derived exosomal ncRNAs, which include circular RNAs (circRNAs), long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and PIWI-interacting RNAs (piRNAs). The diversity of these exosomal ncRNAs suggests their potential to influence multiple pathways and cellular processes within the nervous system. Stem cell-derived exosomes and their ncRNA contents have been investigated for potential therapeutic uses in neurological disorders, owing to their demonstrated capabilities in neuroprotection, neuroregeneration, and modulation of disease-related pathways. The ability of stem cell-derived exosomes to cross the blood-brain barrier makes them a promising delivery vehicle for therapeutic ncRNAs. This review aims to summarize the current understanding of different stem cell-derived exosomal ncRNAs and their therapeutic potential and clinical applications.
RESUMEN
The efficacy of Bone Marrow Mesenchymal Stem Cell-derived Exosomes (BMSCs-Exo) in addressing the complexities of Polycystic Ovary Syndrome (PCOS) has been explored in a controlled experimental study using a DHEA-induced PCOS model in 6-8-week-old female NMRI mice. This research undertook an in vivo approach with fifteen female murine subjects to investigate the potential of BMSCs-Exo in promoting vascular regeneration and alleviating the adverse effects associated with PCOS. Through a strategic intervention, the study aimed to modulate the pathophysiological markers of oxidative stress and inflammation that are hallmark features of PCOS. Remarkably, the administration of BMSCs-Exo led to decreased CD31 expression in ovarian tissues, suggesting reduced angiogenesis and endothelial activation. Moreover, a significant reduction in pro-inflammatory cytokines and oxidative stress markers was noted, aligning closely with the metrics observed in the control group. These findings illuminate a promising therapeutic avenue utilizing BMSCs-Exo to recalibrate angiogenic, inflammatory, and oxidative stress responses in PCOS. This research not only contributes to the current understanding of PCOS management but also opens new doors for innovative clinical treatments.
RESUMEN
Alzheimer's disease (AD) is a severe neurodegenerative disorder, and the current treatment options are limited. Mesenchymal stem cell-derived exosomes (MSC-Exos) have garnered significant attention due to their unique biological properties, showcasing tremendous potential as an acellular alternative therapy for AD. MSC-Exos exhibit excellent biocompatibility and low immunogenicity, enabling them to effectively cross the blood-brain barrier (BBB) and deliver therapeutic molecules directly to target cells. They are highly efficacious in delivering nucleic acid-based drugs. Moreover, the production process of MSC-Exos benefits from a high proliferation capacity and multilineage differentiation potential, allowing for production while maintaining a stable composition. Despite the significant theoretical advantages of MSC-Exos, their clinical use still faces multiple challenges, including cross-contamination during isolation and purification processes, the complexity of their components, and the presence of potential adverse paracrine factors. Future research needs to focus on optimizing separation and purification techniques, enhancing delivery methods to improve therapeutic efficacy, and performing detailed analyses of the components of MSC-Exos. In summary, MSC-Exos hold promise as an effective option for the treatment of AD and other neurodegenerative diseases, driving their clinical research and use in related fields.
RESUMEN
Objective: Our previous studies established that microRNA (miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSC-Exos) alleviates acute lung injury (ALI). This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy. Methods: Exosomes were isolated from hUC-MSCs. Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor. Hematoxylin-eosin staining evaluated inflammatory injury. Enzyme-linked immunosorbnent assay measured lipopolysaccharide (LPS), tumor necrosis factor-α, and interleukin-1ß levels. qRT-PCR detected miR-451 and tuberous sclerosis complex 1 (TSC1) expressions. The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system. Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin (mTOR) pathway and autophagy. Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level. Results: hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy. MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1. Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages. Silencing TSC1 activated mTOR signaling and inhibited autophagy, while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced. Conclusion: miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway, providing a potential therapeutic strategy for ALI.
Asunto(s)
Lesión Pulmonar Aguda , Autofagia , Quemaduras , Exosomas , Macrófagos Alveolares , Células Madre Mesenquimatosas , MicroARNs , Serina-Treonina Quinasas TOR , Proteína 1 del Complejo de la Esclerosis Tuberosa , Cordón Umbilical , Animales , Humanos , Masculino , Ratas , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/genética , Quemaduras/complicaciones , Exosomas/metabolismo , Macrófagos Alveolares/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Cordón Umbilical/citologíaRESUMEN
Mutations in genes coding sarcomere components are the major causes of human inherited cardiomyopathy. Genome editing is widely applied to genetic modification of human pluripotent stem cells (hPSCs) before hPSCs were differentiated into cardiomyocytes to model cardiomyopathy. Whether genetic mutations influence the early hPSC differentiation process or solely the terminally differentiated cardiomyocytes during cardiac pathogenesis remains challenging to distinguish. To solve this problem, here we harnessed chemically modified mRNA (modRNA) and synthetic single-guide RNA to develop an efficient genome editing approach in hPSC-derived cardiomyocytes (hPSC-CMs). We showed that modRNA-based CRISPR/Cas9 mutagenesis of TNNT2, the coding gene for cardiac troponin T, results in sarcomere disassembly and contractile dysfunction in hPSC-CMs. These structural and functional phenotypes were associated with profound downregulation of oxidative phosphorylation genes and upregulation of cardiac stress markers NPPA and NPPB. These data confirmed that sarcomeres regulate gene expression in hPSC-CMs and highlighted the RNA technology as a powerful tool to achieve stage-specific genome editing during hPSC differentiation.
RESUMEN
BACKGROUND: Apical papilla stem cells (SCAPs) exhibit significant potential for tissue repair, characterized by their anti-inflammatory and pro-angiogenic properties. Exosomes derived from stem cells have emerged as safer alternatives that retain comparable physiological functions. This study explores the therapeutic potential of exosomes sourced from SCAPs in the treatment of non-alcoholic steatohepatitis (NASH). METHODS: A NASH mouse model was established through the administration of a high-fat diet (HFD), and SCAPs were subsequently isolated for experimental purposes. A cell model of NASH was established in vitro by treating hepatocellular carcinoma cells with oleic acid (OA) and palmitic acid (PA). Exosomes were isolated via differential centrifugation. The mice were treated with exosomes injected into the tail vein, and the hepatocytes were incubated with exosomes in vitro. After the experiment, physiological and biochemical markers were analyzed to assess the effects of exosomes derived from SCAPs on the progression of NASH in both NASH mouse models and NASH cell models. RESULTS: After exosomes treatment, the weight gain and liver damage induced by HFD were significantly reduced. Additionally, hepatic fat accumulation was markedly alleviated. Mechanistically, exosomes treatment promoted the expression of genes involved in hepatic fatty acid oxidation and transport, while simultaneously suppressing genes associated with fatty acid synthesis. Furthermore, the levels of serum inflammatory cytokines and the mRNA expression of inflammatory markers in liver tissue were significantly decreased. In vitro cell experiments produced similar results.
Asunto(s)
Modelos Animales de Enfermedad , Exosomas , Ácidos Grasos , Inflamación , Enfermedad del Hígado Graso no Alcohólico , Células Madre , Animales , Exosomas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Ratones , Ácidos Grasos/metabolismo , Humanos , Células Madre/metabolismo , Inflamación/metabolismo , Inflamación/patología , Masculino , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Hepatocitos/metabolismoRESUMEN
Research on islet replacement through the differentiation of functionally matured insulin-producing ß-like cells for the treatment of diabetes presents a significant challenge. Neural signals in ß cell differentiation significantly impact the pancreatic microenvironment in glucose metabolism, but they are not fully understood. In this study, isoproterenol, a ß adrenoreceptor agonist, was introduced into pancreatic progenitor cells, derived from human pluripotent stem cells in vitro, undergoing endocrine differentiation, using 2-dimensional (2D) and 3-dimensional (3D) differentiation protocols. This resulted in increased insulin and C-peptide secretion, along with elevated expression of key pancreatic beta cell transcription factors, including PDX-1, NKX6.1, and MAFA, and improved function, demonstrated by increased responsiveness to glucose determined via a glucose-stimulated insulin secretion test. Moreover, RNA transcriptome analysis of isoproterenol-treated endocrine progenitors facilitated the identification of biological pathways and genes that contribute to mature beta cell differentiation efficiency correlated with neural signals, such as adrenoceptor beta 1, calcium/calmodulin dependent protein kinase II alpha, phospholipase C delta 4, and neurotrophic receptor tyrosine kinase 1. Among those genes, calcium/calmodulin dependent protein kinase II alpha was suggested as the most notable gene involved in the isoproterenol mechanism through inhibitor assays. This study illustrates that isoproterenol significantly enhances endocrine differentiation and underscores its effects on stem cell-derived beta cell maturation, emphasizing its therapeutic potential for the treatment of diabetes.
RESUMEN
Introduction: Platelet-rich plasma obtained by centrifuging peripheral blood can promote osteogenesis owing to its abundant growth factors but has drawbacks, including rapid growth factor loss and inconsistent effects depending on donor factors. To overcome these issues, we were the first in the world to use freeze-dried human induced pluripotent stem cell-derived megakaryocytes and platelets (S-FD-iMPs) and found that they have osteogenesis-promoting effects. Since turbulence was found to activate platelet biogenesis and iPS cell-derived platelets can now be produced on a clinical scale by a device called VerMES, this study examined the osteogenesis-promoting effect and safety of clinical-scale FD-iMP (V-FD-iMPs) for future human clinical application. Method: We administered either S-FD-iMPs, V-FD-iMPs, or saline along with artificial bone to the lumbar spine of 8-week-old male Sprague-Dawley rats (n = 4 each) and evaluated bone formation by computed tomography (CT) and pathology. Next, we administered V-FD-iMPs or saline along with artificial bone to the lumber spines of 5-week-old male New Zealand White rabbits (n = 4 each) and evaluated the bone formation by CT and pathology. Rats (n = 10) and rabbits (n = 6) that received artificial bone and V-FD-iMPs in the lumbar spine were also observed for 6 months for adverse events, including infection, tumor formation, and death. Results: Both V-FD-iMPs and S-FD-iMPs significantly enhanced osteogenesis in the lumber spines of rats in comparison with the controls 8 weeks postoperatively, with no significant differences between them. Furthermore, V-FD-iMPs vigorously promoted osteogenesis in the lumber spines of rabbits 8 weeks postoperatively. In rats and rabbits, V-FD-iMPs showed no adverse effects, including infection, tumor formation, and death, over 6 months. Conclusion: These results suggest that V-FD-iMPs promote safe osteogenesis.
RESUMEN
Umbilical cord mesenchymal stem cell-derived extracellular vesicles (UC-EVs) are valuable in nanomedicine as natural nanocarriers, carrying information molecules from their parent cells and fusing with targeted cells. miRNA-126, specific to endothelial cells and derived from these vesicles, supports vascular integrity and angiogenesis and has protective effects in kidney diseases. OBJECTIVE: This study investigates the delivery of miRNA-126 and anti-miRNA-126 via UC-EVs as natural nanocarriers for treating nephrotoxic injury in vitro. METHOD: The umbilical cord-derived mesenchymal stem cell and UC-EVs were characterized according to specific guidelines. Rat kidney proximal tubular epithelial cells (tubular cells) were exposed to nephrotoxic injury through of gentamicin and simultaneously treated with UC-EVs carrying miRNA-126 or anti-miRNA-126. Specific molecules that manage cell cycle progression, proliferation cell assays, and newly synthesized DNA and DNA damage markers were evaluated. RESULTS: We observed significant increases in the expression of cell cycle markers, including PCNA, p53, and p21, indicating a positive cell cycle regulation with newly synthesized DNA via BrDU. The treatments reduced the expression of DNA damage marker, such as H2Ax, suggesting a lower rate of cellular damage. CONCLUSIONS: The UC-EVs, acting as natural nanocarriers of miRNA-126 and anti-miRNA-126, offer nephroprotective effects in vitro. Additionally, other components in UC-EVs, such as proteins, lipids, and various RNAs, might also contribute to these effects.
Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Cordón Umbilical , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Cordón Umbilical/citología , Ratas , Humanos , Proliferación Celular/efectos de los fármacos , MicroARNs/metabolismo , MicroARNs/genética , Ciclo Celular/efectos de los fármacos , Daño del ADNRESUMEN
Acute myocardial infarction (MI) is a sudden, severe cardiac ischemic event that results in the death of up to one billion cardiomyocytes (CMs) and subsequent decrease in cardiac function. Engineered cardiac tissues (ECTs) are a promising approach to deliver the necessary mass of CMs to remuscularize the heart. However, the hypoxic environment of the heart post-MI presents a critical challenge for CM engraftment. Here, we present a high-throughput, systematic study targeting several physiological features of human induced pluripotent stem cell-derived CMs (hiPSC-CMs), including metabolism, Wnt signaling, substrate, heat shock, apoptosis, and mitochondrial stabilization, to assess their efficacy in promoting ischemia resistance in hiPSC-CMs. The results of 2D experiments identify hypoxia preconditioning (HPC) and metabolic conditioning as having a significant influence on hiPSC-CM function in normoxia and hypoxia. Within 3D engineered cardiac tissues (ECTs), metabolic conditioning with maturation media (MM), featuring high fatty acid and calcium concentration, results in a 1.5-fold increase in active stress generation as compared to RPMI/B27 control ECTs in normoxic conditions. Yet, this functional improvement is lost after hypoxia treatment. Interestingly, HPC can partially rescue the function of MM-treated ECTs after hypoxia. Our systematic and iterative approach provides a strong foundation for assessing and leveraging in vitro culture conditions to enhance the hypoxia resistance, and thus the successful clinical translation, of hiPSC-CMs in cardiac regenerative therapies.
Asunto(s)
Hipoxia de la Célula , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Ingeniería de Tejidos/métodos , Medicina Regenerativa/métodos , Diferenciación Celular , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Células CultivadasRESUMEN
Heart failure with preserved ejection fraction (HFpEF) is commonly found in persons living with HIV (PLWH) even when antiretroviral therapy suppresses HIV viremia. However, studying this condition has been challenging because an appropriate animal model is not available. In this article, we studied calcium transient in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in culture to simulate the cardiomyocyte relaxation defect noted in PLWH and HFpEF and assess whether various drugs have an effect. We show that treatment of hiPSC-CMs with inflammatory cytokines (such as interferon-γ or TNF-α) impairs their Ca2+ uptake into sarcoplasmic reticulum and that SGLT2 inhibitors, clinically proven as effective for HFpEF, reverse this effect. Additionally, treatment with mitochondrial antioxidants (like mito-Tempo) and certain antiretrovirals resulted in the reversal of the effects of these cytokines on calcium transient. Finally, incubation of hiPSC-CMs with serum from HIV patients with and without diastolic dysfunction did not alter their Ca2+-decay time, indicating that the exposure to the serum of these patients is not sufficient to induce the decrease in Ca2+ uptake in vitro. Together, our results indicate that hiPSC-CMs can be used as a model to study molecular mechanisms of inflammation-mediated abnormal cardiomyocyte relaxation and screen for potential new interventions.
Asunto(s)
Calcio , Células Madre Pluripotentes Inducidas , Inflamación , Miocitos Cardíacos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Infecciones por VIH/metabolismo , Insuficiencia Cardíaca/metabolismo , Células CultivadasRESUMEN
We report the 1-year results from one patient as the preliminary analysis of a first-in-human phase I clinical trial (ChiCTR2300072200) assessing the feasibility of autologous transplantation of chemically induced pluripotent stem-cell-derived islets (CiPSC islets) beneath the abdominal anterior rectus sheath for type 1 diabetes treatment. The patient achieved sustained insulin independence starting 75 days post-transplantation. The patient's time-in-target glycemic range increased from a baseline value of 43.18% to 96.21% by month 4 post-transplantation, accompanied by a decrease in glycated hemoglobin, an indicator of long-term systemic glucose levels at a non-diabetic level. Thereafter, the patient presented a state of stable glycemic control, with time-in-target glycemic range at >98% and glycated hemoglobin at around 5%. At 1 year, the clinical data met all study endpoints with no indication of transplant-related abnormalities. Promising results from this patient suggest that further clinical studies assessing CiPSC-islet transplantation in type 1 diabetes are warranted.
Asunto(s)
Diabetes Mellitus Tipo 1 , Células Madre Pluripotentes Inducidas , Trasplante de Islotes Pancreáticos , Humanos , Diabetes Mellitus Tipo 1/terapia , Trasplante de Islotes Pancreáticos/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Hemoglobina Glucada/metabolismo , Masculino , Islotes Pancreáticos/metabolismo , Recto del Abdomen/metabolismo , Adulto , Glucemia/metabolismo , Insulina/metabolismoRESUMEN
This review delves into the generation and therapeutic applications of mesenchymal stem cell-derived neural progenitors (MSC-NPs) in Multiple Sclerosis (MS), a chronic autoimmune disease characterized by demyelination, neuroinflammation, and progressive neurological dysfunction. Most current treatment paradigms primarily aimed at regulating the immune response show little success against the neurodegenerative aspect of MS. This calls for new therapies that would play a role in neurodegeneration and functional recovery of the central nervous system (CNS). While utilizing MSC was found to be a promising approach in MS therapy, the initiation of MSC-NPs therapy is an innovation that introduces a new perspective, a dual-action plan, that targets both the immune and neurodegenerative mechanisms of MS. The first preclinical studies using animal models of the disease showed that MSC-NPs could migrate to damaged sites, support remyelination, and possess immunomodulatory properties, thus, providing a solid basis for their human application. Based on pilot feasibility studies and phase I clinical trials, this review covers the transition from preclinical to clinical phases, where intrathecally administered autologous MSC-NPs has shown great hope in treating patients with progressive MS by providing safety, tolerability, and preliminary efficacy. This review, after addressing the role of MSCs in MS and its animal model of experimental autoimmune encephalomyelitis (EAE), highlights the significance of the MSC-NP therapy by organizing its advancement processes from experimental models to clinical translation in MS treatment. It points out the continuing obstacles, which require more studies to improve therapeutic protocols, uncovers the mechanisms of action, and establishes long-term efficacy and safety in larger controlled trials.
RESUMEN
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have shown anti-inflammatory potential in multiple inflammatory diseases. In the March 2022 issue of the Journal of Extracellular Vesicles, it was shown that EVs from human MSCs can suppress severe acute respiratory distress syndrome, coronavirus 2 (SARS-CoV-2) replication and can mitigate the production and release of infectious virions. We therefore hypothesized that MSC-EVs have an anti-viral effect in SARS-CoV-2 infection in vivo. We extended this question to ask whether also other respiratory viral infections could be treated by MSC-EVs. Adipose stem cell-derived EVs (ASC-EVs) were isolated using tangential flow filtration from conditioned media obtained from a multi-flask cell culture system. The effects of the ASC-EVs were tested in Vero E6 cells in vitro. ASC-EVs were also given i.v. to SARS-CoV-2 infected Syrian Hamsters, and H1N1 influenza virus infected mice. The ASC-EVs attenuated SARS-CoV-2 virus replication in Vero E6 cells and reduced body weight and signs of lung injury in infected Syrian hamsters. Furthermore, ASC-EVs increased the survival rate of influenza A-infected mice and attenuated signs of lung injury. In summary, this study suggests that ASC-EVs can have beneficial therapeutic effects in models of virus-infection-associated acute lung injury and may potentially be developed to treat lung injury in humans.
Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Vesículas Extracelulares , Subtipo H1N1 del Virus de la Influenza A , Células Madre Mesenquimatosas , SARS-CoV-2 , Animales , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , SARS-CoV-2/fisiología , COVID-19/terapia , Lesión Pulmonar Aguda/terapia , Lesión Pulmonar Aguda/virología , Ratones , Células Vero , Humanos , Chlorocebus aethiops , Infecciones por Orthomyxoviridae/terapia , Replicación Viral , Mesocricetus , Modelos Animales de Enfermedad , Masculino , Gripe Humana/terapia , FemeninoRESUMEN
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) constitute an appealing tool for drug discovery, disease modeling, and cardiotoxicity screening. However, their physiological immaturity, resembling CMs in the late fetal stage, limits their utility. Herein, we have developed a novel, scalable cell culture medium designed to enhance the maturation of hPSC-CMs. This medium facilitates a metabolic shift towards fatty acid utilization and augments mitochondrial function by targeting Acetyl-CoA carboxylase 2 (ACC2) with a specific small molecule inhibitor. Our findings demonstrate that this maturation protocol significantly advances the metabolic, structural, molecular and functional maturity of hPSC-CMs at various stages of differentiation. Furthermore, it enables the creation of cardiac microtissues with superior structural integrity and contractile properties. Notably, hPSC-CMs cultured in this optimized maturation medium display increased accuracy in modeling a hypertrophic cardiac phenotype following acute endothelin-1 induction and show a strong correlation between in vitro and in vivo target engagement in drug screening efforts. This approach holds promise for improving the utility and translatability of hPSC-CMs in cardiac disease modeling and drug discovery.
Asunto(s)
Acetil-CoA Carboxilasa , Diferenciación Celular , Miocitos Cardíacos , Células Madre Pluripotentes , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Acetil-CoA Carboxilasa/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Diferenciación Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Inhibidores Enzimáticos/farmacología , AnimalesRESUMEN
Subarachnoid hemorrhage (SAH), accounting for â¼5% of all strokes, represents a catastrophic subtype of cerebrovascular accident. SAH predominantly results from intracranial aneurysm ruptures and affects â¼30,000 individuals annually in the United States and â¼6 individuals per 100,000 people worldwide. Recent studies have implicated that administering mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) may be beneficial in inducing neuroprotective and antiinflammatory effects following SAH. EVs are nanosized particles bound by a lipid bilayer. MSC-EVs comprise a therapeutic cargo of nucleic acids, lipids, and proteins, having the promise to ease SAH-induced long-term brain impairments. This review evaluated the findings of published studies on the therapeutic efficacy of MSC-EVs in the context of SAH. A growing body of evidence points out the therapeutic potential of MSC-EVs for improving brain function in animal models of SAH. Specifically, studies demonstrated their ability to reduce neuronal apoptosis and neuroinflammation and enhance neurological recovery through neuroprotective and antiinflammatory mechanisms. Such outcomes reported in various studies suggest that MSC-EVs hold great potential as a novel and minimally invasive approach to ameliorate SAH-induced neurological damage and improve patient outcomes. The review also discusses the limitations of EV therapy and the required future research efforts toward harnessing the full potential of MSC-EVs in treating SAH.
RESUMEN
Objective: The secretome, comprising bioactive chemicals released by mesenchymal stem cells (MSCs), holds therapeutic promise in regenerative medicine. This review aimed to explore the therapeutic potential of the MSC secretome in regenerative urology, particularly for treating erectile dysfunction (ED), and to provide an overview of preclinical and clinical research on MSCs in ED treatment and subsequently to highlight the rationales, mechanisms, preclinical investigations, and therapeutic potential of the MSC secretome in this context. Methods: The review incorporated an analysis of preclinical and clinical research involving MSCs in the treatment of ED. Subsequently, it delved into the existing knowledge regarding the MSC secretome, exploring its therapeutic potential. The methods included a comprehensive examination of relevant literature to discern the processes underlying the therapeutic efficacy of the MSC secretome. Results: Preclinical research indicated the effectiveness of the MSC secretome in treating various models of ED. However, the precise mechanisms of its therapeutic efficacy remain unknown. The review provided insights into the anti-inflammatory, pro-angiogenic, and trophic properties of the MSC secretome. It also discussed potential advantages, such as avoiding issues related to cellular therapy, including immunogenicity, neoplastic transformation, and cost. Conclusion: This review underscores the significant therapeutic potential of the MSC secretome in regenerative urology, particularly for ED treatment. While preclinical studies demonstrate promising outcomes, further research is essential to elucidate the specific mechanisms underlying the therapeutic efficacy before clinical application. The review concludes by discussing future perspectives and highlighting the challenges associated with the clinical translation of the MSC secretome in regenerative urology.
RESUMEN
Propionic acidemia (PA), arising from PCCA or PCCB variants, manifests as life-threatening cardiomyopathy and arrhythmias, with unclear pathophysiology. In this work, propionyl-CoA metabolism in rodent hearts and human pluripotent stem cell-derived cardiomyocytes was investigated with stable isotope tracing analysis. Surprisingly, gut microbiome-derived propionate rather than the propiogenic amino acids (valine, isoleucine, threonine, and methionine) or odd-chain fatty acids was found to be the primary cardiac propionyl-CoA source. In a Pcca-/-(A138T) mouse model and PA patients, accumulated propionyl-CoA and diminished acyl-CoA synthetase short-chain family member 3 impede hepatic propionate disposal, elevating circulating propionate. Prolonged propionate exposure induced significant oxidative stress in PCCA knockdown HL-1 cells and the hearts of Pcca-/-(A138T) mice. Additionally, Pcca-/-(A138T) mice exhibited mild diastolic dysfunction after the propionate challenge. These findings suggest that elevated circulating propionate may cause oxidative damage and functional impairment in the hearts of patients with PA.
RESUMEN
Impaired angiogenesis is a major factor contributing to delayed wound healing in diabetes. Dysfunctional mitochondria promote the formation of neutrophil extracellular traps (NETs), obstructing angiogenesis during wound healing. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have shown promise in promoting tissue repair and regeneration in diabetes; however, the precise pathways involved in this process remain unclear. In this study, NET-induced ferroptosis of endothelial cells (ECs) and angiogenesis were assessed in diabetic wound samples from both patients and animal models. In vitro and in vivo experiments were performed to examine the regulatory mechanisms of NETs in ECs using specific inhibitors and gene-knockout mice. MSC-EVs encapsulating dysfunctional mitochondria were used to trigger mitochondrial fusion and restore mitochondrial function in neutrophils to suppress NET formation. Angiogenesis in wound tissue was evaluated using color laser Doppler imaging and vascular density analysis. Wound healing was evaluated via macroscopic analysis and histological evaluation of the epithelial gap. NET-induced ferroptosis of ECs was validated as a crucial factor contributing to the impairment of angiogenesis in diabetic wounds. Mechanistically, NETs regulated ferroptosis by suppressing the PI3K/AKT pathway. Furthermore, MSC-EVs transferred functional mitochondria to neutrophils in wound tissue, triggered mitochondrial fusion, and restored mitochondrial function, thereby reducing NET formation. These results suggest that inhibiting NET formation and EC ferroptosis or activating the PI3K/AKT pathway can remarkably improve wound healing. In conclusion, this study reveals a novel NET-mediated pathway involved in wound healing in diabetes and suggests an effective therapeutic strategy for accelerating wound healing.