RESUMEN
The photocatalytic efficiency can be improved by constructing a Z-scheme heterojunction, but hindered by the only half utilization efficiency of photogenerated carriers. Thus, a novel material, UiO-66-NH2@TAPB-BTCA-COP-Ag (U6N@COP-Ag), with surface plasmon resonance (SPR) effect synergistic Z-scheme heterostructure has been prepared by depositing Ag nanoparticles (Ag NPs) on TAPB-BTCA-COP (COP)-coated UiO-66-NH2. The deposited Ag NPs expand the range of light absorption and introduce more photogenerated electrons in the composite. The SPR effect of noble metal compensates for the limited utilization of the Z-scheme heterojunction photogenerated carriers and the increased density of semiconductor carriers at the reducing end, which is more conducive to the redox reaction of the catalyst. Without sacrificial agents, U6N@COP-Ag shows great photocatalytic nitrogen reduction conversion efficiency with the rate of NH4+ in ammonia water at 167.63µmol g-1h-1, which is 6.6 and 2.8 times that of the original UiO-66-NH2 and COP, respectively. In-situ XPS and Kelvin probe technology verify that UiO-66-NH2 and Ag nanoparticles provide more photogenerated electrons to COP. The cleavage and conversion of N2 to NH4+ on U6N@COP-Ag was confirmed by the enhancement of NH bonds and NH4+ characteristic absorption peaks in the in-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS). This work presents a great method to improve the Z-scheme heterojunction photogenerated carrier utilization and the density of semiconductor carriers at the reducing end by the noble metal SPR effect, which is more conducive to enhance the redox reaction of the catalyst.
RESUMEN
OBJECTIVES: Monitoring of therapeutic antibody adalimumab (ADL) and of anti-adalimumab antibodies (AAA) in autoimmune diseases' patient sera has achieved increased attention since several studies showed a correlation between AAA levels and treatment failure. We evaluated a new surface plasmon resonance (SPR)-based method that, with slight changes in the analysis condition and in the ligand immobilized on the chip surface, allows to monitor both AAA and ADL. This new label-free method does not require sample pretreatments, and it is fully automated, only requiring the preparation of the chip, which can be used for multiple analysis, and the preparation of the sample sets. DESIGN & METHODS: Sera from ADL-treated patients (nâ¯=â¯47) and controls (nâ¯=â¯13) were included in this study. Quantitative analysis of AAA and ADL were performed separately using a new SPR-biosensor, and a commercially available ELISA kit. Agreement was defined by overall, positive and negative agreement. Wilson Score was used to calculate confidence intervals (CI) on binomial probability and Spearman's rho and Bland-Altman test were used to assess correlations. RESULTS: ; ELISA and SPR-based assay were able to identify circulating AAA in ADL-treated patients, with the percentage of positivity varying among the methods, with an overall agreement of 79%. AAA were detected in 18 (38%) out of the 47 treated patients by the ELISA whereas SPR-based assay detected 10 (21%) out of 47 samples. CONCLUSIONS: Real-time label free SPR-based protocol for both AAA and ADL quantification has been set-up. Although quantitative differences were observed when compared with ELISA, the agreement among methodologies was high, particularly for ADL quantification within the therapeutic window of the drug.
RESUMEN
We demonstrate modulation of the surface plasmon resonance in nonstoichiometric copper phosphide nanocrystals using spectroelectrochemical methods. Application of an anodic potential resulted in a blue-shift of the surface plasmon resonance and an incremental increase in its extinction coefficient. Conversely, upon application of a cathodic potential, the surface plasmon band red-shifted and reduced in intensity. These changes were found to be reversible over multiple cycles of anodic and cathodic potential steps. We also discuss how the postsynthetic ligand treatment impacts the surface plasmon peak and the structure of Cu3-xP nanocrystals. For example, the addition of alkylthiols resulted in the chemical decomposition of the nanocrystals. This work demonstrates how the surface plasmon peak in Cu3-xP can be used to probe changes in the structure and carrier density in these nanocrystals.
RESUMEN
Single-stranded DNA-binding protein (SSB) is essential to DNA replication, DNA repair, and homologous genetic recombination. Our previous study on the crystal structure of a C-terminally truncated SSB from Helicobacter pylori, HpSSBc, in complex with single-stranded DNA (ssDNA) suggests that several aromatic residues, including Phe37, Phe50, Phe56, and Trp84, were involved in ssDNA binding. To investigate the importance of these aromatic residues, the binding activity of four site-directed HpSSB mutants, including F37A HpSSB, F50A HpSSB, F56A HpSSB, and W84A HpSSB, was compared to that of wild-type HpSSB and HpSSBc by means of electrophoresis mobility shift assay (EMSA), tryptophan quenching fluorescence titration, and surface plasmon resonance (SPR). Molecular docking and molecular dynamic (MD) simulation of a F37A and a quadruple mutation model of HpSSBc support that the ssDNA-HpSSBc complex was destabilized when either one or four of the aromatic residues were mutated. The findings of this study suggest that mutation of the phenylalanine and tryptophan residues within the oligonucleotide-binding domain significantly diminished the ssDNA binding capability of HpSSB, highlighting the crucial role these aromatic residues play in the binding of ssDNA by HpSSB.
RESUMEN
Gold Janus nanomaterials have a tremendous significance for the novel bifunctional materials, significantly expanding the application scope of gold nanomaterials, especially Janus gold-thiol coordination polymer due to their exceptional biological characteristics, stability, plasmon effect, etc. The recent research on Janus gold nanoparticles and monolayer films of preparation and application has been summarized and in this review. To begin, we briefly introduce overview of Janus nanomaterials which received intense attention, outline current research trends, and detail the preparation and application of gold nanomaterials. Subsequently, we present comprehensively detailing fabrication strategies and applications of Janus gold nanoparticles. Additionally, we survey recent studies on the Janus gold nano-thickness films and point out the outstanding advantage of application on the tunable surface plasmon resonance, high sensitivity of surface-enhanced Raman scattering and electrical analysis fields. Finally, we discuss the emerging trends in Janus gold nanomaterials and address the associated challenges, thereby providing a comprehensive overview of this area of research.
RESUMEN
Optical biosensors are emerging as a promising technique for the sensitive and accurate detection of cancer biomarkers, enabling significant advancements in the field of early diagnosis. This study elaborates on the latest developments in optical biosensors designed for detecting cancer biomarkers, highlighting their vital significance in early cancer diagnosis. When combined with targeted nanoparticles, the bio-fluids can help in the molecular stage diagnosis of cancer. This enhances the discrimination of disease from the normal subjects drastically. The optical sensor methods that are involved in the disease diagnosis and imaging of cancer taken for the present review are surface plasmon resonance, localized surface plasmon resonance, fluorescence resonance energy transfer, surface-enhanced Raman spectroscopy and colorimetric sensing. The article meticulously describes the specific biomarkers and analytes that optical biosensors target. Beyond elucidating the underlying principles and applications, this article furnishes an overview of recent breakthroughs and emerging trends in the field. This encompasses the evolution of innovative nanomaterials and nanostructures designed to augment sensitivity and the incorporation of microfluidics for facilitating point-of-care testing, thereby charting a course towards prospective advancements.
RESUMEN
Localized surface plasmon resonance (LSPR) gas sensitivity is introduced as a new parameter to evaluate the performance of plasmonic gas sensors. A model is proposed to consider the plasmonic sensors' surface sensitivity and plasmon decay length and correlate the LSPR response, measured upon gas exchange, with an equivalent refractive index change consistent with adsorbed gas layers. To demonstrate the applicability of this new parameter, ellipsoidal gold nanoparticles (NPs) arranged in densely packed hexagonal lattices were fabricated. The main advantages of these sensors are the small and tunable interparticle gaps (18-29 nm) between nanoparticles (diameters: 72-88 nm), with their robust and scalable fabrication technology that allows the well-ordered arrangement to be maintained on a large (cm2 range) area. The LSPR response of the sensors was tested using an LSPR sensing system by switching the gas atmosphere between inorganic gases, namely He/Ar and Ar/CO2, at constant pressure and room temperature. It was shown that this newly proposed parameter can be generally used for benchmarking plasmonic gas sensors and is independent of the type and pressure of the tested gases for a sensor structure. Furthermore, it resolves the apparent disagreement when comparing the response of plasmonic sensors tested in liquids and gases.
RESUMEN
Lectins are widely employed for the assessment of protein glycosylation as their carbohydrate binding specificities have been well characterized. In glycosylation assays, lectins are often conjugated with biotin tags, which interact with streptavidin to functionalize biosensing surfaces or recruit signal generating molecules, depending on the assay configuration. We here demonstrate that a high degree of biotin conjugation can limit total capture to streptavidin functionalized SPR surfaces due to multipoint binding, and can additionally bias the reported kinetic evaluations when measuring the interaction between lectins and glycoproteins by SPR. For microplate assays using different configurations, high biotinylation ratios can effectively amplify the signal obtained when using Streptavidin conjugates for detection, in some cases significantly lowering the limit of detection. The cumulative results express the importance of customizing the ligand biotinylation ratios for different assay configurations, as commercially obtained pre-biotinylated lectins are not necessarily optimized for different assay configurations.
RESUMEN
Recent advancements in signal amplifiers, such as biofunctionalized gold nanoparticles (AuNPs) have improved the surface plasmon resonance (SPR) performance. However, the correlation between the sizes of DNA-Au conjugates and the SPR chips remains elusive. We investigated how the size of AuNPs functioned with DNA detection probes (D-AuNPs) affect SPR signals in sandwich DNA hybridization assays. The effects of three sizes (5, 13, and 29 nm) of D-AuNPs with an equal surface probe density were systematically compared to delineate the relationship between signal amplification and steric hindrance. Sporadically adsorbed target DNA on sparse capture probe-coated chips led to a growth of signal amplification with larger D-AuNPs. In contrast, on dense capture probe-coated SPR chips, when the target DNA concentration was above 1.5 nM, the medium-sized 13-nm AuNPs displayed 1.7- and 1.3-fold enhancement factors than 5-nm and 29-nm ones, respectively. Our results indicate the steric hindrance disturbs the capture of D-AuNPs on dense target DNA-modified chips, rendering the surface density of captured D-AuNPs a determining factor of the sensor response. Alternatively, the sensor sensitivity to D-AuNP surface density is crucial on chips with sparse target DNA. These insights should stimulate and guide future research on surface functionalization toward SPR sensors and AuNPs.
RESUMEN
A simple method for one-step synthesis of aggregated gold nanoparticles (a-AuNPs) using single-layer carbon dots (s-CDs) as the capping agents has been proposed. The obtained a-AuNPs are mainly composed of several spherical AuNPs of 20-25 nm sized, which aggregate to form nanogaps of â¼1 nm. Furthermore, the obtained a-AuNPs produce a strong localized surface plasmon resonance (LSPR) absorption band centered at around 640 nm, which is quite close to the wavelength of the commonly used 633 nm laser in surface enhanced Raman scattering (SERS). Thus, under the irradiation of 633 nm laser, a lot of electromagnetic field "hot spots" are formed at around the nanogaps, and strong SERS activity is achieved. The obtained a-AuNPs are dropped on tin-foil wafers to fabricate SERS substrates, which show the advantages of high sensitivity, fast response, good repeatability and satisfactory stability. On the basis, a sensitive SERS sensor is developed to detect malachite green in aquaculture water, with a low detection limit of 1 × 10-9 mol/L.
RESUMEN
The visualization of the spatial distributions of gases from various sources is essential to understanding the composition, localization, and behavior of these gases. In this study, an inkjet-printed localized surface plasmon resonance (LSPR) subpixel gas sensor array was developed to visualize the spatial distributions of gases and to differentiate between acetic acid, geraniol, pentadecane, and cis-jasmone. The sensor array, which integrates gold nanoparticles (AuNPs), silver nanoparticles (AgNPs), and fluorescent pigments, was positioned 3 cm above the gas source. Hyperspectral imaging was used to capture the LSPR spectra across the sensor array, and these spectra were then used to construct gas information matrices. Principal component analysis (PCA) enabled effective classification of the gases and localization of their sources based on observed spectral differences. Heat maps that visualized the gas concentrations were generated using the mean squared error (MSE) between the sensor responses and reference spectra. The array identified and visualized the four gas sources successfully, thus demonstrating its potential for gas localization and detection applications. The study highlights a straightforward, cost-effective approach to gas sensing and visualization, and in future work, we intend to refine the sensor fabrication process and enhance the detection of complex gas mixtures.
RESUMEN
This paper presents the design and simulation of a surface plasmon resonance (SPR) biosensor using a Platinum diselenide (PtSe2) and Blue Phosphorus/tungsten disulfide (BlueP/WS2) heterostructure for biosensing protocols. The simulation is done by using a finite element method (FEM) based COMSOL Multiphysics software. The performance of the SPR biosensor is then optimized for obtaining maximum sensitivity, quality factor, detection accuracy, and low limit of detection (LOD). The SPR biosensor demonstrates a maximum sensitivity of 234 deg/RIU, suggesting its ability to detect minute refractive index changes with remarkable precision. Furthermore, a quality factor of 390 RIU-1 demonstrates the biosensor's capacity to detect tiny fluctuations in target analyte concentration. The achieved detection accuracy of 7.8 deg-1 presents the biosensor's ability to detect target biomolecule solutions in the desired RI range. The remarkably low LOD of 4.26 × 10-6 ensures early and accurate detection. The significance of this research lies in five layered hetero-structure based combinations of BK7 prism, gold, PtSe2, BlueP/WS2 and sensing medium respectively. The introduction of transition metal dichalcogenides (TMDC) material of PtSe2 with a hybrid 2D nanomaterials heterostructure of BlueP and TMDCs offers a rapid, sensitive, label-free and reliable platform for early detection. Additionally, the FEM method allows for the investigation of physical phenomena as part of the work. In summary, the proposed senor outcomes effectively demonstrate the speedy capability of detecting any pathogens or analytes in the RI range of 1.330-1.350 with remarkable sensitivity and accuracy. The rapid detection without giving false results is the benefit of the proposed sensor structure.
RESUMEN
In this study, we evaluated the surface plasmon characteristics of periodic silver nanodisk structures fabricated on a dielectric thin-film spacer layer on a Ag mirror substrate (NanoDisk on Mirror: NDoM) through finite difference time domain (FDTD) simulations and experiments involving actual sample fabrication. Through FDTD simulations, it was confirmed that the NDoM structure exhibits two sharp peaks in the visible range, and by adjusting the thickness of the spacer layer and the size of the nanodisk structure, sharp peaks can be obtained across the entire visible range. Additionally, we fabricated the NDoM structure using electron beam lithography (EBL) and experimentally confirmed that the obtained peaks matched the simulation results. Furthermore, we discovered that applying annealing at an appropriate temperature to the fabricated structure enables the adjustment of the resonance peak wavelength and enhances the scattering intensity by approximately five times. This enhancement is believed to result from changes in the shape and size of the nanodisk structure, as well as a reduction in grain boundaries in the metal crystal due to annealing. These results have the potential to contribute to technological advancements in various application fields, such as optical sensing and emission enhancement.
RESUMEN
This paper discusses the fabrication of three-dimensional dendritic Ag nanostructures, showcasing pronounced Localized Surface Plasmon Resonance (LSPR) effects. These nanostructures, employed in surface-enhanced Raman scattering (SERS), function as sensors for lactic acid in artificial sweat. The dendritic structures of the silver nanoparticles (AgNPs) create an effective SERS substrate, with additional hotspots at branch junctures enhancing LSPR. We achieve differential LSPR effects by varying the distribution and spacing of branches and the overall morphology. Adjustments to electrodeposition parameters, such as current and plating solution protective agents on an anodized aluminum oxide (AAO) base, allow for precise control over LSPR intensities. By pre-depositing AgNPs, the electron transmission paths during electrodeposition are modified, which leads to optimized dendritic morphology and enhanced LSPR effects. Parameter optimization produces elongated rods with main and secondary branches, covered with uniformly sized, densely packed, non-overlapping spherical AgNPs. This configuration enhances the LSPR effect by generating additional hotspots beyond the branch tips. Fine-tuning the electrodeposition parameters improved the AgNPs' morphology, achieving uniform particle distribution and optimal spacing. Compared to non-SERS substrates, our structure amplified the Raman signal for lactic acid detection by five orders of magnitude. This method can effectively tailor SERS substrates for specific analytes and laser-based detection.
RESUMEN
Metal nanocages exhibit localized surface plasmon resonance that strongly absorbs and scatters light at specific wavelengths, making them potentially valuable for photothermal therapy and biological imaging applications. However, investigations on metal nanocages are still confined to high-cost and small-scale synthesis. The comprehensive analysis of optical properties and optimal size parameters of metal nanocages is rarely reported. This paper simulates the effects of materials (Ag, Au, and Cu), size parameters, refractive index of the surrounding medium, and orientation on the light absorption and scattering characteristics of the nanocages using the finite-element method and the size-dependent refractive-index model for metal nanoparticles. The results show that the Ag nanocages have excellent light absorption and scattering characteristics and respond significantly to the size parameters, while the refractive index and orientation of the surrounding medium have less effect on them. The Au nanocages also possess superior light absorption properties at specific incident wavelengths. This study also identified the optimized sizes of three metal nanocages at incident light wavelengths commonly used in biomedicine; it was also found that, under deep therapy conditions, Ag nanocages in particular exhibit the highest volume absorption and scattering coefficients of 0.708 nm-1 and 0.583 nm-1, respectively. These findings offer theoretical insights into preparing target nanocage particles for applications in photothermal therapy and biological imaging.
RESUMEN
This study investigates the optical properties of diffraction gratings using localized surface plasmon resonance (LSPR) with metal nano-hemispheres. We fabricated metal nano-hemisphere gratings (MNHGS) with Ga, Ag, and Au and examined their wavelength-selective diffraction properties. Our findings show that these gratings exhibit peak diffraction efficiencies at 300 nm, 500 nm, and 570 nm, respectively, corresponding to the LSPR wavelengths of each metal. The MNHGs were created through thermal nanoimprint and metal deposition, followed by annealing. The experimental and simulation results confirmed that the MNHGs selectively diffract light at their resonance wavelengths. Applying these findings to third-order nonlinear laser spectroscopy (MPT-TG method) enhances measurement sensitivity by reducing background noise through the selective diffraction of pump light while transmitting probe light. This innovation promises a highly sensitive method for observing subtle optical phenomena, enhancing the capabilities of nonlinear laser spectroscopy.
RESUMEN
The surface plasmon resonance (SPR) biosensor technology is a novel optical analysis method for studying intermolecular interactions. Owing to in-depth research on traditional Chinese medicine (TCM) in recent years, comprehensive and specific identification of components and target interactions has become key yet difficult tasks. SPR has gradually been used to analyze the active components of TCM owing to its high sensitivity, strong exclusivity, large flux, and real-time monitoring capabilities. This review sought to briefly introduce the active components of TCM and the principle of SPR, and provide historical and new insights into the application of SPR in the analysis of the active components of TCM.
RESUMEN
A novel thioxoimidazolidin-linked sialoside bovine serum albumin (WM-BSA) conjugate was synthesized and evaluated as an inhibitor of influenza virus hemagglutinin (HA) and neuraminidase (NA). The multivalent conjugate was prepared by the attachment of thioxoimidazolidin-sialoside monomer (WM) to BSA via adipate linker. Surface plasmon resonance analysis revealed that WM-BSA exhibited potent binding to recombinant influenza HA and NA proteins, with dissociation constants in the submicromolar range. WM-BSA also demonstrated inhibitory activities in the low micromolar range against HA and NA proteins from multiple influenza strains. Investigation of cytopathic effects in infected MDCK cells indicated that WM-BSA possessed antiviral activity with EC50 values of 35-55 µM. The multivalent presentation of sialosides on the BSA scaffold significantly enhanced both the binding affinity and degree of inhibition compared to the monomeric compound WM. These results demonstrate the potential of multivalent sialoside-protein conjugate as a platform for developing novel anti-influenza agent.
RESUMEN
A terahertz photonic crystal fiber with two sensing channels was designed. Graphene coated on the micro-grooves in the cladding was used as plasma material to introduce tunability. The dispersion relation, mode coupling, and sensing characteristics of the fiber were studied using the finite element method. Ultrahigh sensitivity of 2.014 THz/RIU and 0.734 GHz/°C were obtained for analytes with refractive index in the range of 1.33 to 1.4 and environment temperature in the range of 10-60 °C, respectively. Refractive index resolution can reach the order of 10-5. The dual parameter simultaneous detection, dynamic tunable characteristics, and working in the low-frequency range of terahertz enable the designed photonic crystal fiber to have application prospects in the field of biosensing.
RESUMEN
In this study, the binding behavior of ß-sitosterol with lysozyme (LZM) was elucidated by surface plasmon resonance (SPR), computational molecular docking and molecular dynamics simulation studies. Chicken egg white lysozyme (CEWLZM) served as a model protein. Tri-N-acetylchitotriose (NAG3) was used in the redocking experiments to generate precise binding location of the protein. ß-sitosterol displayed a slightly better binding energy (-6.68±0.04 kcal/mol) compared to NAG3. Further molecular dynamics simulations and MMPBSA analysis revealed that residues Glu35, Gln57-Asn59, Trp62, Ile98, Ala107 and Trp108 contribute to the binding energy. Then, 2.5 mg/mL CEWLZM, 1X PBS buffer (pH 7.4) as running and coupling buffers, 30 µL/min as flow rate were applied for SPR analysis. Serial ß-sitosterol injections (20-150 µM) were performed through SPR sensor surface. According to SPR binding study, KD value for ß-sitosterol-CEWLZM binding interaction was calculated as 71.34±9.79 µM. The results could provide essential knowledge for nutrition, pharmaceutical science, and oral biology.