Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front For Glob Change ; 5: 1-15, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36278245

RESUMEN

Nothophaeocryptopus gaeumannii is a common native, endophytic fungus of Douglas-fir foliage, which causes Swiss needle cast, an important foliage disease that is considered a threat to Douglas-fir plantations in Oregon. Disease expression is influenced by fungal fruiting bodies (pseudothecia), which plug the stomata and inhibit gas exchange. Trees are impacted when pseudothecia plug stomates on 1-year-old and older needles resulting in early needle abscission. Mature (100 years+) trees appear to be less impacted from disease, and we hypothesize this is due to the greater emergence of pseudothecia on older than younger needles, which allows for more needle retention. We measured the density of pseudothecia occluding stomates across 2- to 5-year-old needles from upper, middle, and lower canopy positions of mature trees at three sites in the Oregon Coast Range and two sites in the western Oregon Cascade Mountains. Binomial generalized linear mixed model (GLMM) was used to test for the effects of canopy position (upper, middle, and lower), sites, needle age (2-5 years old), and years (2016 and 2017), and their interactions on the pseudothecia density. Pseudothecia density varied annually depending on sites, needle age and canopy positions. Pseudothecia density peaked on 3-, and 4-year-old needles, however, needles emerging from the same year, like 2-year-old needles in 2016 and 3-year-old needles in 2017 both emerged in 2014, had consistently similar patterns of pseudothecia density for both years, across site and canopy positions. Canopy position was important for 3-, and 4-year-old needles, showing less pseudothecia in the lower canopy. This research confirms that N. gaeumannii pseudothecia density is greatest in 3- and 4-year old needles in mature trees in contrast to plantations where pseudothecia density usually peaks on 2-year-old needles, and that pseudothecia density (disease severity) is generally lower in mature trees. Something about mature forest canopies and foliage appears to increase the time it takes for pseudothecia to emerge from the needles, in contrast to younger plantations, thus allowing the mature trees to have greater needle retention.

2.
Tree Physiol ; 42(1): 5-25, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34528693

RESUMEN

Swiss needle cast (SNC), caused by a fungal pathogen, Nothophaeocryptopus gaeumannii, is a major forest disease of Douglas-fir (Pseudotsuga menziesii) stands of the Pacific Northwest (PNW). There is mounting concern that the current SNC epidemic occurring in Oregon and Washington will continue to increase in severity, frequency and spatial extent with future warming. Nothophaeocryptopus gaeumannii occurs wherever its host is found, but very little is known about the history and spatial distribution of SNC and its effects on growth and physiological processes of mature and old-growth forests within the Douglas-fir region of the PNW. Our findings show that stem growth and physiological responses of infected Douglas-fir to climate and SNC were different between sites, growth periods and disease severity based on cellulosic stable carbon and oxygen isotope ratios and ring width data in tree rings. At a coastal Oregon site within the SNC impact zone, variations in stem growth and Δ13C were primarily influenced by disproportional reductions in stomatal conductance (gs) and assimilation (A) caused by a loss of functioning stomates through early needle abscission and stomatal occlusion by pseudothecia of N. gaeumannii. At the less severely infected inland sites on the west slopes of Oregon's Cascade Range, stem growth correlated negatively with δ18O and positively with Δ13C, indicating that gs decreased in response to high evaporative demand with a concomitant reduction in A. Current- and previous-years summer vapor pressure deficit was the principal seasonal climatic variable affecting radial stem growth and the dual stable isotope ratios at all sites. Our results indicate that rising temperatures since the mid-1970s has strongly affected Douglas-fir growth in the PNW directly by a physiological response to higher evaporative demand during the annual summer drought and indirectly by a major SNC epidemic that is expanding regionally to higher latitudes and higher elevations.


Asunto(s)
Pseudotsuga , Carbono , Sequías , Isótopos de Oxígeno , Pseudotsuga/fisiología , Estaciones del Año
3.
J For ; 119(4): 407-421, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35757814

RESUMEN

Swiss needle cast (SNC), caused by Nothophaeocryptopus gaeumannii, is a foliage disease of Douglas-fir (Pseudotsuga menziesii), that reduces growth in native stands and exotic plantations worldwide. An outbreak of SNC began in coastal Oregon in the mid-1990s and has persisted since that time. Here we review the current state of knowledge after 24 years of research and monitoring, with a focus on Oregon, although the disease is significant in coastal Washington and has recently emerged in southwestern British Columbia. We present new insights into SNC distribution, landscape patterns, disease epidemiology and ecology, host-pathogen interactions, trophic and hydrologic influences, and the challenges of Douglas-fir plantation management in the presence of the disease. In Oregon, the SNC outbreak has remained geographically contained but has intensified. Finally, we consider the implications of climate change and other recently emerged foliage diseases on the future of Douglas-fir plantation management.

4.
Ecol Evol ; 9(19): 11379-11394, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31641480

RESUMEN

The environment has a strong influence on the abundance and distribution of plant pathogenic organisms and plays a major role in plant disease. Climatological factors may also alter the dynamics of the interactions between plant pathogens and their hosts. Nothophaeocryptopus (=Phaeocryptopus) gaeumannii, the causal agent of Swiss needle cast (SNC) of Douglas-fir, is endemic to western North America where it exists as two sympatric, reproductively isolated lineages. The abundance of this fungus and the severity of SNC are strongly influenced by climate. We used statistical and population genetic analyses to examine relationships between environment, pathogen population structure, and SNC severity. Although N. gaeumannii Lineage 2 in western Oregon and Washington was most abundant where SNC symptoms were most severe, we did not detect a significant relationship between Lineage 2 and disease severity. Warmer winter temperatures were inversely correlated with foliage retention (AFR) and positively correlated with the relative abundance of Lineage 2 (PL2). However when distance inland, which was strongly correlated with both AFR and PL2, was included in the model, there was no significant relationship between Lineage 2 and AFR. Spring/early summer dew point temperatures also were positively associated with total N. gaeumannii abundance (colonization index (CI)) and inversely correlated with AFR. Warmer summer mean temperatures were associated with lower CI and higher AFR. Our results suggest that the two lineages have overlapping environmental optima, but slightly different tolerance ranges. Lineage 2 was absent from more inland sites where winters are colder and summers are warm and dry, while Lineage 1 occurred at most sites across an environmental gradient suggesting broader environmental tolerance. These relationships suggest that climate influences the abundance and distribution of this ecologically important plant pathogen and may have played a role in the evolutionary divergence of these two cryptic fungal lineages.

5.
Sci Total Environ ; 691: 112-123, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31319249

RESUMEN

Natural disturbances help maintain healthy forested and aquatic ecosystems. However, biotic and abiotic disturbance regimes are changing rapidly. For example, the Swiss needle cast (SNC) epidemic in the Coast Range of Oregon in the U.S. Pacific Northwest has increased in area from 53,050 to 238,705ha over the 1996-2015 period. We investigated whether the hydrologic regime (i.e., annual streamflow, runoff ratio, and magnitude and timing of peak flows and low flows) was affected by SNC in 12 catchments in western Oregon. The catchments ranged in size from 183 to 1834km2 and area affected by SNC from 0 to 90.5%. To maximize the number of catchments included in the study, we analyzed 20years of SNC aerial survey data and 15-26years of stream discharge (Q) and PRISM precipitation (P) and air temperature (Tair) data to test for trends in hydrologic variables for each catchment. As expected, we found that runoff ratios (Q/P) increased in five catchments, all with an area impacted by SNC >10%. This was likely due to the effects of SNC on the hydraulic architecture (i.e., needle retention, sapwood area, sapwood permeability) of affected trees, leading to decreased canopy interception and transpiration losses. Interestingly, two catchments with the greatest area affected by SNC showed no changes in hydrologic regime. The lack of hydrologic response could either be due to compensatory transpiration by vegetation unaffected by the disease or sub-canopy abiotic evaporation, which counteracted reductions in transpiration. This study is the first to illustrate that chronic canopy disturbance from a foliage pathogen can influence catchment scale hydrology.


Asunto(s)
Monitoreo del Ambiente , Bosques , Enfermedades de las Plantas , Ríos/química , Movimientos del Agua , Ecosistema , Hidrología , Oregon , Árboles
6.
Tree Physiol ; 34(3): 218-28, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24550088

RESUMEN

Stored non-structural carbohydrates (NSCs) could play an important role in tree survival in the face of a changing climate and associated stress-related mortality. We explored the effects of the stomata-blocking and defoliating fungal disease called Swiss needle cast on Douglas-fir carbohydrate reserves and growth to evaluate the extent to which NSCs can be mobilized under natural conditions of low water stress and restricted carbon supply in relation to potential demands for growth. We analyzed the concentrations of starch, sucrose, glucose and fructose in foliage, twig wood and trunk sapwood of 15 co-occurring Douglas-fir trees expressing a gradient of Swiss needle cast symptom severity quantified as previous-year functional foliage mass. Growth (mean basal area increment, BAI) decreased by ∼80% and trunk NSC concentration decreased by 60% with decreasing functional foliage mass. The ratio of relative changes in NSC concentration and BAI, an index of the relative priority of storage versus growth, more than doubled with increasing disease severity. In contrast, twig and foliage NSC concentrations remained nearly constant with decreasing functional foliage mass. These results suggest that under disease-induced reductions in carbon supply, Douglas-fir trees retain NSCs (either actively or due to sequestration) at the expense of trunk radial growth. The crown retains the highest concentrations of NSC, presumably to maintain foliage growth and shoot extension in the spring, partially compensating for rapid foliage loss in the summer and fall.


Asunto(s)
Ascomicetos/fisiología , Metabolismo de los Hidratos de Carbono , Hojas de la Planta/anatomía & histología , Hojas de la Planta/microbiología , Pseudotsuga/crecimiento & desarrollo , Pseudotsuga/microbiología , Estaciones del Año , Glucosa/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Pseudotsuga/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo
7.
Plant Cell Environ ; 37(7): 1536-47, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24330052

RESUMEN

Swiss needle cast (SNC) is a fungal disease of Douglas-fir (Pseudotsuga menziesii) that has recently become prevalent in coastal areas of the Pacific Northwest. We used growth measurements and stable isotopes of carbon and oxygen in tree-rings of Douglas-fir and a non-susceptible reference species (western hemlock, Tsuga heterophylla) to evaluate their use as proxies for variation in past SNC infection, particularly in relation to potential explanatory climate factors. We sampled trees from an Oregon site where a fungicide trial took place from 1996 to 2000, which enabled the comparison of stable isotope values between trees with and without disease. Carbon stable isotope discrimination (Δ(13)C) of treated Douglas-fir tree-rings was greater than that of untreated Douglas-fir tree-rings during the fungicide treatment period. Both annual growth and tree-ring Δ(13)C increased with treatment such that treated Douglas-fir had values similar to co-occurring western hemlock during the treatment period. There was no difference in the tree-ring oxygen stable isotope ratio between treated and untreated Douglas-fir. Tree-ring Δ(13)C of diseased Douglas-fir was negatively correlated with relative humidity during the two previous summers, consistent with increased leaf colonization by SNC under high humidity conditions that leads to greater disease severity in following years.


Asunto(s)
Dióxido de Carbono/metabolismo , Marcaje Isotópico , Hojas de la Planta/microbiología , Pseudotsuga/crecimiento & desarrollo , Pseudotsuga/microbiología , Árboles/crecimiento & desarrollo , Antifúngicos/farmacología , Isótopos de Carbono , Clima , Cicutas (Apiáceas)/efectos de los fármacos , Cicutas (Apiáceas)/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/efectos de los fármacos , Pseudotsuga/anatomía & histología , Pseudotsuga/metabolismo , Árboles/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA