Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
bioRxiv ; 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37546819

RESUMEN

Background: A great deal of work has revealed in structural detail the components of the machinery responsible for mRNA gene transcription initiation. These include the general transcription factors (GTFs), which assemble at promoters along with RNA Polymerase II (Pol II) to form a preinitiation complex (PIC) aided by the activities of cofactors and site-specific transcription factors (TFs). However, less well understood are the in vivo PIC assembly pathways and their kinetics, an understanding of which is vital for determining on a mechanistic level how rates of in vivo RNA synthesis are established and how cofactors and TFs impact them. Results: We used competition ChIP to obtain genome-scale estimates of the residence times for five GTFs: TBP, TFIIA, TFIIB, TFIIE and TFIIF in budding yeast. While many GTF-chromatin interactions were short-lived (< 1 min), there were numerous interactions with residence times in the several minutes range. Sets of genes with a shared function also shared similar patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC late in the assembly process, had residence times correlated with RNA synthesis rates. Conclusions: The datasets and results reported here provide kinetic information for most of the Pol II-driven genes in this organism and therefore offer a rich resource for exploring the mechanistic relationships between PIC assembly, gene regulation, and transcription. The relationships between gene function and GTF dynamics suggest that shared sets of TFs tune PIC assembly kinetics to ensure appropriate levels of expression.

2.
Mol Cell ; 81(17): 3576-3588.e6, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34384542

RESUMEN

RNA polymerase II (RNA Pol II) transcription reconstituted from purified factors suggests pre-initiation complexes (PICs) can assemble by sequential incorporation of factors at the TATA box. However, these basal transcription reactions are generally independent of activators and co-activators. To study PIC assembly under more realistic conditions, we used single-molecule microscopy to visualize factor dynamics during activator-dependent reactions in nuclear extracts. Surprisingly, RNA Pol II, TFIIF, and TFIIE can pre-assemble on enhancer-bound activators before loading into PICs, and multiple RNA Pol II complexes can bind simultaneously to create a localized cluster. Unlike TFIIF and TFIIE, TFIIH binding is singular and dependent on the basal promoter. Activator-tethered factors exhibit dwell times on the order of seconds. In contrast, PICs can persist on the order of minutes in the absence of nucleotide triphosphates, although TFIIE remains unexpectedly dynamic even after TFIIH incorporation. Our kinetic measurements lead to a new branched model for activator-dependent PIC assembly.


Asunto(s)
Complejo Mediador/metabolismo , ARN Polimerasa II/metabolismo , Iniciación de la Transcripción Genética/fisiología , Núcleo Celular/metabolismo , Complejo Mediador/genética , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula , TATA Box/genética , Proteína de Unión a TATA-Box/genética , Factor de Transcripción TFIIH/metabolismo , Factores de Transcripción TFII/metabolismo , Transcripción Genética/genética
3.
Mol Cell ; 81(16): 3386-3399.e10, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34265249

RESUMEN

The super elongation complex (SEC) contains the positive transcription elongation factor b (P-TEFb) and the subcomplex ELL2-EAF1, which stimulates RNA polymerase II (RNA Pol II) elongation. Here, we report the cryoelectron microscopy (cryo-EM) structure of ELL2-EAF1 bound to a RNA Pol II elongation complex at 2.8 Å resolution. The ELL2-EAF1 dimerization module directly binds the RNA Pol II lobe domain, explaining how SEC delivers P-TEFb to RNA Pol II. The same site on the lobe also binds the initiation factor TFIIF, consistent with SEC binding only after the transition from transcription initiation to elongation. Structure-guided functional analysis shows that the stimulation of RNA elongation requires the dimerization module and the ELL2 linker that tethers the module to the RNA Pol II protrusion. Our results show that SEC stimulates elongation allosterically and indicate that this stimulation involves stabilization of a closed conformation of the RNA Pol II active center cleft.


Asunto(s)
Factor B de Elongación Transcripcional Positiva/ultraestructura , ARN Polimerasa II/genética , Factores de Transcripción/genética , Factores de Elongación Transcripcional/genética , Regulación Alostérica/genética , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Microscopía por Crioelectrón , Humanos , Estructura Molecular , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Factor B de Elongación Transcripcional Positiva/genética , Unión Proteica/genética , Conformación Proteica , ARN Polimerasa II/ultraestructura , Elongación de la Transcripción Genética , Factores de Transcripción/ultraestructura , Transcripción Genética/genética , Factores de Elongación Transcripcional/ultraestructura
4.
Biomolecules ; 10(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32906795

RESUMEN

Mapping the route of nucleoside triphosphate (NTP) entry into the sequestered active site of RNA polymerase (RNAP) has major implications for elucidating the complete nucleotide addition cycle. Constituting a dichotomy that remains to be resolved, two alternatives, direct NTP delivery via the secondary channel (CH2) or selection to downstream sites in the main channel (CH1) prior to catalysis, have been proposed. In this study, accelerated molecular dynamics simulations of freely diffusing NTPs about RNAPII were applied to refine the CH2 model and uncover atomic details on the CH1 model that previously lacked a persuasive structural framework to illustrate its mechanism of action. Diffusion and binding of NTPs to downstream DNA, and the transfer of a preselected NTP to the active site, are simulated for the first time. All-atom simulations further support that CH1 loading is transcription factor IIF (TFIIF) dependent and impacts catalytic isomerization. Altogether, the alternative nucleotide loading systems may allow distinct transcriptional landscapes to be expressed.


Asunto(s)
Nucleótidos/química , Nucleótidos/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Dominio Catalítico , ADN/química , Difusión , Humanos , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Conformación Proteica , ARN/química , Factores de Transcripción TFII/química , Transcripción Genética
5.
Epigenetics Chromatin ; 13(1): 24, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32460824

RESUMEN

BACKGROUND: The YEATS domain is a highly conserved protein structure that interacts with acetylated and crotonylated lysine residues in N-terminal tails of histones. The budding yeast genome encodes three YEATS domain proteins (Taf14, Yaf9, and Sas5) that are all the subunits of different complexes involved in histone acetylation, gene transcription, and chromatin remodeling. As the strains deficient in all these three genes are inviable, it has been proposed that the YEATS domain is essential in yeast. In this study we investigate in more detail the requirement of YEATS domain proteins for yeast survival and the possible roles of Taf14 YEATS domain in the regulation of gene transcription. RESULTS: We found that YEATS domains are not essential for the survival of Saccharomyces cerevisiae cells. Although the full deletion of all YEATS proteins is lethal in yeast, we show that the viability of cells can be restored by the expression of the YEATS-less version of Taf14 protein. We also explore the in vivo functions of Taf14 protein and show that the primary role of its YEATS domain is to stabilize the transcription pre-initiation complex (PIC). Our results indicate that Taf14-mediated interactions become crucial for PIC formation in rpb9Δ cells, where the recruitment of TFIIF to the PIC is hampered. Although H3 K9 residue has been identified as the interaction site of the Taf14 YEATS domain in vitro, we found that it is not the only interaction target in vivo. CONCLUSIONS: Lethality of YEATS-deficient cells can be rescued by the expression of truncated Taf14 protein lacking the entire YEATS domain, indicating that the YEATS domains are not required for cell survival. The YEATS domain of Taf14 participates in PIC stabilization and acetylated/crotonylated H3K9 is not the critical target of the Taf14 YEATS domain in vivo.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Factor de Transcripción TFIID/metabolismo , Iniciación de la Transcripción Genética , Sitios de Unión , Histonas/metabolismo , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/genética
6.
Mol Cell ; 72(5): 836-848.e7, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30415952

RESUMEN

Transforming members of the MYC family (MYC, MYCL1, and MYCN) encode transcription factors containing six highly conserved regions, termed MYC homology boxes (MBs). By conducting proteomic profiling of the MB interactomes, we demonstrate that half of the MYC interactors require one or more MBs for binding. Comprehensive phenotypic analyses reveal that two MBs, MB0 and MBII, are universally required for transformation. MBII mediates interactions with acetyltransferase-containing complexes, enabling histone acetylation, and is essential for MYC-dependent tumor initiation. By contrast, MB0 mediates interactions with transcription elongation factors via direct binding to the general transcription factor TFIIF. MB0 is dispensable for tumor initiation but is a major accelerator of tumor growth. Notably, the full transforming activity of MYC can be restored by co-expression of the non-transforming MB0 and MBII deletion proteins, indicating that these two regions confer separate molecular functions, both of which are required for oncogenic MYC activity.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción TFII/genética , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos NOD , Unión Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Análisis de Supervivencia , Factores de Transcripción TFII/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Annu Rev Biophys ; 46: 59-83, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28532216

RESUMEN

Eukaryotic gene transcription requires the assembly at the promoter of a large preinitiation complex (PIC) that includes RNA polymerase II (Pol II) and the general transcription factors TFIID, TFIIA, TFIIB, TFIIF, TFIIE, and TFIIH. The size and complexity of Pol II, TFIID, and TFIIH have precluded their reconstitution from heterologous systems, and purification relies on scarce endogenous sources. Together with their conformational flexibility and the transient nature of their interactions, these limitations had precluded structural characterization of the PIC. In the last few years, however, progress in cryo-electron microscopy (cryo-EM) has made possible the visualization, at increasingly better resolution, of large PIC assemblies in different functional states. These structures can now be interpreted in near-atomic detail and provide an exciting structural framework for past and future functional studies, giving us unique mechanistic insight into the complex process of transcription initiation.


Asunto(s)
ARN Polimerasa II/metabolismo , Factores de Transcripción TFII/metabolismo , Transcripción Genética , Animales , Eucariontes , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1 , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Factores de Transcripción TFII/genética
8.
Plant J ; 89(4): 730-745, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27862530

RESUMEN

The evolutionarily conserved 12-subunit RNA polymerase II (Pol II) is a central catalytic component that drives RNA synthesis during the transcription cycle that consists of transcription initiation, elongation, and termination. A diverse set of general transcription factors, including a multifunctional TFIIF, govern Pol II selectivity, kinetic properties, and transcription coupling with posttranscriptional processes. Here, we show that TFIIF of Arabidopsis (Arabidopsis thaliana) resembles the metazoan complex that is composed of the TFIIFα and TFIIFß polypeptides. Arabidopsis has two TFIIFß subunits, of which TFIIFß1/MAN1 is essential and TFIIFß2/MAN2 is not. In the partial loss-of-function mutant allele man1-1, the winged helix domain of Arabidopsis TFIIFß1/MAN1 was dispensable for plant viability, whereas the cellular organization of the shoot and root apical meristems were abnormal. Forward genetic screening identified an epistatic interaction between the largest Pol II subunit nrpb1-A325V variant and the man1-1 mutation. The suppression of the man1-1 mutant developmental defects by a mutation in Pol II suggests a link between TFIIF functions in Arabidopsis transcription cycle and the maintenance of cellular organization in the shoot and root apical meristems.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción TFII/deficiencia , Factores de Transcripción TFII/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/genética , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Mutación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , ARN Polimerasa II/genética , Factores de Transcripción TFII/genética
9.
Transcription ; 7(4): 127-32, 2016 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-27327079

RESUMEN

Here, we discuss the overall architecture of the RNA polymerase I (Pol I) and III (Pol III) core enzymes and their associated general transcription factors in the context of models of the Pol I and Pol III pre-initiation complexes, thereby highlighting potential functional adaptations of the Pol I and Pol III enzymes to their respective transcription tasks. Several new insights demonstrate the great degree of specialization of each of the eukaryotic RNA polymerases that is only beginning to be revealed as the structural and functional characterization of all eukaryotic RNA polymerases and their pre-initiation complexes progresses.


Asunto(s)
Sitios de Unión , Secuencia Conservada , Complejos Multiproteicos/metabolismo , ARN Polimerasa III/metabolismo , ARN Polimerasa I/metabolismo , Iniciación de la Transcripción Genética , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa I/química , ARN Polimerasa III/química , Especificidad por Sustrato , Factor de Transcripción TFIIB/metabolismo , Factores de Transcripción TFII/metabolismo
10.
Transcription ; 7(4): 133-40, 2016 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-27223670

RESUMEN

Super elongation complex (SEC) belongs to a family of RNA polymerase II (Pol II) elongation factors that has similar properties as TFIIF, a general transcription factor that increases the transcription elongation rate by reducing pausing. Although SEC has TFIIF-like functional properties, it apparently lacks sequence and structural homology. Using HHpred, we find that SEC contains an evolutionarily related TFIIF-like subcomplex. We show that the SEC subunit ELL interacts with the Pol II Rbp2 subunit, as expected for a TFIIF-like factor. These findings suggest a new model for how SEC functions as a Pol II elongation factor and how it suppresses Pol II pausing.


Asunto(s)
Complejos Multiproteicos/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción TFII/metabolismo , Factores de Elongación Transcripcional/metabolismo , Secuencia de Aminoácidos , Humanos , Modelos Biológicos , Modelos Moleculares , Familia de Multigenes , Filogenia , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa II/metabolismo , Factores de Transcripción TFII/química , Factores de Transcripción TFII/genética , Factores de Elongación Transcripcional/química
11.
Proc Natl Acad Sci U S A ; 112(5): E410-9, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605892

RESUMEN

In human cells, the oxidative DNA lesion 8,5'-cyclo-2'-deoxyadenosine (CydA) induces prolonged stalling of RNA polymerase II (Pol II) followed by transcriptional bypass, generating both error-free and mutant transcripts with AMP misincorporated immediately downstream from the lesion. Here, we present biochemical and crystallographic evidence for the mechanism of CydA recognition. Pol II stalling results from impaired loading of the template base (5') next to CydA into the active site, leading to preferential AMP misincorporation. Such predominant AMP insertion, which also occurs at an abasic site, is unaffected by the identity of the 5'-templating base, indicating that it derives from nontemplated synthesis according to an A rule known for DNA polymerases and recently identified for Pol II bypass of pyrimidine dimers. Subsequent to AMP misincorporation, Pol II encounters a major translocation block that is slowly overcome. Thus, the translocation block combined with the poor extension of the dA.rA mispair reduce transcriptional mutagenesis. Moreover, increasing the active-site flexibility by mutation in the trigger loop, which increases the ability of Pol II to accommodate the bulky lesion, and addition of transacting factor TFIIF facilitate CydA bypass. Thus, blocking lesion entry to the active site, translesion A rule synthesis, and translocation block are common features of transcription across different bulky DNA lesions.


Asunto(s)
Daño del ADN , Purinas/metabolismo , ARN Polimerasa II/metabolismo , Secuencia de Bases , ADN/química , Oxidación-Reducción , Transcripción Genética
12.
J Biol Chem ; 289(16): 11143-11152, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24596085

RESUMEN

Gdown1, the substoichiometric 13th subunit of RNA polymerase II (pol II), has an important role in pausing during the initial stage of transcript elongation. However, Gdown1 quantitatively displaces the essential initiation factor TFIIF from free pol II and elongating pol II. Thus, it is not clear how or even if pol II can initiate in the presence of Gdown1. Using an in vitro transcription system with purified factors and pol II lacking Gdown1, we found that although Gdown1 is strongly inhibitory to transcription when prebound to pol II, a fraction of complexes do remain active. Surprisingly, when Gdown1 is added to complete preinitiation complexes (PICs), it does not inhibit initiation or functionally associate with the PICs. Gdown1 does associate with pol II during the early stage of transcript elongation but this association is competitive with TFIIF. By phosphorylating TFIIF, PICs can be assembled that do not retain TFIIF. Gdown1 also fails to functionally associate with these TFIIF-less PICs, but once polymerase enters transcript elongation, complexes lacking TFIIF quantitatively bind Gdown1. Our results provide a partial resolution of the paradox of the competition between Gdown1 and TFIIF for association with pol II. Although Gdown1 completely displaces TFIIF from free pol II and elongation complexes, Gdown1 does not functionally associate with the PIC. Gdown1 can enter the transcription complex immediately after initiation. Modification of TFIIF provides one pathway through which efficient Gdown1 loading can occur early in elongation, allowing downstream pausing to be regulated.


Asunto(s)
ARN Polimerasa II/química , Elongación de la Transcripción Genética/fisiología , Factores de Transcripción TFII/química , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción TFII/genética , Factores de Transcripción TFII/metabolismo
13.
J Biol Chem ; 289(18): 12657-65, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24634214

RESUMEN

Gdown1 is a substoichiometric subunit of RNA polymerase II (Pol II) that has been recently demonstrated to be involved in stabilizing promoter-proximal paused Pol II. It was shown to inhibit termination of Pol II by transcription termination factor 2 (TTF2) as well as block elongation stimulation by transcription factor IIF (TFIIF). Here, using in vitro transcription assays, we identified two functional domains in Gdown1. Although both are required to maintain a tight association with Pol II, the N- and C-terminal domains are responsible for blocking TTF2 and TFIIF, respectively. A highly conserved LPDKG motif found in the N-terminal domain of Gdown1 is also highly conserved in TTF2. Deletion of this motif eliminated the TTF2 inhibitory activity of Gdown1. We identified a phosphorylated form of Gdown1 with altered mobility in SDS-PAGE that appears during mitosis. A kinase in HeLa nuclear extract that caused the shift was partially purified. In vitro, Gdown1 phosphorylated by this kinase demonstrated reduced activity in blocking both TTF2 and TFIIF because of its reduced affinity for Pol II. Mass spectrometry identified Ser-270 as the site of this phosphorylation. An S270A mutation was not phosphorylated by the partially purified kinase, and an S270E mutation partially mimicked the properties of phospho-Gdown1. Gdown1 Ser-270 phosphorylation occurs predominately during mitosis, and we suggest that this would enable TTF2 to terminate all Pol II even if it is associated with Gdown1.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN Polimerasa II/metabolismo , Serina/metabolismo , Factores de Transcripción/metabolismo , Terminación de la Transcripción Genética , Adenosina Trifosfatasas/química , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Unión Competitiva , Western Blotting , Proteínas de Unión al ADN/química , Células HeLa , Humanos , Espectrometría de Masas , Mitosis/genética , Datos de Secuencia Molecular , Mutación , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/genética , Homología de Secuencia de Aminoácido , Serina/química , Serina/genética , Factores de Transcripción/química , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo
14.
Transcription ; 5(1): e27050, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25764109

RESUMEN

The general transcription factors required for the assembly of the RNA polymerase II preinitiation complex at TATA-dependent promoters are well known. However, recent studies point to two quite distinct pathways for assembly of these components into functional transcription complexes. In this review, the two pathways are compared and potential implications for gene regulatory mechanisms are discussed.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa II/fisiología , Factores Generales de Transcripción/fisiología , Iniciación de la Transcripción Genética , Humanos , Modelos Genéticos , Regiones Promotoras Genéticas/fisiología , ARN Polimerasa II/química , TATA Box , Factores Generales de Transcripción/genética , Factores Generales de Transcripción/metabolismo , Levaduras/genética
15.
Gene ; 526(1): 1-6, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23608169

RESUMEN

The Eighth International Biennial Conference on RNA polymerases I and III (the 'Odd Pols') was held June 7-11, 2012 at The Airlie Center in Warrenton Virginia, USA. It was sponsored by the Universite Laval and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, and organized by Rich Maraia and Tom Moss. The meeting honored the memory of Pierre Thuriaux (Jan 1, 1950-March 18, 2012) and David Schneider reminisced on the important accomplishments his mentor Masayasu Nomura (1927-2011). The goal of the conference was to bring together the world's experts on RNA polymerase I and RNA polymerase III to highlight and share their latest results and varied experimental approaches. The meeting drew attendees from twelve countries and most contributed through oral and poster presentations. The talks were organized into several sessions subdivided into 10 distinct topics. The keynote speaker, Ian Willis, opened the meeting with his presentation entitled "New Regulators of Signaling to Odd Pols" and the closing presentation was given by Patrick Cramer with his presentation "Conservation of the RNA polymerase I, II and III transcription initiation machineries". Here we present some of the highlights from the meeting using summaries provided by the participants.


Asunto(s)
ARN Polimerasa III , ARN Polimerasa I , Animales , Epigénesis Genética , Humanos , Neoplasias/enzimología , Neoplasias/genética , ARN Polimerasa I/química , ARN Polimerasa I/metabolismo , ARN Polimerasa III/química , ARN Polimerasa III/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA