Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Histochem Cell Biol ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152325

RESUMEN

The pathophysiology of hypertrophic scar (HS) shares similarities with cancer. HOXC10, a gene significantly involved in cancer development, exhibits higher expression levels in HS than in normal skin (NS), suggesting its potential role in HS regulation. And the precise functions and mechanisms by which HOXC10 influences HS require further clarification. Gene and protein expressions were analyzed using raeal-time quantitative polymerase chain reaction (RT-qPCR) and western blot techniques. Cell proliferation and migration were evaluated using EdU proliferation assays, CCK-8 assays, scratch assays, and Transwell assays. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were conducted to investigate the interactions between HOXC10 and STMN2. HOXC10 and STMN2 expression levels were significantly higher in HS tissues compared with NS tissues. Silencing HOXC10 led to decreased activation, proliferation, migration, and fibrosis in hypertrophic scar fibroblasts (HSFs). Our findings also indicate that HOXC10 directly targets STMN2. The promotional effects of HOXC10 knockdown on HSF activation, proliferation, migration, and fibrosis were reversed by STMN2 overexpression. We further demonstrated that HOXC10 regulates HSF activity through the TGF-ß/Smad signaling pathway. HOXC10 induces the activation and fibrosis of HSFs by promoting the transcriptional activation of STMN2 and engaging the TGF-ß/Smad signaling pathway. This study suggests that HOXC10 could be a promising target for developing treatments for HS.

2.
Animals (Basel) ; 14(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39199957

RESUMEN

The aim of this study was to investigate the effects of hypoxia-induced phenotype, glucose metabolism, ROS levels, and the PDK1-mediated regulation of TGF-ß/Smad signaling in yellow cattles, yaks, and those overexpressing PDK1 PASMCs using growth curves, flow cytometry, scratch experiments, glucose and lactic acid assays, RT-qPCR, and Western blotting. The results showed that hypoxia significantly promoted proliferation, migration, antiapoptosis, ROS levels, glucose consumption, and lactate production in yellow cattle PASMCs (p < 0.05), and the cells were dedifferentiated from the contractile phenotype; conversely, hypoxia had no significant effect on yak PASMCs (p > 0.05). PDK1 overexpression significantly promoted proliferation, antiapoptosis, glucose consumption, and lactate production in yak PASMCs under normoxia and hypoxia (p < 0.05), decreased their migration levels under hypoxia (p < 0.05), and dedifferentiated the contractile phenotype of the cells. Overexpression of PDK1 in yak PASMCs is detrimental to their adaptation to hypoxic environments. Yak PASMCs adapted to the effects of hypoxia on lung tissue by downregulating the expression of genes related to the PDK1 and TGF-ß/Smad signaling pathways. Taken together, the regulation of PDK1-mediated TGF-ß/Smad signaling may be involved in the process of yaks' adaptation to the hypoxic environment of the plateau, reflecting the good adaptive ability of yaks. The present study provides basic information to further elucidate the mechanism of PDK1-mediated TGF-ß/Smad signaling induced by hypoxia in the lungs of yaks, as well as target genes for the treatment of plateau diseases in humans and animals.

3.
J Inflamm Res ; 17: 5587-5598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193123

RESUMEN

Background: Traumatic heterotopic ossification (HO) is a devastating sequela of orthopedic surgeries and traumatic injuries; however, few studies have explored the effects of the estrogen-deficient state on HO formation. In the present study, we investigated the impact of estrogen deficiency on ectopic cartilage and bone formation in tendon after Achilles tenotomy in an ovariectomized mouse model. Methods: A total of 45 female C57BL/6 mice were randomly divided into three groups: sham-operated (control), estrogen depletion by ovariectomy (OVX) and OVX with 17ß-estradiol supplementation (OVX + E2), with 15 animals in each group. Three weeks after OVX, all mice were subjected to an Achilles tenotomy using a posterior midpoint approach to induce HO. At 1, 3 and 9 weeks after tenotomy, the left hind limbs were harvested for histology, immunohistochemistry and immunofluorescence evaluations. The volume of ectopic bone was assessed by micro-CT. Results: Mice in the OVX group formed more ectopic cartilage 3 weeks after tenotomy, as well as ectopic bone 9 weeks after tenotomy, compared to the control group. Estrogen deficiency resulted in more severe inflammatory infiltration at the injury sites 1 week after tenotomy, involving the recruitment of more macrophages and mast cells, as well as increasing the expressions of pro-inflammatory mediators, including IL-1ß, IL-6, and TNF-α. Moreover, the local TGF-ß/SMAD signaling pathway was dysregulated after OVX, which manifested as upregulated expressions of TGF-ß and pSMAD2/3. E2 supplementation protected against OVX-induced HO deterioration, inhibited inflammatory infiltration, and downregulated the TGF-ß/SMAD signaling pathway. Conclusion: Estrogen deficiency exacerbated HO formation in the Achilles tenotomy model. These findings might be attributable to the disturbance of the inflammatory response and the activation of TGF-ß/SMAD signaling at the injury sites during the early stages of HO development.

4.
J Exp Clin Cancer Res ; 43(1): 208, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39061061

RESUMEN

BACKGROUND: Colorectal cancer (CRC) metachronous liver metastasis is a significant clinical challenge, largely attributable to the late detection and the intricate molecular mechanisms that remain poorly understood. This study aims to elucidate the role of Solute Carrier Family 14 Member 1 (SLC14A1) in the pathogenesis and progression of CRC metachronous liver metastasis. METHODS: We conducted a comprehensive analysis of CRC patient data from The Cancer Genome Atlas and GSE40967 databases, focusing on the differential expression of genes associated with non-metachronous liver metastasis and metachronous liver metastasis. Functional assays, both in vitro and in vivo, were performed to assess the biological impact of SLC14A1 modulation in CRC cells. Gene set enrichment analysis, molecular assays and immunohistochemical analyses on clinical specimens were employed to unravel the underlying mechanisms through which SLC14A1 exerts its effects. RESULTS: SLC14A1 was identified as a differentially expressed gene, with its overexpression significantly correlating with poor relapse-free and overall survival. Mechanistically, elevated SLC14A1 levels enhanced CRC cell invasiveness and migratory abilities, corroborated by upregulated TGF-ß/Smad signaling and Epithelial-Mesenchymal Transition. SLC14A1 interacted with TßRII and stabilized TßRII protein, impeding its Smurf1-mediated K48-linked ubiquitination and degradation, amplifying TGF-ß/Smad signaling. Furthermore, TGF-ß1 reciprocally elevated SLC14A1 mRNA expression, with Snail identified as a transcriptional regulator, binding downstream of SLC14A1's transcription start site, establishing a positive feedback loop. Clinically, SLC14A1, phosphorylated Smad2, and Snail were markedly upregulated in CRC patients with metachronous liver metastasis, underscoring their potential as prognostic markers. CONCLUSIONS: Our findings unveil SLC14A1 as a critical regulator in CRC metachronous liver metastasis, providing novel insights into the molecular crosstalk between SLC14A1 and TGF-ß/Smad signaling. These discoveries not only enhance our understanding of CRC metachronous liver metastasis pathogenesis, but also highlight SLC14A1 as a promising target for therapeutic intervention and predictive marker.


Asunto(s)
Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas , Transducción de Señal , Factor de Crecimiento Transformador beta , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones , Animales , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular Tumoral , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Pronóstico
5.
Transl Lung Cancer Res ; 13(6): 1331-1345, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38973962

RESUMEN

Background: Lung adenocarcinoma (LUAD) is one of the most common types of cancer worldwide. Proteasome activator subunit 3 (PSME3) is a subunit of a proteasome activator, and changes in PSME3 can lead to the development of many diseases in organisms. However, the specific mechanism of PSME3 in LUAD has not yet been elucidated. This study initially revealed the mechanism of PSME3 promoting the progression of lung adenocarcinoma, which provided a potential molecular target for clinical treatment. Methods: PSME3 expression in LUAD cells and tissues was assessed by bioinformatics analysis, immunohistochemistry (IHC), Western blotting (WB), and quantitative real time polymerase chain reaction (qRT-PCR). A series of functional experiments were used to evaluate the effects of PSME3 knockdown and overexpression on LUAD cell proliferation, migration, and apoptosis. The potential mechanism of PSME3 was explored by transcriptome sequencing and WB experiments. Results: In this study, our initial findings indicated that PSME3 expression was abnormally high in LUAD and was associated with poor patient prognosis. Further, we found that the downregulation of PSME3 significantly inhibited LUAD cell proliferation, an effect that was verified by subcutaneous tumor formation experiments in nude mice. Similarly, the rate of invasion and migration of LUAD cells significantly decreased after the downregulation of PSME3. Using flow cytometry, we found that the knockdown of PSME3 caused cell cycle arrest at the G1/S phase. Through transcriptome sequencing, we found that the transforming growth factor-beta (TGF-ß)/SMAD signaling pathway was closely related to LUAD, and we then validated the pathway using WB assays. Conclusions: We demonstrated that PSME3 was abnormally highly expressed in LUAD and related to poor patient prognosis; therefore, targeting PSME3 in the treatment of LUAD may represent a novel therapeutic approach.

6.
Res Sq ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38883762

RESUMEN

Apoptotic vesicles (apoVs) play a vital role in various pathological conditions; however, we have yet to fully understand their precise biological effects in rescuing impaired mesenchymal stem cells (MSCs) and regulating tissue homeostasis. Here, we proved that systemic infusion of bone marrow MSCs derived from wild-type (WT) mice effectively improved the osteopenia phenotype and hyperimmune state in ovariectomized (OVX) mice. Importantly, the WT MSCs rescued the impairment of OVX MSCs both in vivo and in vitro, whereas OVX MSCs did not show the same efficacy. Interestingly, treatment with apoVs derived from WT MSCs (WT apoVs) restored the impaired biological function of OVX MSCs and their ability to improve osteoporosis. This effect was not observed with OVX MSCs-derived apoVs (OVX apoVs) treatment. Mechanistically, the reduced miR-145a-5p expression hindered the osteogenic differentiation and immunomodulatory capacity of OVX MSCs by affecting the TGF-ß/Smad 2/3-Wnt/ß-catenin signaling axis, resulting in the development of osteoporosis. WT apoVs directly transferred miR-145a-5p to OVX MSCs, which were then reused to restore their impaired biological functions. Conversely, treatment with OVX apoVs did not produce significant effects due to their limited expression of miR-145a-5p. Overall, our findings unveil the remarkable potential of apoVs in rescuing the biological function and therapeutic capability of MSCs derived from individuals with diseases. This discovery offers a new avenue for exploring apoVs-based MSC engineering and expands the application scope of stem cell therapy, contributing to the maintenance of bone homeostasis through a previously unrecognized mechanism.

7.
Heliyon ; 10(11): e31973, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841516

RESUMEN

Purpose: Endometrial cancer (EC) poses a serious risk to females worldwide; thus, a deep understanding of EC is urgently required. The role and mechanisms of gamma-glutamyltransferase light chain 1 (GGTLC1) in EC remain obscure. This study aims to elucidate the function and mechanisms underlying GGTLC1's involvement in EC. Methods: Bioinformatic tools and databases were used to analyze GGTLC1 and its associated gene expression in EC tissues. Functional enrichment explorations and immune infiltration analyses were conducted, together with investigation into the methylation status of GGTLC1. Western blotting and Quantitative real-time PCR quantified expression levels. Additional experimental methodologies elucidated the role of GGTLC1 in EC progression. Transcriptome sequencing identified potential regulatory pathways for GGTLC1, and tumor growth was evaluated in vivo using HEC-1A cells in nude mice. Results: GGTLC1 was upregulated and negatively correlated with immune cell infiltration and DNA methylation in EC. Cell migration and proliferation were reduced following GGTLC1 knockdown, together with arrest at the G0/G1 phase and an upsurge in apoptosis. Compared to the knockdown group, TGF-ß/Smad signaling pathway was up-regulated in the negative control group of EC cells by transcriptome analysis. The levels of TGF-ß, pSmad2, and pSmad3 followed the same decreasing trend, whereas Smad3 and Smad2 protein levels remained unchanged. Conclusion: Knockdown of GGTLC1 attenuates EC development through the TGF-ß/Smad pathway, positioning GGTLC1 as a promising target for EC treatment.

8.
Biochem Biophys Res Commun ; 721: 150108, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38762931

RESUMEN

Drug-tolerant persister (DTP) cells remain following chemotherapy and can cause cancer relapse. However, it is unclear when acquired resistance to chemotherapy emerges. Here, we compared the gene expression profiles of gastric cancer patient-derived cells (GC PDCs) and their respective xenograft tumors with different sensitivities to 5-fluorouracil (5-FU) by using immunodeficient female BALB/c-nu mice. RNA sequencing analysis of 5-FU-treated PDCs demonstrated that DNA replication/cell cycle-related genes were transiently induced in the earlier phase of DTP cell emergence, while extracellular matrix (ECM)-related genes were sustainably upregulated during long-term cell survival in 5-FU-resistant residual tumors. NicheNet analysis, which uncovers cell-cell signal interactions, indicated the transforming growth factor-ß (TGF-ß) pathway as the upstream regulator in response to 5-FU treatment. This induced ECM-related gene expression in the 5-FU-resistant tumor model. In the 5-FU-resistant residual tumors, there was a marked upregulation of cancer cell-derived TGF-ß1 expression and increased phosphorylation of SMAD3, a downstream regulator of the TGF-ß receptor. By contrast, these responses were not observed in a 5-FU-sensitive tumor model. We further found that TGF-ß-related upregulation of ECM genes was preferentially observed in non-responders to chemotherapy with 5-FU and/or oxaliplatin among 22 patient-derived xenograft tumors. These observations suggest that chemotherapy-induced activation of the TGF-ß1/SMAD3/ECM-related gene axis is a potential biomarker for the emergence of drug resistance in GCs.


Asunto(s)
Resistencia a Antineoplásicos , Matriz Extracelular , Fluorouracilo , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C , Transducción de Señal , Neoplasias Gástricas , Factor de Crecimiento Transformador beta , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Resistencia a Antineoplásicos/genética , Humanos , Animales , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Femenino , Transducción de Señal/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de los fármacos , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Ratones Desnudos , Línea Celular Tumoral , Proteína smad3/metabolismo , Proteína smad3/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Anticancer Agents Med Chem ; 24(14): 1074-1084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808719

RESUMEN

BACKGROUND: Bladder cancer metastasis is an essential process in the progression of muscle-invasive bladder cancer. EMT plays a crucial role in facilitating the spread of cancer cells. Identifying compounds that can inhibit these abilities of cancer cells is a significant international endeavor. OBJECTIVE: To explore the migration and invasion effect of Moscatilin on the bladder and clarify the mechanism of action Methods: The anti-bladder cancer effect of Moscatilin was observed by a cell proliferation experiment. The migration and invasion of bladder cancer cells inhibited by Moscatilin were detected by Transwell and Wound healing. The effects of Moscatilin on EMT-related proteins E-cadherin, N-cadherin, Snail1, Vimentin, and TGF-ß signaling pathways were detected by Western blot, and nucleic acid levels were verified by qPCR. RESULTS: Our study revealed that Moscatilin reduced the viability of bladder cancer cells in vitro and impeded their migration and invasion in experimental settings. Furthermore, we observed that Moscatilin decreased the activation levels of active proteins, specifically Smad3, Samd2, and MMP2. Additionally, we found that moscatilin significantly reduced the expression level of TGF-ß and was also capable of reversing the overexpression effect of TGF-ß. Treatment with Moscatilin also led to significant inhibition of interstitial cell markers Ncadherin and Snail1, which are associated with EMT. CONCLUSION: These findings indicate that Moscatilin impedes the migration and invasion of bladder cancer cells by influencing cell survival, modulating TGF-ß/Smad signaling, and inhibiting EMT.


Asunto(s)
Movimiento Celular , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Transición Epitelial-Mesenquimal , Transducción de Señal , Factor de Crecimiento Transformador beta , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Dosis-Respuesta a Droga , Células Tumorales Cultivadas , Estructura Molecular , Relación Estructura-Actividad , Supervivencia Celular/efectos de los fármacos , Pirazoles/farmacología , Pirazoles/química , Quinolinas
10.
Hum Cell ; 37(4): 972-985, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38656742

RESUMEN

Acute coronary artery blockage leads to acute myocardial infarction (AMI). Cardiomyocytes are terminally differentiated cells that rarely divide. Treatments preventing cardiomyocyte loss during AMI have a high therapeutic benefit. Accumulating evidence shows that microRNAs (miRNAs) may play an essential role in cardiovascular diseases. This study aims to explore the biological function and underlying regulatory molecular mechanism of miR-322-5p on myocardial infarction (MI). This study's miR-322-5p is downregulated in MI-injured hearts according to integrative bioinformatics and experimental analyses. In the MI rat model, miR-322-5p overexpression partially eliminated MI-induced changes in myocardial enzymes and oxidative stress markers, improved MI-caused impairment on cardiac functions, inhibited myocardial apoptosis, attenuated MI-caused alterations in TGF-ß, p-Smad2, p-Smad4, and Smad7 protein levels. In oxygen-glucose deprivation (OGD)-injured H9c2 cells, miR-322-5p overexpression partially rescued OGD-inhibited cell viability and attenuated OGD-caused alterations in the TGF-ß/Smad signaling. miR-322-5p directly targeted Smurf2 and inhibited Smurf2 expression. In OGD-injured H9c2 cells, Smurf2 knockdown exerted similar effects to miR-322-5p overexpression upon cell viability and TGF-ß/Smad signaling; moreover, Smurf2 knockdown partially attenuated miR-322-5p inhibition effects on OGD-injured H9c2 cells. In conclusion, miR-322-5p is downregulated in MI rat heart and OGD-stimulated rat cardiomyocytes; the miR-322-5p/Smurf2 axis improves OGD-inhibited cardiomyocyte cell viability and MI-induced cardiac injuries and dysfunction through the TGF-ß/Smad signaling.


Asunto(s)
MicroARNs , Infarto del Miocardio , Miocitos Cardíacos , Transducción de Señal , Factor de Crecimiento Transformador beta , Ubiquitina-Proteína Ligasas , MicroARNs/genética , MicroARNs/metabolismo , MicroARNs/fisiología , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Animales , Transducción de Señal/genética , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Ratas , Miocitos Cardíacos/metabolismo , Modelos Animales de Enfermedad , Proteína Smad2/metabolismo , Proteína Smad2/genética , Expresión Génica/genética , Masculino , Regulación hacia Abajo/genética , Ratas Sprague-Dawley , Apoptosis/genética , Proteínas Smad/metabolismo , Glucosa/metabolismo , Proteína Smad4/metabolismo , Proteína Smad4/genética , Terapia Molecular Dirigida , Proteína smad7/metabolismo , Proteína smad7/genética
11.
Chem Biol Interact ; 394: 110979, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555046

RESUMEN

TGF-ß/Smad signaling pathway plays an important role in the pathogenesis and progression of liver fibrosis. Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+) dependent enzyme and responsible for deacetylating the proteins. Increasing numbers of reports have shown that the molecular mechanism of SIRT1 as an effective therapeutic target for liver fibrosis but the transformation is not very clear. In the present study, liver fibrotic tissues were screened by staining with Masson, hematoxylin-eosin staining (H&E) and Immunohistochemistry (IHC) for histopathological observation from the liver biopsy of seventy-seven rhesus monkey, which fixed with 4% paraformaldehyde (PFA) after treatment with high-fat diet (HFD) for two years. And the liver function was further determined by serum biochemical tests. The mRNA levels and protein expression of rat hepatic stellate (HSC-T6) cells were determined after treatment with Resveratrol (RSV) and Nicotinamide (NAM), respectively. The results showed that with the increasing of hepatic fibrosis in rhesus monkeys, the liver function impaired, and the transforming growth factor-ß1 (TGF-ß1), p-Smad3 (p-Smad3) and alpha-smooth muscle actin (α-SMA) was up-regulated, while SIRT1 and Smad7 were down-regulated. Moreover, when stimulated the HSC-T6 with RSV to activate SIRT1 for 6, 12, and 24 h, the results showed that RSV promoted the expression of smad7, while the expression of TGF-ß1, p-Smad3 and α-SMA were inhibited. In contrast, when the cells stimulated with NAM to inhibit SIRT1 for 6, 12, and 24 h, the Smad7 expression was decreased, while TGF-ß1, p-Smad3, and α-SMA expressions were increased. These results indicate that SIRT1 acts as an important protective factor for liver fibrosis, which may be attributed to inhibiting the signaling pathway of TGF-ß/Smad in hepatic fibrosis of the rhesus monkey.


Asunto(s)
Cirrosis Hepática , Macaca mulatta , Transducción de Señal , Sirtuina 1 , Animales , Masculino , Ratas , Actinas/metabolismo , Línea Celular , Dieta Alta en Grasa/efectos adversos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Niacinamida/farmacología , Resveratrol/farmacología , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Proteínas Smad/metabolismo , Proteína smad3/metabolismo , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
12.
Arch Gynecol Obstet ; 310(1): 103-111, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38342828

RESUMEN

OBJECTIVE: Although human umbilical cord-derived mesenchymal stem cells (HU-MSCs) have attracted increasing attention because of their pivotal functions in the process of wound healing, the underlying molecular mechanisms have been poorly understood. It has been shown that the TGF-ß/Smad signaling pathway plays an important role in the process of scar formation. The present study focused on exploring whether HU-MSCs improve uterine incision healing after cesarean delivery in rats via the TGF-ß/Smad signaling pathway. STUDY DESIGN: Pregnant rats were randomly assigned to three groups, including the NP group, incision-injected group (HU-MSCs1 group), and tail vein-injected group (HU-MSCs2 group), and 30 days after cesarean section, sampling was carried out to further explore the specific mechanisms from tissue and protein levels. RESULTS: HU-MSCs secretion could inhibit the fibrosis of scar tissue. We observed that the TGF-ß induced expression of TGF-ß1, Smad2, and Smad3 was attenuated upon HU-MSCs treatment in scar tissue, while the decrease in TGF-ß3 expression was enhanced by HU-MSCs. Furthermore, HU-MSCs treatment accelerated wound healing and attenuated collagen deposition in a damaged uterine rat model, leading to the promoting of uterine incision scarring. In addition, the expression of alpha-smooth muscle actin (a-SMA) was enhanced by HU-MSCs treatment. CONCLUSION: HU-MSCs transplantation promotes rat cesarean section uterine incision scar healing by modulating the TGF-ß/Smad signaling pathway.


Asunto(s)
Cesárea , Cicatriz , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Transducción de Señal , Cordón Umbilical , Cicatrización de Heridas , Animales , Femenino , Trasplante de Células Madre Mesenquimatosas/métodos , Ratas , Embarazo , Cordón Umbilical/citología , Humanos , Cicatriz/metabolismo , Ratas Sprague-Dawley , Útero/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteína smad3/metabolismo , Proteína Smad2/metabolismo
13.
BMC Cancer ; 24(1): 204, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38350902

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is an aggressive tumor of the gastrointestinal tract, which is a major public health concern worldwide. Despite numerous studies, the precise mechanism of metastasis behind its progression remains elusive. As a member of the containing olfactomedin domains protein family, olfactomedin 2 (OLFM2) may play a role in tumor metastasis. It is highly expressed in colorectal cancer, and its role in the metastasis of CRC is still unclear. As such, this study seeks to explore the function of OLFM2 on CRC metastasis and its potential mechanisms. METHODS: Real-time fluorescence quantitative PCR and western blotting were used to study the expression of OLFM2 in human CRC and adjacent normal tissues. Knockdown and overexpression OLFM2 cell lines were constructed using siRNA and overexpression plasmids to explore the role of OLFM2 in the migration and invasion of CRC through transwell, and wound healing experiments. Finally, the expression of epithelial-mesenchymal transition (EMT) -related proteins and TGF-ß/Smad signaling pathway-related proteins was investigated using western blotting. RESULTS: In this study, we observed an elevation of OLFM2 expression levels in CRC tissues. To investigate the function of OLFM2, we overexpressed and knocked down OLFM2. We discovered that OLFM2 knockdown inhibited migration and invasion of colon cancer cells. Furthermore, E-cadherin expression increased while N-cadherin and Vimentin expression were opposite. It is no surprise that overexpressing OLFM2 had the opposite effects. We also identified that OLFM2 knockdown resulted in reduced TGF-ßR1 and downstream molecules p-Smad2 and p-Smad3, which are related to the TGF-ß / Smad pathway. In contrast, overexpressing OLFM2 significantly boosted their expression levels. CONCLUSION: The protein OLFM2 has been identified as a crucial determinant in the progression of CRC. Its mechanism of action involves the facilitation of EMT through the TGF-ß/Smad signaling pathway. Given its pivotal role in CRC, OLFM2 has emerged as a promising diagnostic and therapeutic target for the disease. These results indicate the potential of OLFM2 as a valuable biomarker for CRC diagnosis and treatment and highlight the need for further research exploring its clinical significance.


Asunto(s)
Neoplasias Colorrectales , Humanos , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
14.
J Photochem Photobiol B ; 253: 112873, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412778

RESUMEN

Photoaging is one major exogenous factor of skin aging. Efficacy and safety of current anti-photoaging therapies remained to be improved. Our previous studies indicated that skin-derived precursors (SKPs) alleviated photodamage by early activation of TGF-ß/Smad signaling pathway via thrombospondin1 (TSP1). However, the research concerning SKP conditioned medium (SKP-CM) has never been reported. In the current study, we aimed to explore the anti-photoaging effects of SKP-CM both in vitro and in vivo, and to elucidate the possible mechanisms. Mouse SKP-CM (mSKP-CM) collection was optimized by a comparative method. The concentration of protein and growth factors in mSKP-CM was detected using BCA protein assay kit and growth factor protein chip. The anti-photoaging effects of mSKP-CM and its regulation of key factors in the TGF-ß/Smad signaling pathway were explored using UVA + UVB photoaged mouse fibroblasts (mFBs) and nude mice dorsal skin. The research revealed that mSKP-CM contained significantly higher-concentration of protein and growth factors than mouse mesenchymal stem cell conditioned medium (mDMSC-CM). mSKP-CM alleviated mFBs photoaging by restoring cell viability and relieving senescence and death. ELISA, qRT-PCR, and western blot results implied the potential mechanisms were associated with the early activation of TGF-ß/Smad signaling pathway by TSP1. In vivo experiments demonstrated that compared with the topical intradermal mDMSC-CM injection and retinoic acid cream application, the photodamaged mice dorsal skin intradermally injected with mSKP-CM showed significantly better improvement. Consistent with the in vitro results, both western blot and immunohistochemistry results confirmed that protein expression of TSP1, smad2/3, p-smad2/3, TGF-ß1, and collagen I increased, and matrix metalloproteinases decreased. In summary, both in vitro and in vivo experiments demonstrated that mSKP-CM alleviated photoaging through an early activation of TGF-ß/Smad signaling pathway via TSP1. SKP-CM may serve as a novel and promising cell-free therapeutical approach for anti-photoaging treatment and regenerative medicine.


Asunto(s)
Envejecimiento de la Piel , Animales , Ratones , Medios de Cultivo Condicionados/farmacología , Transducción de Señal , Ratones Desnudos , Colágeno Tipo I/metabolismo , Fibroblastos , Factor de Crecimiento Transformador beta/metabolismo
15.
Hum Cell ; 37(2): 435-450, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38218754

RESUMEN

Continuously progressive hepatic fibrosis might cause chronic liver diseases, resulting in hepatic failure. The activation of hepatic stellate cells (HSCs) residing in the liver might induce and influence hepatic fibrosis. In the present study, microRNA 3074 (miR-3074) was found increased within transforming growth factor-ß (TGF-ß)-activated HSCs and enriched within the TGF-ß signaling. In activated HSCs by TGF-ß, miR-3074 overexpression aggravated TGF-ß-induced fibrotic changes, whereas miR-3074 inhibition exerted opposite effects. miR-3074 directly targeted bone morphogenetic protein 7 (BMP7) and inhibited BMP7 expression. Under TGF-ß induction, overexpressed BMP7 notably attenuated the promotive roles of miR-3074 overexpression in TGF-ß-activated HSCs. Within carbon tetrachloride (CCl4)-caused liver fibrosis murine model, miR-3074 agomir administration promoted, while LV-BMP7 administration alleviated CCl4-induced fibrotic changes; LV-BMP7 significantly attenuated the effects of miR-3074 agomir. Lastly, mmu-miR-3074 also targeted mouse BMP7 and inhibited mouse BMP7 expression. In conclusion, the miR-3074/BMP7 axis regulates TGF-ß-caused activation of HSCs in vitro and CCl4-caused murine liver fibrosis in vivo. BMP7-mediated Smad1/5/8 activation might be involved.


Asunto(s)
Células Estrelladas Hepáticas , MicroARNs , Animales , Ratones , Proteína Morfogenética Ósea 7/genética , Proteína Morfogenética Ósea 7/efectos adversos , Proteína Morfogenética Ósea 7/metabolismo , Células Estrelladas Hepáticas/patología , Hígado/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/inducido químicamente , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
16.
Appl Physiol Nutr Metab ; 49(3): 360-374, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944128

RESUMEN

This study investigated the effects of amygdalin (AMY, a cyanogenic glycoside widely distributed in the fruits and seeds of Rosaceae plants) on cardiac performance and ventricular remodeling in a rat model of myocardial infarction (MI). We also investigated whether the combination of AMY with exercise training (ExT) has a beneficial synergistic effect in treating MI rats. MI was induced by the ligation of the left anterior descending coronary artery in male SD rats. ExT or AMY treatment was started 1 week after MI and continued for 1 week (short-term) or 8 weeks (long-term). Cardiac function was evaluated by echocardiographic and hemodynamic parameters. Heart tissues were harvested and subjected to 2,3,5-triphenyl-tetrazolium chloride, Masson's trichrome, hematoxylin-eosin, and immunohistochemical staining. Gene expression was determined by quantitative polymerase chain reaction. Western blot gave a qualitative assessment of protein levels. AMY or ExT improved cardiac function and reduced infarct size in MI rats. AMY or ExT also suppressed myocardial fibrosis and attenuated inflammation in the infarct border zone of hearts from MI rats, as evidenced by inhibition of collagen deposition, inflammatory cell infiltration, and pro-inflammatory markers (interleukin 1ß, interleukin 6, tumor necrosis factor-α, and cyclooxygenase 2). Notably, the effects of AMY combined with ExT were superior to those of AMY alone or ExT alone. Mechanistically, these beneficial functions were correlated with the inhibition of MI-induced activation of the transforming growth factor-ß/Smad pathway. Collectively, AMY and ExT exert a synergistic effect on improving cardiac performance and ameliorating cardiac inflammation and fibrosis after MI, and the effects of long-term intervention were better than short-term intervention.


Asunto(s)
Amigdalina , Infarto del Miocardio , Animales , Ratas , Ratas Sprague-Dawley , Amigdalina/farmacología , Infarto del Miocardio/terapia , Inflamación/terapia , Fibrosis
17.
Eur J Med Chem ; 264: 116029, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38091892

RESUMEN

To discover novel anti-fibrotic agents, a series of UDCA-aminopyrimidine hybrids were designed and synthesized as potent ATX inhibitors by molecular hybridization strategy. The ATX inhibitory activities of all synthesized compounds were evaluated using the LPC choline release assay. The preliminary structure-activity relationship was concluded. Among them, 12a and 12h exhibited the strongest ATX inhibitory activities with IC50 values of 7.62 ± 0.62 and 7.51 ± 0.72 nM respectively, which were 9-fold more effective than the positive control drug GLPG-1690. Molecular docking studies revealed that 12a and 12h occupied the hydrophobic pocket and tunnel of the ATX binding site. The cytotoxicity assay of 12a and 12h revealed that they had no obvious toxicity at concentrations up to 80 µM, therefore their anti-hepatic fibrosis and anti-pulmonary fibrosis activities were further investigated. The results suggested that 12a and 12h significantly decreased the gene and protein expression of α-SMA, COL1A1 and FN in both TGF-ß1-induced HSC-LX2 and CCC-HPF-1 cells. In addition, 12a and 12h significantly inhibited cells migration in both TGF-ß1-induced HSC-LX2 and CCC-HPF-1 cells. Preliminary mechanistic studies indicated that 12a and 12h exerted anti-hepatic fibrosis and anti-pulmonary fibrosis effects by inhibiting the TGF-ß/Smad signaling pathway. Overall, our findings suggested that 12a and 12h might be two promising anti-fibrotic agents, or might serve as two new lead compounds for the further development of anti-fibrotic agents.


Asunto(s)
Fibrosis Pulmonar , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Antifibróticos , Simulación del Acoplamiento Molecular , Cirrosis Hepática/metabolismo , Fibrosis
18.
Artículo en Inglés | MEDLINE | ID: mdl-37138487

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is the leading cause of diabetic death as the final occurrence of heart failure and arrhythmia. Traditional Chinese medicine is usually used to treat various diseases including diabetes. OBJECTIVE: This study sought to investigate the effects of Traditional Chinese medicine supplementing Qi and activating blood circulation (SAC) in DCM. METHODS: After the construction of the DCM model by streptozotocin (STZ) injection and high glucose/fat diet feeding, rats were administered intragastrically with SAC. Then, cardiac systolic/diastolic function was evaluated by detecting left ventricular systolic pressure (LVSP), maximal rate of left ventricular pressure rise (+LVdp/dtmax), and fall (-LVdp/dtmax), heart rate (HR), left ventricular ejection fraction (EF), LV fractional shortening (FS) and left ventricular end-diastolic pressure (LVEDP). Masson's and TUNEL staining were used to assess fibrosis and cardiomyocyte apoptosis. RESULTS: DCM rats exhibited impaired cardiac systolic/diastolic function manifested by decreasing LVSP, + LVdp/dtmax, -LVdp/dtmax, HR, EF and FS, and increasing LVEDP. Intriguingly, traditional Chinese medicine SAC alleviated the above-mentioned symptoms, indicating a potential role in improving cardiac function. Masson's staining substantiated that SAC antagonized the increased collagen deposition and interstitial fibrosis area and the elevations in protein expression of fibrosisrelated collagen I and fibronectin in heart tissues of DCM rats. Furthermore, TUNEL staining confirmed that traditional Chinese medicine SAC also attenuated cardiomyocyte apoptosis in DCM rats. Mechanically, DCM rats showed the aberrant activation of the TGF-ß/Smad signaling, which was inhibited after SAC. CONCLUSION: SAC may exert cardiac protective efficacy in DCM rats via the TGF-ß/Smad signaling, indicating a new promising therapeutic approach for DCM.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Ratas , Animales , Cardiomiopatías Diabéticas/metabolismo , Medicina Tradicional China , Volumen Sistólico , Qi , Función Ventricular Izquierda , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/uso terapéutico , Fibrosis , Colágeno , Miocardio/metabolismo , Diabetes Mellitus/metabolismo
19.
Cell Biochem Funct ; 42(1): e3899, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38088534

RESUMEN

Asthma is a common respiratory disease associated with airway inflammation. Nerolidol is an acyclic sesquiterpenoid with anti-inflammatory properties. BALB/C mice were sensitized with ovalbumin (OVA) to induce asthma symptoms and given different doses of Nerolidol. We found that Nerolidol reduced OVA-induced inflammatory cell infiltration, the number of goblet cells and collagen deposition in lung tissue. Nerolidol reduced the OVA-specific IgE levels in serum and alveolar lavage fluid in an asthma model. Immunohistochemical staining of α-SMA (the marker of airway smooth muscle) showed that Nerolidol caused bronchial basement membrane thinning in asthmatic mice. The hyperplasia of airway smooth muscle cells (ASMCs) is an important feature of airway remodeling in asthma. ASMCs were treated with 10 ng/mL TGF-ß to simulate the pathological environment of asthma in vitro and then treated with different doses of Nerolidol. Nerolidol inhibited the activity of TGF-ß/Smad signaling pathway both in the lung tissue of OVA-induced mouse and TGF-ß-stimulated ASMCs. 16s rRNA sequencing was performed on feces of normal mice, the changes of intestinal flora in OVA-induced asthmatic mice and Nerolidol-treated asthmatic mice were studied. The results showed that Nerolidol reversed the reduced gut microbial alpha diversity in asthmatic mice. Nerolidol changed the relative abundance of gut bacteria at different taxonomic levels. At the phylum level, the dominant bacteria were Bacteroidota, Firmicutes, and Proteobacteria. At the genus level, the dominant bacteria were Lactobacillus, Muribaculaceae, Bacteroides, and Lachnospiraceae. We conclude that Nerolidol attenuates OVA-induced airway inflammation and alters gut microbes in mice with asthma via TGF-ß/Smad signaling.


Asunto(s)
Asma , Microbioma Gastrointestinal , Sesquiterpenos , Animales , Ratones , Ovalbúmina/efectos adversos , Ovalbúmina/metabolismo , Remodelación de las Vías Aéreas (Respiratorias) , ARN Ribosómico 16S/metabolismo , Ratones Endogámicos BALB C , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/metabolismo , Pulmón/metabolismo , Pulmón/patología , Sesquiterpenos/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Líquido del Lavado Bronquioalveolar/química , Factor de Crecimiento Transformador beta/metabolismo , Modelos Animales de Enfermedad
20.
Clin Exp Immunol ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066678

RESUMEN

Atopic Dermatitis (AD) is a persistent and recurring inflammatory condition affecting the skin. An expanding corpus of evidence indicates the potential participation of TGF-ß1 in the modulation of inflammation and tissue remodeling in AD. The primary objective of this study was to examine the aberrant modulation of TGF-ß1/SMAD3 signaling through a comprehensive analysis of their molecular and protein expression profiles. The study encompassed an aggregate of 37 participants, which included 25 AD patients and 12 controls. The assessment of mRNA and protein levels of TGF-ß1 and SMAD3 was conducted utilizing quantitative real-time PCR and immunohistochemistry, whereas serum IgE and vitamin D levels were estimated by ELISA and chemiluminescence, respectively. Quantitative analysis demonstrated a 2.5-fold upregulation of TGF-ß1 mRNA expression in the lesional AD skin (p<0.0001). Immunohistochemistry also exhibited a comparable augmented pattern, characterized by moderate to strong staining intensities. In addition, TGF-ß1 mRNA showed an association with vitamin D deficiency in serum (p<0.02), and its protein expression was linked with the disease severity (p<0.01) Furthermore, a significant decrease in the expression of the SMAD3 gene was observed in the affected skin (p = 0.0004). This finding was further confirmed by evaluating the protein expression and phosphorylation of SMAD3, both of which exhibited a decrease. These findings suggest that there is a dysregulation in the TGF-ß1/SMAD3 signaling pathway in AD. Furthermore, the observed augmentation in mRNA and protein expression of TGF-ß1, along with its correlation with the disease severity, holds considerable clinical significance and emphasizes its potential role in AD pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA