Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.856
Filtrar
Más filtros

Intervalo de año de publicación
1.
Sci Rep ; 14(1): 15691, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977697

RESUMEN

Breast invasive carcinoma (BRCA) is the most malignant and leading cause of death in women. Global efforts are ongoing for improvement in early detection, prevention, and treatment. In this milieu, a comprehensive analysis of RNA-sequencing data of 1097 BRCA samples and 114 normal adjacent tissues is done to identify dysregulated genes in major molecular classes of BRCA in various clinical stages. Significantly enriched pathways in distinct molecular classes of BRCA have been identified. Pathways such as interferon signaling, tryptophan degradation, granulocyte adhesion & diapedesis, and catecholamine biosynthesis were found to be significantly enriched in Estrogen/Progesterone Receptor positive/Human Epidermal Growth Factor Receptor 2 negative, pathways such as RAR activation, adipogenesis, the role of JAK1/2 in interferon signaling, TGF-ß and STAT3 signaling intricated in Estrogen/Progesterone Receptor negative/Human Epidermal Growth Factor Receptor 2 positive and pathways as IL-1/IL-8, TNFR1/TNFR2, TWEAK, and relaxin signaling were found in triple-negative breast cancer. The dysregulated genes were clustered based on their mutation frequency which revealed nine mutated clusters, some of which were well characterized in cancer while others were less characterized. Each cluster was analyzed in detail which led to the identification of NLGN3, MAML2, TTN, SYNE1, ANK2 as candidate genes in BRCA. They are central hubs in the protein-protein-interaction network, indicating their important regulatory roles. Experimentally, the Real-Time Quantitative Reverse Transcription PCR and western blot confirmed our computational predictions in cell lines. Further, immunohistochemistry corroborated the results in ~ 100 tissue samples. We could experimentally show that the NLGN3 & ANK2 have tumor-suppressor roles in BRCA as shown by cell viability assay, transwell migration, colony forming and wound healing assay. The cell viability and migration was found to be significantly reduced in MCF7 and MDA-MB-231 cell lines in which the selected genes were over-expressed as compared to control cell lines. The wound healing assay also demonstrated a significant decrease in wound closure at 12 h and 24 h time intervals in MCF7 & MDA-MB-231 cells. These findings established the tumor suppressor roles of NLGN3 & ANK2 in BRCA. This will have important ramifications for the therapeutics discovery against BRCA.


Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Redes Reguladoras de Genes , Transducción de Señal , Perfilación de la Expresión Génica , Línea Celular Tumoral , Invasividad Neoplásica
2.
Adv Sci (Weinh) ; : e2404628, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981022

RESUMEN

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer. TP53, which has a mutation rate of ≈70%-80% in TNBC patients, plays oncogenic roles when mutated. However, whether circRNAs can exert their effects on TNBC through regulating mutant TP53 has not been well evaluated. In this study, circCFL1, which is highly expressed in TNBC cells and tissues and has prognostic potential is identified. Functionally, circCFL1 promoted the proliferation, metastasis and stemness of TNBC cells. Mechanistically, circCFL1 acted as a scaffold to enhance the interaction between HDAC1 and c-Myc, further promoting the stability of c-Myc via deacetylation-mediated inhibition of K48-linked ubiquitylation. Stably expressed c-Myc further enhanced the expression of mutp53 in TNBC cells with TP53 mutations by directly binding to the promoter of TP53, which promoted the stemness of TNBC cells via activation of the p-AKT/WIP/YAP/TAZ pathway. Moreover, circCFL1 can facilitate the immune escape of TNBC cells by promoting the expression of PD-L1 and suppressing the antitumor immunity of CD8+ T cells. In conclusion, the results revealed that circCFL1 plays an oncogenic role by promoting the HDAC1/c-Myc/mutp53 axis, which can serve as a potential diagnostic biomarker and therapeutic target for TNBC patients with TP53 mutations.

3.
Cancer Innov ; 3(4): e124, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38948251

RESUMEN

Background: Increased glycolytic activity and lactate production are characteristic features of triple-negative breast cancer (TNBC). The aim of this study was to determine whether a subset of lactate-responsive genes (LRGs) could be used to classify TNBC subtypes and predict patient outcomes. Methods: Lactate levels were initially measured in different breast cancer (BC) cell types. Subsequently, MDA-MB-231 cells treated with 2-Deoxy-d-glucose or l-lactate were subjected to RNA sequencing (RNA-seq). The gene set variation analysis algorithm was utilized to calculate the lactate-responsive score, conduct a differential analysis, and establish an association with the extent of immune infiltration. Consensus clustering was then employed to classify TNBC patients. Tumor immune dysfunction and exclusion, cibersort, single-sample gene set enrichment analysis, and EPIC, were used to compare the tumor-infiltrating immune cells between TNBC subtypes and predict the response to immunotherapy. Furthermore, a prognostic model was developed by combining 98 machine learning algorithms, to assess the predictive significance of the LRG signature. The predictive value of immune infiltration and the immunotherapy response was also assessed. Finally, the association between lactate and various anticancer drugs was examined based on expression profile similarity principles. Results: We found that the lactate levels of TNBC cells were significantly higher than those of other BC cell lines. Through RNA-seq, we identified 14 differentially expressed LRGs in TNBC cells under varying lactate levels. Notably, this LRG signature was associated with interleukin-17 signaling pathway dysregulation, suggesting a link between lactate metabolism and immune impairment. Furthermore, the LRG signature was used to categorize TNBC into two distinct subtypes, whereby Subtype A was characterized by immunosuppression, whereas Subtype B was characterized by immune activation. Conclusion: We identified an LRG signature in TNBC, which could be used to predict the prognosis of patients with TNBC and gauge their response to immunotherapy. Our findings may help guide the precision treatment of patients with TNBC.

4.
Sci Rep ; 14(1): 15116, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956424

RESUMEN

Caspase-9, a cysteine-aspartate protease traditionally associated with intrinsic apoptosis, has recently emerged as having non-apoptotic roles, including influencing cell migration-an aspect that has received limited attention in existing studies. In our investigation, we aimed to explore the impact of caspase-9 on the migration and invasion behaviors of MDA-MB-231, a triple-negative breast cancer (TNBC) cell line known for its metastatic properties. We established a stable cell line expressing an inducible caspase-9 (iC9) in MDA-MB-231 and assessed their metastatic behavior using both monolayer and the 3D organotypic model in co-culture with human Foreskin fibroblasts (HFF). Our findings revealed that caspase-9 had an inhibitory effect on migration and invasion in both models. In monolayer culture, caspase-9 effectively suppressed the migration and invasion of MDA-MB-231 cells, comparable to the anti-metastatic agent panitumumab (Pan). Notably, the combination of caspase-9 and Pan exhibited a significant additional effect in reducing metastatic behavior. Interestingly, caspase-9 demonstrated superior efficacy compared to Pan in the organotypic model. Molecular analysis showed down regulation of epithelial-mesenchymal transition and migratory markers, in caspase-9 activated cells. Additionally, flow cytometry analysis indicated a cell cycle arrest. Moreover, pre-treatment with activated caspase-9 sensitized cells to the chemotherapy of doxorubicin, thereby enhancing its effectiveness. In conclusion, the anti-metastatic potential of caspase-9 presents avenues for the development of novel therapeutic approaches for TNBC/metastatic breast cancer. Although more studies need to figure out the exact involving mechanisms behind this behavior.


Asunto(s)
Caspasa 9 , Movimiento Celular , Organoides , Neoplasias de la Mama Triple Negativas , Humanos , Línea Celular Tumoral , Caspasa 9/metabolismo , Movimiento Celular/efectos de los fármacos , Organoides/efectos de los fármacos , Organoides/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Metástasis de la Neoplasia , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Invasividad Neoplásica , Técnicas de Cocultivo , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Células MDA-MB-231
5.
Clin Transl Med ; 14(7): e1753, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967349

RESUMEN

BACKGROUND: Lysine methyltransferase 2D (KMT2D) mediates mono-methylation of histone H3 lysine 4 (H3K4me1) in mammals. H3K4me1 mark is involved in establishing an active chromatin structure to promote gene transcription. However, the precise molecular mechanism underlying the KMT2D-mediated H3K4me1 mark modulates gene expression in triple-negative breast cancer (TNBC) progression is unresolved. METHODS AND RESULTS: We recognized Y-box-binding protein 1 (YBX1) as a "reader" of the H3K4me1 mark, and a point mutation of YBX1 (E121A) disrupted this interaction. We found that KMT2D and YBX1 cooperatively promoted cell growth and metastasis of TNBC cells in vitro and in vivo. The expression levels of KMT2D and YBX1 were both upregulated in tumour tissues and correlated with poor prognosis for breast cancer patients. Combined analyses of ChIP-seq and RNA-seq data indicated that YBX1 was co-localized with KMT2D-mediated H3K4me1 in the promoter regions of c-Myc and SENP1, thereby activating their expressions in TNBC cells. Moreover, we demonstrated that YBX1 activated the expressions of c-Myc and SENP1 in a KMT2D-dependent manner. CONCLUSION: Our results suggest that KMT2D-mediated H3K4me1 recruits YBX1 to facilitate TNBC progression through epigenetic activation of c-Myc and SENP1. These results together unveil a crucial interplay between histone mark and gene regulation in TNBC progression, thus providing novel insights into targeting the KMT2D-H3K4me1-YBX1 axis for TNBC treatment. HIGHLIGHTS: YBX1 is a KMT2D-mediated H3K4me1-binding effector protein and mutation of YBX1 (E121A) disrupts its binding to H3K4me1. KMT2D and YBX1 cooperatively promote TNBC proliferation and metastasis by activating c-Myc and SENP1 expression in vitro and in vivo. YBX1 is colocalized with H3K4me1 in the c-Myc and SENP1 promoter regions in TNBC cells and increased YBX1 expression predicts a poor prognosis in breast cancer patients.


Asunto(s)
Epigénesis Genética , Neoplasias de la Mama Triple Negativas , Proteína 1 de Unión a la Caja Y , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , Femenino , Epigénesis Genética/genética , Animales , Progresión de la Enfermedad , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Histonas/metabolismo , Histonas/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Lisina/análogos & derivados
6.
Biochem Pharmacol ; 226: 116408, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969297

RESUMEN

Metastatic recurrence is still a major challenge in breast cancer treatment. Patients with triple negative breast cancer (TNBC) develop early recurrence and relapse more frequently. Due to the lack of specific therapeutic targets, new targeted therapies for TNBC are urgently needed. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway is one of the active pathways involved in chemoresistance and survival of TNBC, being considered as a potential target for TNBC treatment. Our present study identified ticagrelor, an anti-platelet drug, as a pan-PI3K inhibitor with potent inhibitory activity against four isoforms of class I PI3K. At doses normally used in clinic, ticagrelor showed weak cytotoxicity against a panel of breast cancer cells, but significantly inhibited the migration, invasion and the actin cytoskeleton organization of human TNBC MDA-MB-231 and SUM-159PT cells. Mechanistically, ticagrelor effectively inhibited PI3K downstream mTOR complex 1 (mTORC1) and mTORC2 signaling by targeting PI3K and decreased the protein expression of epithelial-mesenchymal transition (EMT) markers. In vivo, ticagrelor significantly suppressed tumor cells lung metastasis in 4T1 tumor bearing BALB/c mice model and experimental lung metastasis model which was established by tail vein injection of GFP-labeled MDA-MB-231 cells. The above data demonstrated that ticagrelor can inhibit the migration and invasion of TNBC both in vitro and in vivo by targeting PI3K, suggesting that ticagrelor, a pan-PI3K inhibitor, might represent a promising therapeutic agent for the treatment of metastatic TNBC.

7.
Biomed Pharmacother ; 177: 117037, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38959602

RESUMEN

The inhibition of autophagy is a potential therapeutic strategy to improve the chemosensitivity of triple-negative breast cancer (TNBC). In this study, we demonstrated that a natural terpenoid tanshinone I (TAN) enhanced the effectiveness of paclitaxel (PTX), at least in part, through an autophagy-dependent mechanism against TNBC. In vitro validation demonstrated that the combined therapy resulted in a synergistic decrease in the growth of TNBC cells. The chemosensitizing impact of TAN might be attributed to its inhibition of PTX-induced autophagy in the late phase by obstructing the fusion of autophagosomes and lysosomes, rather than by inhibiting lysosomal function. The findings from KEGG pathway analysis and molecular docking suggested that TAN might impact breast cancer chemoresistance primarily through the PI3K-Akt and MAPK signaling pathways. The non-canonical AKT/p38 MAPK signaling was further validated as the primary mechanism responsible for the inhibition of autophagy by TAN. In vivo study showed that the combined administration of TAN and PTX demonstrated a more significant suppression of tumor growth and autophagic activity compared to PTX monotherapy in the MDA-MB-231 xenograft nude mouse model. The safety evaluation of TAN in a zebrafish model, along with in vitro and in vivo validation, provided experimental and pre-clinical data supporting its potential as a natural adjunctive therapy in TNBC. Overall, this study suggests that the combination of TAN with PTX could provide an effective treatment option for advanced breast cancer, and targeting the AKT/p38 MAPK/late-autophagy signaling axis may be a promising approach for developing therapeutic interventions against TNBC.

8.
Int J Hematol Oncol Stem Cell Res ; 18(2): 174-182, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38868811

RESUMEN

Background: Triple-negative breast cancer (TNBC) with a poor prognosis and survival is the most invasive subtype of breast cancer. Usually, TNBC requires a chemotherapy regimen at all stages, but chemotherapy drugs have shown many side effects. We assumed that combination therapy of vinblastine and silibinin might reduce the vinblastine toxicity and dose of vinblastine. Materials and Methods: The MDA-MB-231 were cells subjected to MTT assay for IC50 determination and combination effects, which were measured based on Chou-Talalay's method. The type of cell death was determined by using a Flow-cytometric assay. Cell death pathway markers, including Bcl-2, Bax, and caspase-3 were analyzed by western blot and Real-Time PCR. Results: The treatment of MDA-MB-231 cells exhibited IC50 and synergism at the combination of 30 µM of silibinin and 4 µm of vinblastine in cell viability assay (CI=0.69). YO-PRO-1/PI double staining results showed a significant induction of apoptosis when MDA-MB-231 cells were treated with a silibinin and vinblastine combination (p<0.01). Protein levels of Bax and cleaved caspase-3 were significantly upregulated, and Bcl-2 downregulated significantly. Significant upregulation of Bax (2.96-fold) and caspase-3 (3.46-fold) while Bcl-2 was downregulated by 2-fold. Conclusion: Findings established a preclinical rationale for the combination of silibinin and vinblastine. This combination produces synergistic effects in MDA-MB-231 cells by altering pro- and anti-apoptotic genes, which may reduce the toxicity and side effects of vinblastine.

9.
BMC Med ; 22(1): 252, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886794

RESUMEN

BACKGROUND: Previous studies have shown that the addition of platinum to neoadjuvant chemotherapy (NAC) improved outcomes for patients with triple-negative breast cancer (TNBC). However, no studies have assessed the efficacy and safety of the combination of taxane and lobaplatin. In this study, we conducted a randomized controlled phase II clinical study to compare the efficacy and safety of taxane combined with lobaplatin or anthracycline. METHODS: We randomly allocated patients with stage I-III TNBC into Arm A and Arm B. Arm A received six cycles of taxane combined with lobaplatin (TL). Arm B received six cycles of taxane combined with anthracycline and cyclophosphamide (TEC) or eight cycles of anthracycline combined with cyclophosphamide and sequential use of taxane (EC-T). Both Arms underwent surgery after NAC. The primary endpoint was the pathologic complete response (pCR). Secondary endpoints were event-free survival (EFS), overall survival (OS), and safety. RESULTS: A total of 103 patients (51 in Arm A and 52 in Arm B) were assessed. The pCR rate of Arm A was significantly higher than that of Arm B (41.2% vs. 21.2%, P = 0.028). Patients with positive lymph nodes and low neutrophil-to-lymphocyte ratio (NLR) benefited significantly more from Arm A than those with negative lymph nodes and high NLR (Pinteraction = 0.001, Pinteraction = 0.012, respectively). There was no significant difference in EFS (P = 0.895) or OS (P = 0.633) between the two arms. The prevalence of grade-3/4 anemia was higher in Arm A (P = 0.015), and the prevalence of grade-3/4 neutropenia was higher in Arm B (P = 0.044). CONCLUSIONS: Neoadjuvant taxane plus lobaplatin has shown better efficacy than taxane plus anthracycline, and both regimens have similar toxicity profiles. This trial may provide a reference for a better combination strategy of immunotherapy in NAC for TNBC in the future.


Asunto(s)
Antraciclinas , Protocolos de Quimioterapia Combinada Antineoplásica , Ciclobutanos , Terapia Neoadyuvante , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Femenino , Persona de Mediana Edad , Terapia Neoadyuvante/métodos , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Ciclobutanos/administración & dosificación , Ciclobutanos/uso terapéutico , Antraciclinas/uso terapéutico , Antraciclinas/administración & dosificación , Anciano , Taxoides/uso terapéutico , Taxoides/administración & dosificación , Compuestos Organoplatinos/uso terapéutico , Compuestos Organoplatinos/administración & dosificación , Resultado del Tratamiento , Ciclofosfamida/administración & dosificación , Ciclofosfamida/uso terapéutico , Hidrocarburos Aromáticos con Puentes
10.
Int J Biol Macromol ; 272(Pt 2): 132940, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38848845

RESUMEN

This study reports on the design and synthesis of hypoxia responsive nanoparticles (HRNPs) composed of methoxy polyethylene glycol-4,4 dicarboxylic azolinker-chitosan (mPEG-Azo-chitosan) as ideal drug delivery platform for Fingolimod (FTY720, F) delivery to achieve selective and highly enhanced TNBC therapy in vivo. Herein, HRNPs with an average size of 49.86 nm and a zeta potential of +3.22 mV were synthetized, which after PEG shedding can shift into a more positively-charged NPs (+30.3 mV), possessing self-activation ability under hypoxia situation in vitro, 2D and 3D culture. Treatment with lower doses of HRNPs@F significantly reduced MDA-MB-231 microtumor size to 15 %, induced apoptosis by 88 % within 72 h and reduced highly-proliferative 4 T1 tumor weight by 87.66 % vs. ∼30 % for Fingolimod compared to the untreated controls. To the best of our knowledge, this is the first record for development of hypoxia-responsive chitosan-based NPs with desirable physicochemical properties, and selective self-activation potential to generate highly-charged nanosized tumor-penetrating chitosan NPs. This formulation is capable of localized delivery of Fingolimod to the tumor core, minimizing its side effects while boosting its anti-tumor potential for eradication of TNBC solid tumors.


Asunto(s)
Quitosano , Clorhidrato de Fingolimod , Nanopartículas , Quitosano/química , Quitosano/análogos & derivados , Nanopartículas/química , Humanos , Animales , Línea Celular Tumoral , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/química , Clorhidrato de Fingolimod/administración & dosificación , Ratones , Femenino , Portadores de Fármacos/química , Apoptosis/efectos de los fármacos , Polietilenglicoles/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
11.
Oncol Rep ; 52(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38847277

RESUMEN

Ursolic acid (UA), a pentacyclic triterpenoid that has been found in a broad variety of fruits, spices and medicinal plants, has various biological effects such as reducing inflammation, protecting cells from damage, and preserving brain function. However, its impact on ferroptosis in cancer stem­like cells remains unexplored. The present study investigated the effect of UA on MDA­MB­231 and BT­549 cell­derived triple­negative breast CSCs (BCSCs) and its potential ferroptosis pathway. The effects of ferroptosis on BCSCs were demonstrated by the detection of ferroptosis­related indexes including the intracellular level of glutathione, malondialdehyde, reactive oxygen species and iron. The effects of UA on the biological behaviors of BCSCs were analyzed by Cell Counting Kit­8, stemness indexes detection and mammosphere formation assay. The mechanism of UA induction on BCSCs was explored by reverse transcription­quantitative PCR and western blotting. BALB/c­nude mice were subcutaneously injected with MDA­MB­231­derived BCSCs to establish xenograft models to detect the effects of UA in vivo. The results revealed that BCSCs have abnormal iron metabolism and are less susceptible to ferroptosis. UA effectively reduces the stemness traits and proliferation of BCSCs in spheroids and mice models by promoting ferroptosis. It was observed that UA stabilizes Kelch­like ECH­associated protein 1 and suppresses nuclear factor erythroid­related factor 2 (NRF2) activation. These findings suggested that the ability of UA to trigger ferroptosis through the inhibition of the NRF2 pathway could be a promising approach for treating BCSCs, potentially addressing metastasis and drug resistance in triple­negative breast cancer (TNBC). This expands the clinical applications of UA and provides a theoretical basis for its use in TNBC treatment.


Asunto(s)
Proliferación Celular , Ferroptosis , Factor 2 Relacionado con NF-E2 , Células Madre Neoplásicas , Neoplasias de la Mama Triple Negativas , Triterpenos , Ácido Ursólico , Ensayos Antitumor por Modelo de Xenoinjerto , Ferroptosis/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Triterpenos/farmacología , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Ratones , Femenino , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
12.
Crit Rev Oncol Hematol ; 201: 104417, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901639

RESUMEN

Triple-negative breast carcinoma (TNBC) is one of the most challenging subtypes of breast carcinoma and it has very limited therapeutic options as it is highly aggressive. The prognostic biomarkers are crucial for early diagnosis of the tumor, it also helps in anticipating the trajectory of the illness and optimizing the therapy options. Several therapeutic biomarkers are being used. Among them, the next-generation biomarkers that include Circulating tumor (ct) DNA, glycogen, lipid, and exosome biomarkers provide intriguing opportunities for enhancing the prognosis of TNBC. Lipid and glycogen biomarkers serve as essential details on the development of the tumor along with the efficacy of the treatment, as it exhibits metabolic alteration linked to TNBC. Several types of biomarkers have predictive abilities in TNBC. Elevated levels are associated with worse outcomes. ctDNA being a noninvasive biomarker reveals the genetic composition of the tumor, as well as helps to monitor the progression of the disease. Traditional therapies are ineffective in TNBC due to a lack of receptors, targeted drug delivery provides a tailored approach to overcome drug resistance and site-specific action by minimizing the side effects in TNBC treatment. This enhances therapeutic outcomes against the aggressive nature of breast cancer. This paper includes all the recent biomarkers which has been researched so far in TNBC and the state of art for TNBC which is explored.

13.
Cancers (Basel) ; 16(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38893070

RESUMEN

BACKGROUND: Breast cancer (BC) remains heterogeneous in terms of prognosis and response to treatment. Metabolic reprogramming is a critical part of oncogenesis and a potential therapeutic target. Glutaminase (GLS), which generates glutamate from glutamine, plays a role in triple-negative breast cancer (TNBC). However, targeting GLS directly may be difficult, as it is essential for normal cell function. This study aimed to determine potential targets in BC associated with glutamine metabolism and evaluate their prognostic value in BC. METHODS: The iNET model was used to identify genes in BC that are associated with GLS using RNA-sequencing data. The prognostic significance of tripartite motif-containing 2 (TRIM2) mRNA was assessed in BC transcriptomic data (n = 16,575), and TRIM2 protein expression was evaluated using immunohistochemistry (n = 749) in patients with early-stage invasive breast cancer with long-term follow-up. The associations between TRIM2 expression and clinicopathological features and patient outcomes were evaluated. RESULTS: Pathway analysis identified TRIM2 expression as an important gene co-expressed with high GLS expression in BC. High TRIM2 mRNA and TRIM2 protein expression were associated with TNBC (p < 0.01). TRIM2 was a predictor of poor distant metastasis-free survival (DMFS) in TNBC (p < 0.01), and this was independent of established prognostic factors (p < 0.05), particularly in those who received chemotherapy (p < 0.05). In addition, TRIM2 was a predictor of shorter DMFS in TNBC treated with chemotherapy (p < 0.01). CONCLUSIONS: This study provides evidence of an association between TRIM2 and poor patient outcomes in TNBC, especially those treated with chemotherapy. The molecular mechanisms and functional behaviour of TRIM2 and the functional link with GLS in BC warrant further exploration using in vitro models.

14.
Cancers (Basel) ; 16(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38893132

RESUMEN

Triple-negative breast cancer (TNBC), lacking specific receptors found in other breast cancer subtypes, poses significant treatment challenges due to limited therapeutic options. Therefore, it is necessary to develop novel treatment approaches for TNBC. In the last few decades, many attempts have been reported for alternative tools for TNBC treatment: immunotherapy, radiotherapy, targeted therapy, combination therapy, and nanotechnology-based therapy. Among them, combination therapy and nanotechnology-based therapy show the most promise for TNBC treatment. This review outlines recent advancements in these areas, highlighting the efficacy of combination therapy (immunotherapy paired with chemotherapy, targeted therapy, or radiotherapy) in both preclinical and clinical stages and nanotechnology-based therapies utilizing various nanoparticles loaded with anticancer agents, nucleic acids, immunotherapeutics, or CRISPRs in preclinical stages for TNBC treatment.

15.
Cancers (Basel) ; 16(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893213

RESUMEN

Triple Negative Breast Cancer (TNBC) is characterized by distinct molecular subtypes with unique biological and clinical features. This systematic review aimed to identify articles examining the differences in the tumor immune microenvironment (TIME) across different TNBC molecular subtypes. Six studies meeting inclusion criteria were analyzed, utilizing gene expression profiling and bioinformatic analyses to classify TNBC samples into molecular subtypes, as well as immunohistochemistry and cell deconvolution methods to characterize the TIME. Results revealed significant heterogeneity in immune cell composition among TNBC subtypes, with the immunomodulatory (IM) subtype demonstrating robust immune infiltration, composed mainly of adaptive immune cells along with an increased density of CTLA-4+ and PD-1+ TILs, high PD-L1 tumor cell expression, and upregulation of FOXP3+ Tregs. A more immunosuppressive TIME with a predominance of innate immune cells and lower levels of tumor-infiltrating lymphocytes (TILs) was observed in luminal androgen receptor (LAR) tumors. In mesenchymal stem-like (MSL) tumors, the TIME was mainly composed of innate immune cells, with a high number of M2 tumor-associated macrophages (TAMs), while the BL and M tumors displayed poor adaptive and innate immune responses, indicating an "immune-cold" phenotype. Differential activation of signaling pathways, genomic diversity, and metabolic reprogramming were identified as contributors to TIME heterogeneity. Understanding this interplay is crucial for tailoring therapeutic strategies, especially regarding immunotherapy.

16.
Bioorg Chem ; 150: 107553, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38901279

RESUMEN

The overexpression of FGFR1 is thought to significantly contribute to the progression of triple-negative breast cancer (TNBC), impacting aspects such as tumorigenesis, growth, metastasis, and drug resistance. Consequently, the pursuit of effective inhibitors for FGFR1 is a key area of research interest. In response to this need, our study developed a hybrid virtual screening method. Utilizing KarmaDock, an innovative algorithm that blends deep learning with molecular docking, alongside Schrödinger's Residue Scanning. This strategy led us to identify compound 6, which demonstrated promising FGFR1 inhibitory activity, evidenced by an IC50 value of approximately 0.24 nM in the HTRF bioassay. Further evaluation revealed that this compound also inhibits the FGFR1 V561M variant with an IC50 value around 1.24 nM. Our subsequent investigations demonstrate that Compound 6 robustly suppresses the migration and invasion capacities of TNBC cell lines, through the downregulation of p-FGFR1 and modulation of EMT markers, highlighting its promise as a potent anti-metastatic therapeutic agent. Additionally, our use of molecular dynamics simulations provided a deeper understanding of the compound's specific binding interactions with FGFR1.

17.
Sci China Life Sci ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38900236

RESUMEN

The spreading of cancer cells from the primary tumor site to other parts of the body, known as metastasis, is the leading cause of cancer recurrence and mortality in patients with triple-negative breast cancer (TNBC). Overexpression of epidermal growth factor receptor (EGFR) is observed in approximately 70% of TNBC patients. EGFR is crucial for promoting tumor metastasis and associated with poor prognosis. Therefore, it is vital to identify effective therapeutic strategies targeting EGFR inhibition. Ononin, an isoflavonoid found in various plants, such as clover and soybeans, has been shown to have anticancer properties in several cancers. In the present study, we aimed to investigate the effects of ononin on TNBC lung metastasis and the associated molecular pathways. We used various assays, including cell viability, colony formation, Transwell, wound healing, ELISA, Western blotting, and staining techniques, to achieve this objective. The results demonstrated that ononin effectively suppressed cellular proliferation and induced apoptosis, as evidenced by the cell viability assay, colony formation assay, and expression of apoptosis markers, and reduced the metastatic capabilities of TNBC cells. These effects were achieved through the direct suppression of cell adhesion, invasiveness and motility. Furthermore, in TNBC xenograft lung metastatic models, ononin treatment significantly reduced tumor growth and lung metastasis. Additionally, ononin reversed the epithelial-mesenchymal transition (EMT) by downregulating the expression of EMT markers and matrix metalloproteinases, as confirmed by Western blot analysis. Furthermore, ononin treatment reduced EGFR phosphorylation and suppressed the PI3K, Akt, and mTOR signaling pathways, which was further confirmed using EGFR agonists or inhibitors. Importantly, ononin treatment did not exert any toxic effects on liver or kidney function. In conclusion, our findings suggest that ononin is a safe and potentially therapeutic treatment for TNBC metastasis that targets the EGFR-mediated PI3K/Akt/mTOR pathway. Further studies are warranted to validate its efficacy and explore its potential clinical applications.

18.
Int J Pharm ; 660: 124346, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38889853

RESUMEN

Breast cancer, the second leading global cause of death, affects 2.1 million women annually, with an alarming 15 percent mortality rate. Among its diverse forms, Triple-negative breast cancer (TNBC) emerges as the deadliest, characterized by the absence of hormone receptors. This article underscores the urgent need for innovative treatment approaches in tackling TNBC, emphasizing the transformative potential of polymeric nanomaterials (PNMs). Evolved through nanotechnology, PNMs offer versatile biomedical applications, particularly in addressing the intricate challenges of TNBC. The synthesis methods of PNMs, explored within the tumor microenvironment using cellular models, showcase their dynamic nature in cancer treatment. The article anticipates the future of TNBC therapeutics through the optimization of PNMs-based strategies, integrating them into photothermal (PT), photodynamic (PT), and hyperthermia therapy (HTT), drug delivery, and active tumor targeting strategies. Advancements in synthetic methods, coupled with a nuanced understanding of the tumor microenvironment, hold promise for personalized interventions. Comparative investigations of therapeutic models and a thorough exploration of polymeric nanoplatforms toxicological perspectives become imperative for ensuring efficacy and safety. We have explored the interdisciplinary collaboration between nanotechnology, oncology, and molecular biology as pivotal in translating PNMs innovations into tangible benefits for TNBC patients.

19.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895265

RESUMEN

Paclitaxel is a standard of care neoadjuvant therapy for patients with triple negative breast cancer (TNBC); however, it shows limited benefit for locally advanced or metastatic disease. Here we used a coordinated experimental-computational approach to explore the influence of paclitaxel on the cellular and molecular responses of TNBC cells. We found that escalating doses of paclitaxel resulted in multinucleation, promotion of senescence, and initiation of DNA damage induced apoptosis. Single-cell RNA sequencing (scRNA-seq) of TNBC cells after paclitaxel treatment revealed upregulation of innate immune programs canonically associated with interferon response and downregulation of cell cycle progression programs. Systematic exploration of transcriptional responses to paclitaxel and cancer-associated microenvironmental factors revealed common gene programs induced by paclitaxel, IFNB, and IFNG. Transcription factor (TF) enrichment analysis identified 13 TFs that were both enriched based on activity of downstream targets and also significantly upregulated after paclitaxel treatment. Functional assessment with siRNA knockdown confirmed that the TFs FOSL1, NFE2L2 and ELF3 mediate cellular proliferation and also regulate nuclear structure. We further explored the influence of these TFs on paclitaxel-induced cell cycle behavior via live cell imaging, which revealed altered progression rates through G1, S/G2 and M phases. We found that ELF3 knockdown synergized with paclitaxel treatment to lock cells in a G1 state and prevent cell cycle progression. Analysis of publicly available breast cancer patient data showed that high ELF3 expression was associated with poor prognosis and enrichment programs associated with cell cycle progression. Together these analyses disentangle the diverse aspects of paclitaxel response and identify ELF3 upregulation as a putative biomarker of paclitaxel resistance in TNBC.

20.
Cell Oncol (Dordr) ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888849

RESUMEN

PURPOSE: Breast cancer is the most commonly diagnosed cancer in women, and triple-negative breast cancer (TNBC) accounts for approximately 15%-20% of all breast cancers. TNBC is highly invasive and malignant. Due to the lack of relevant receptor markers, the prognosis of TNBC is poor and the five-year survival rate is low. Paclitaxel is the first-line drug for the treatment of TNBC, which can inhibit cell mitosis. However, many patients develop drug resistance during treatment, leading to chemotherapy failure. Therefore, finding new therapeutic combinations to overcome TNBC drug resistance can provide new strategies for improving the survival rate of TNBC patients. METHODS: Cell viability assay, RT-qPCR, Colony formation assay, Western blot, and Xenogeneic transplantation methods were used to investigate roles and mechanisms of IRE1α/XBP1s pathway in the paclitaxel-resistant TNBC cells, and combined paclitaxel and IRE1α inhibitor in the treatment of TNBC was examined in vitro and in vivo. RESULTS: We found activation of UPR in paclitaxel-resistant cells, confirming that IRE1α/XBP1 promotes paclitaxel resistance in TNBC. In addition, we demonstrated that the combination of paclitaxel and IRE1α inhibitors can synergistically inhibit the proliferation of TNBC tumors both in vitro and in vivo,suggesting that IRE1α inhibitors combined with paclitaxel may be a new treatment option for TNBC. CONCLUSIONS: In this study, we demonstrated the important role of IRE1α signaling in mediating paclitaxel resistance and identified that combination therapies targeting IRE1α signaling could overcome paclitaxel resistance and enhance chemotherapy efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA